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The parton distribution functions (PDFs) are a non-negotiable input to almost all theory predic-
tions at hadron colliders. In this talk, I introduce PDF determination by global analysis and discuss
selected topics concerning recent relevant data from HERA and the Tevatron, before giving some
prospects for the LHC. The combination of H1 and ZEUS cross sections reduces uncertainties
and will be an important input to future global PDF analyses. The theoretical description of the
heavy-quark contribution to structure functions at HERA has a significant influence on predic-
tions at the LHC. New W and Z data from the Tevatron Run II provide important PDF constraints,
but there are currently problems describing the latest data on the lepton charge asymmetry from
W → `ν decays. The Tevatron Run II jet production data prefer a smaller high-x gluon than the
previous Run I data, which impacts on predictions for Higgs cross sections at the Tevatron. It
is now possible to consistently calculate a combined “PDF+αS” uncertainty on hadronic cross
sections, which is around 2–3% for the W and Z total cross sections at the LHC, reflecting their
potential as a “standard candle” to measure machine luminosity. Parton luminosity functions are
useful quantities for studying properties of hadronic cross sections. Precision measurements at
the LHC will provide further constraints on PDFs as data accumulates in the early running period.
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1. Introduction

Protons are not elementary particles: they are made of partons (quarks and gluons). Parton
distribution functions (PDFs) are therefore essential to relate theory to experiment at HERA, the
Tevatron and the LHC [1]. Each PDF fa/A(x,Q2) intuitively gives the number density of partons a
in a hadron A with momentum fraction x at a hard scale Q2 � Λ2

QCD. The “standard” perturbative
QCD framework at hadron colliders is fixed-order collinear factorisation, which holds up to for-
mally power-suppressed (“higher-twist”) terms O(Λ2

QCD/Q2). A hadronic cross section σAB can
be written as a sum of partonic cross sections σ̂ab, each expanded as a perturbative series in the
running strong coupling αS(Q2), convoluted with a PDF for each hadron, i.e.

σAB = ∑
a,b=q,g

[

σ̂LO
ab +αS σ̂NLO

ab +α2
S σ̂NNLO

ab + . . .
]

⊗ fa/A(xa,Q
2)⊗ fb/B(xb,Q

2), (1.1)

where ⊗ indicates a convolution over the momentum fraction xa,b. The scale dependence of the
PDFs is given by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations:

∂ fa/A

∂ lnQ2 =
αS

2π ∑
a′=q,g

[

PLO
aa′ +αS PNLO

aa′ +α2
S PNNLO

aa′ + . . .
]

⊗ fa′/A, (1.2)

while the running of αS(Q2) satisfies the renormalisation group equation. However, the input
values fa/A(x,Q2

0) and αS(Q2
0) to the evolution equations are incalculable by perturbative QCD

and so need to be extracted from data. Structure functions in deep-inelastic scattering (DIS) can
similarly be written in terms of perturbative coefficient functions, Ci,a, convoluted with PDFs, i.e.

Fi
(

x,Q2) = ∑
a=q,g

[

CLO
i,a +αS CNLO

i,a +α2
S CNNLO

i,a + . . .
]

⊗ fa/A. (1.3)

Since the PDFs are universal, they can be determined from a wide range of existing data, for
example, from the HERA ep collider (H1 and ZEUS experiments), from fixed-target experiments
in `p and `d scattering (BCDMS, NMC, E665, SLAC), νN scattering (CCFR, NuTeV, CHORUS),
pp and pd scattering (E866/NuSea), together with pp̄ collider data from the Tevatron (CDF, DØ).

The paradigm for PDF determination by “global analysis” is to parameterise the x dependence
of fa/A(x,Q2

0) for each flavour a = q,g at the input scale Q2
0 ∼ 1 GeV2 in some flexible form,

subject to number- and momentum-sum rule constraints. The PDFs are then evolved to higher
scales Q2 > Q2

0 using the DGLAP evolution equations. The evolved PDFs are convoluted with Ci,a

or σ̂ab to calculate theory predictions corresponding to a wide variety of data. The input parameters
are then varied to minimise a global goodness-of-fit measure (χ 2).

The determination of parton distributions by global analysis has been an “industry” for more
than 20 years, with regular updates as new data and new theory become available. The first NLO
fit was done by the Martin–Roberts–Stirling group (1987), later joined by Thorne (1998), until
the retirement of Roberts (2005) and the addition of G.W. (2006). The previous “MRST” fits
have recently been superseded by the “MSTW 2008” (LO, NLO and NNLO) fits [2]. The other
major group is “CTEQ” (Coordinated Theoretical–Experimental Project on QCD), and the latest
public fits are CTEQ6L1 at LO [3], CTEQ6.6 at NLO [4], while a NNLO fit is still forthcoming.
Other groups generally fit a more restricted range of data with fewer free parameters [5, 6, 7].
The NNPDF Collaboration [8, 9] use an interesting alternative approach to determine PDFs from a
neural network parameterisation to avoid bias due to a particular functional form of the input.
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2. HERA

