Introduction	Status of PDFs	W and Z production	Higgs and $t\bar{t}$ production	Summary

Another update of benchmark cross section study

Graeme Watt

CERN PH-TH

PDF4LHC Meeting CERN, Geneva, 28th November 2011

Introduction •	Status of PDFs 0000	W and Z production	Higgs and <i>tt</i> production	Summary 000
Introducti	on: some p	hilosophical the	ughts	

If a tree falls in a forest and no one is around to hear it, does it make a sound?

Introduction: some philosophical thoughts

- If a tree falls in a forest and no one is around to hear it, does it make a sound?
- If a theoretical calculation is done, but it can not be used by any experimentalists, does it make a sound? [J. Huston]

Introduction: some philosophical thoughts

- If a tree falls in a forest and no one is around to hear it, does it make a sound?
- If a theoretical calculation is done, but it can not be used by any experimentalists, does it make a sound? [J. Huston]
- If a PDF fit is done, but it is not available in LHAPDF¹, does it make a sound? [G.W.]

¹(and preferably accompanied by a journal publication)

Introduction: some philosophical thoughts

- If a tree falls in a forest and no one is around to hear it, does it make a sound?
- If a theoretical calculation is done, but it can not be used by any experimentalists, does it make a sound? [J. Huston]
- If a PDF fit is done, but it is not available in LHAPDF¹, does it make a sound? [G.W.]
- Consider only *public* sets, where "public" \equiv available in LHAPDF, i.e. excludes ABM10/11, CT NNLO, HERAPDF1.6/1.7,
- Quantifying and understanding differences *between* groups is *as* (if not *more*) important as continued improvements *within* groups.

¹(and preferably accompanied by a journal publication)

Status of PDFs from different groups in March 2010

- Then LHAPDF V5.8.2 (released 18th March 2010).
- Highlight major differences in data and theory between groups:

	MSTW08	CTEQ6.6	NNPDF2.0	HERAPDF1.0	ABKM09	GJR08/JR09
HERA DIS	 ✓ 	~				
Fixed-target DIS	 ✓ 	 ✓ 	 ✓ 	×	 ✓ 	 Image: A set of the set of the
Fixed-target DY	 ✓ 	 	 ✓ 	×	 	 Image: A set of the set of the
Tevatron W, Z	 ✓ 	 ✓ 	 ✓ 	×	×	×
Tevatron jets	 ✓ 	 ✓ 	 ✓ 	×	×	✓ / X
GM-VFNS	 ✓ 	 ✓ 	×	 ✓ 	×	×
NNLO	 ✓ 	×	×	×	 	

• "Global" \equiv includes all five main categories of data.

- Three groups with **NLO** global fits, but only one at **NNLO**. Approx. NNLO for jets, massive $\mathcal{O}(\alpha_5^3)$ NC and $\mathcal{O}(\alpha_5^2)$ CC DIS.
- CTEQ6.6 only uses Tevatron Run I data, not Run II.
- NNPDF2.0 inadequate through use of ZM-VFNS for DIS.
- NLO comparisons initially presented in talk by G.W. at PDF4LHC meeting on 26th March 2010 and formed basis for subsequent PDF4LHC Interim Report [arXiv:1101.0536].

Status of PDFs from different groups in March 2011

- Then LHAPDF V5.8.5 (released 2nd February 2011).
- Highlight major differences in data and theory between groups:

	MSTW08	CT10	NNPDF2.1	HERAPDF1.0/1.5	ABKM09	GJR08/JR09
HERA DIS	 ✓ 	 ✓ 	 ✓ 	 ✓ 	~	 ✓
Fixed-target DIS	 ✓ 	 ✓ 	 ✓ 	×	 	 ✓
Fixed-target DY	 ✓ 	 ✓ 	 ✓ 	×	 ✓ 	 ✓
Tevatron W, Z	 ✓ 	 ✓ 	 ✓ 	×	×	×
Tevatron jets	 ✓ 	 ✓ 	 ✓ 	×	×	/X
GM-VFNS	 ✓ 	 ✓ 	 ✓ 	 ✓ 	×	×
NNLO	 ✓ 	×	×	 ✓ 	~	 ✓

- Three groups with NLO global fits, but only one at NNLO.
- CT10 uses both Tevatron Run I and Run II data.
- NNPDF2.0 (ZM-VFNS) → NNPDF2.1 (GM-VFNS), allowing meaningful comparison to other NLO global fits.
- HERAPDF1.0 provided at NNLO (without uncertainties).
- NLO update and extension to NNLO comparisons presented in talk by G.W. at PDF4LHC meeting on 7th March 2011 and published in JHEP 09 (2011) 069 [arXiv:1106.5788].

Status of PDFs from different groups in November 2011

- Now LHAPDF V5.8.6 (released 2nd August 2011).
- Highlight major differences in data and theory between groups:

	MSTW08	CT10	NNPDF2.1	HERAPDF1.5	ABKM09	GJR08/JR09
HERA DIS	~	~	 ✓ 	 ✓ 	~	 Image: A set of the set of the
Fixed-target DIS	 	 	 ✓ 	×	 	 Image: A set of the set of the
Fixed-target DY	 	 	 ✓ 	×	 	 ✓
Tevatron W, Z	 ✓ 	~	 ✓ 	×	×	×
Tevatron jets	 	 	 ✓ 	×	×	/X
GM-VFNS	 ✓ 	~	 ✓ 	 ✓ 	×	×
NNLO	 ✓ 	×	 ✓ 	 ✓ 	~	~

- Three groups with NLO global fits, but only two at NNLO.
- NNPDF2.1 and HERAPDF1.5 now provided at NNLO.
- Update of comparisons presented in talk by **G.W.** at *Ringberg Workshop: New Trends in HERA Physics 2011* on 26th September 2011 and will appear in the proceedings [arXiv:1112.xxxx]. Updated plots now available from:

http://projects.hepforge.org/mstwpdf/pdf4lhc/ringberg/

- $\alpha_S(M_Z^2)$ for MSTW08, ABKM09 and GJR08/JR09 fitted.
- $\alpha_S(M_Z^2)$ for other groups applied as an external constraint.
- Smaller symbols indicate alternative $\alpha_S(M_Z^2)$ values provided.
- Fitted NLO $\alpha_s(M_Z^2)$ always larger than NNLO $\alpha_s(M_Z^2)$: attempt by fit to mimic missing higher-order corrections.
- NNPDF2.1: $\alpha_S(M_Z^2) = 0.1191 \pm 0.0006^{\text{stat.}}$ (NLO) and $\alpha_S(M_Z^2) = 0.1173 \pm 0.0007^{\text{stat.}}$ (NNLO) for $\Delta \chi^2 = 1$.

• Relevant values of $\sqrt{\hat{s}} = M_{W,Z}$ are indicated: good agreement for global fits (left), but more variation for other sets (right).

• NNLO trend between groups similar to NLO (apart from HERAPDF).

8/24

(September 2011)

G. Watt

- Global fits in good agreement for σ_{W[±]} and σ_{Z⁰} (left plots).
- Small PDF uncertainties in predictions for W/Z ratio:

$$\frac{\sigma_{W^+} + \sigma_{W^-}}{\sigma_{Z^0}} \sim \frac{u(x_1) + d(x_1)}{0.29 \, u(\tilde{x}_1) + 0.37 \, d(\tilde{x}_1)}$$

• Fits with $\alpha_{S}(M_{Z}^{2}) = 0.114, 0.115, ..., 0.122$ likely run with slightly different settings from $\alpha_{S}(M_{Z}^{2}) = 0.1156, 0.1176, 0.1196?$

- HERAPDF1.5 closer to global fits at NNLO for $\sigma_{W^{\pm}}$ and $\sigma_{Z^{0}}$ (left plots).
- W/Z ratio insensitive to NNLO corrections (and α_S):

- Slightly more spread in separate σ_{W⁺} and σ_{W⁻}.
- Reflected in W^+/W^- ratio:

$$\frac{\sigma_{W^+}}{\sigma_{W^-}} \sim \frac{u(x_1)\bar{d}(x_2)}{d(x_1)\bar{u}(x_2)} \sim \frac{u(x_1)}{d(x_1)}$$

- HERAPDF1.5 closer to global fits at NNLO for σ_{W^+} and σ_{W^-} (left plots).
- W⁺/W⁻ ratio insensitive to NNLO corrections (and α_S):

• Consolidate two cross-section measurements (and their ratio).

- Luminosity uncertainty of 3.4% (ATLAS) or 4% (CMS).
- Know correlation of both data and theory (from PDFs).

• Correlation of ellipse \Leftrightarrow uncertainty in ratio of cross sections.

• Largest uncertainty in ATLAS/CMS total cross-section ratios from acceptance calculation ⇒ compare to theory within acceptance.

[ATLAS Collaboration, arXiv:1109.5141]

- NNLO comparisons possible using FEWZ or DYNNLO codes.
- More useful PDF constraints from differential distributions.

• HERAPDF1.5 and NNPDF2.1 results agree with MSTW08.

• $\alpha_S(M_Z^2)$ values can only *partly* explain low σ_H for ABKM09.

G. Watt

G. Watt

• Relevant values of $\sqrt{\hat{s}} = M_H$ are indicated.

• Relevant values of $\sqrt{\hat{s}} = M_H, 2m_t$ are indicated.

G. Watt

0.124

α_s(M²,)

ARKMOS

0.122

0.12

160

150

140

130

0.116

0.118

68% C.L. PDF

MSTW08

ARKMO

117 0.118 0.119 0.12 0.121

α_s(M²,)

HERARDE1 0

HERAPDF1.5

NNLO (approx.) using HATHOR code [Aliev *et al.*, arXiv:1007.1327].
 Compare to single most precise current LHC measurements.

160

140

ner: PDF ont

0.114 0.115 0.116

Outor: PDEar

- CMS: $\sigma_{t\bar{t}} = 164.4 \pm 2.8 \text{(stat.)} \pm 11.9 \text{(syst.)} \pm 7.4 \text{(lumi.)} \text{ pb} (e/\mu+\text{jets}+b-\text{tag}) \text{[CMS PAS TOP-11-003]}$
- ATLAS: $\sigma_{t\bar{t}} = 179.0 \pm 9.8 (\text{stat.+syst.}) \pm 6.6 (\text{lumi.}) \text{ pb}$ (using kinematic information of lepton+jets events) [ATLAS-CONF-2011-121]
- Tevatron: m_t = 173.2±0.9 GeV [TEVEWWG, arXiv:1107.5255]. Increasing m_t by 2 GeV decreases predicted σ_{tt} at LHC by 6%.

Sensitivity to minimum Q^2 cut in HERAPDF1.5 NNLO fit

$$\sigma_{t\bar{t}} = 178^{+4}_{-6}(\text{exp.})^{+37}_{-8}(\text{model+param.}) \pm 6(\alpha_{S}) \text{ pb}$$

- $Q_{\min}^2 = 3.5 \text{ GeV}^2 \rightarrow 2.5 \text{ GeV}^2 \Rightarrow \sigma_{t\bar{t}} \rightarrow +9 \text{ pb.}$
- $Q_{\min}^2 = 3.5 \text{ GeV}^2 \rightarrow 5.0 \text{ GeV}^2 \Rightarrow \sigma_{t\bar{t}} \rightarrow +35 \text{ pb.}$
- High-x gluon sensitive to Q_{\min}^2 because **no** direct data constraint.

[Thorne, G.W., arXiv:1106.5789]

- **MSTW08** insensitive to $Q_{\min}^2 = 2 \rightarrow \{5, 10\} \text{ GeV}^2.$
- Analogous to ABM claim about NMC F_L treatment [arXiv:1101.5261].
- **Conclusion:** jets stabilise fit (lessen sensitivity to details).

O O	Status of PDFs 0000	W and Z production	Higgs and <i>tt</i> production	Summary ●○○
Summary				

- Reasonably good agreement between:
 - NLO global fits from MSTW08, CT10 and NNPDF2.1.
 - NNLO global fits from **MSTW08** and NNPDF2.1.
- More variation with other PDF sets using more limited data sets and/or restrictive input PDF parameterisations.
- (But HERAPDF1.5 NNLO is surprisingly close to **MSTW08**.)
- Tevatron jet data are important to pin down the high-x gluon [R. S. Thorne and G.W., JHEP 08 (2011) 100, arXiv:1106.5789].

- Original motivation was to demonstrate that non-global PDF sets give discrepant predictions and to discourage their use for LHC physics, not to represent all PDFs as being equally valid such that the spread of all 6 represents a realistic uncertainty.
- This plan seems to have backfired and the non-global PDF sets have received more publicity through these comparison plots which has instead promoted their wider use.
- Simplest and most efficient way to reduce PDF uncertainties
 ⇒ discard non-global sets (à la PDF4LHC recipe).

Future of PDF-fitting: elements for discussion

- Currently: "Global" \equiv "HERA + fixed-target + Tevatron". Redefine: "Global" \equiv "HERA + fixed-target + Tevatron + LHC", or "Global" \equiv "HERA + Tevatron + LHC". or ...?
- Do we really need 6 (!) independent PDF groups updating their fits with new LHC data (with still unaccounted discrepancies)?
- Old paradigm: wait for MRST(W)/CTEQ to incorporate new data into their (clunky and private) ~30-year-old fitting codes.
- New paradigm (?): open-source PDF fitting tools (e.g. HERAFitter) with combined experiment/theory expertise, allowing controlled studies of different approaches.