Existing HERA data already provide one of the most important inputs to global PDF analy-
ses, especially in providing a strong constraint on the small-x gluon and sea-quark distributions.
The separate H1 and ZEUS inclusive cross-section measurements in DIS have recently been com-
bined to improve accuracy [7]. The averaging procedure gives a large reduction in the correlated
systematic uncertainties due to the different properties of the two detectors, leading effectively to
“cross-calibration” of the systematic uncertainties between the two experiments. These new HERA
combined data will prove invaluable in the next generation of global fits. A PDF fit only to these
HERA data has already been performed [7], but with only 10 free PDF parameters used to deter-
mine the central fit compared to, for example, 28 free PDF parameters for the “MSTW 2008” fit,
reflecting the incomplete flavour separation provided by fitting only to the HERA inclusive data.

Heavy quarks, particularly charm, can contribute a sizeable amount to the total DIS structure
function F2. There are two well-defined regions in which to calculate the heavy-quark contribu-
tion. In the fixed flavour number scheme (FFNS), valid for Q2 . m2

H , the heavy-quark mass (mH) is
retained in the calculation of the hard-scattering coefficient function, and there is no heavy-quark
PDF which would resum αS ln(Q2/m2

H) terms in a similar way as for light quarks. In the zero-mass
variable flavour number scheme (ZM-VFNS), valid for Q2 � m2

H , this heavy-quark PDF is intro-
duced, and the mass dependence is neglected in the coefficient function. A general-mass VFNS
(GM-VFNS) interpolates between these two well-defined limits, using a FFNS for Q2 ≤ m2

H and
a ZM-VFNS for Q2 � m2

H , although there are ambiguous O(m2
H/Q2) terms in the intermediate

region of Q2 > m2
H . The calculation of W and Z cross sections at the LHC is directly influenced

by the treatment of heavy quarks in DIS, since the relevant sea-quark PDFs are determined from
HERA data. The change from CTEQ6.1 (ZM-VFNS) to CTEQ6.5 (GM-VFNS) gave a 8% in-
crease in σW,Z at the LHC. The MRST group have used a GM-VFNS since 1998, but the change
from MRST 2004 to MRST 2006 introduced the first precise definition of a GM-VFNS at NNLO,
including in particular the (correct) discontinuities in the NNLO PDF evolution at Q2 = m2

H , lead-
ing to a 6% increase in σW,Z at the LHC. Pre-2006 MRST NNLO (but not NLO) PDF sets should
therefore now be considered obsolete due to the incomplete heavy-flavour treatment.

Heavy-flavour structure function data from HERA are reaching impressive precision, partic-
ularly for the charm structure function F cc̄

2 , where the separate H1 and ZEUS measurements have
also been combined using the same procedure as for the inclusive cross sections. For both charm
and beauty structure functions, there is good agreement between the data and theoretical predic-
tions using different varieties of GM-VFNS, with the F cc̄

2 data having some discriminating power at
the lowest Q2 values (but still Q2 > m2

c), where the GM-VFNS predictions exhibit the largest vari-
ation. The systematic uncertainty in the particular choice of GM-VFNS, and its effect on hadronic
cross sections, remains to be fully quantified, but work is in progress towards achieving this goal.

The longitudinal proton structure function, FL, was measured at HERA using data taken in
the last few months of running in 2007 when the proton beam energy was lowered. The NLO and
NNLO calculations tend to undershoot the HERA data at the lowest Q2 and x values where the
theory predictions are perturbatively unstable, while small-x resummation [10] aids the descrip-
tion. Small-x resummation will be important at the LHC, for example, in low-mass Drell–Yan
production, where the fixed-order theory predictions are also seen to be perturbatively unstable.
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3. Tevatron

Data from the Tevatron Run II are playing an increasing rôle in global PDF fits. The primary
types of data used are the Z rapidity distributions [11, 12], included for the first time in the “MSTW
2008” fit [2], the W → `ν charge asymmetry, and cross sections for inclusive jet production.

3.1 W → `ν charge asymmetry

The W charge asymmetry at the Tevatron, as a function of the W rapidity (yW ), is

AW (yW ) =
dσ(W +)/dyW − dσ(W−)/dyW

dσ(W +)/dyW + dσ(W−)/dyW
≈

u(x1)d(x2) − d(x1)u(x2)

u(x1)d(x2) + d(x1)u(x2)
, (3.1)

where x1,2 = (MW /
√

s) exp(±yW ), constraining mainly the d/u ratio of the proton PDFs. However,
experimentally, the W rapidity cannot be directly reconstructed since the longitudinal momentum of
the decay neutrino is, in general, unknown. Therefore, the quantity which is traditionally measured
instead is the lepton charge asymmetry, as a function of the lepton pseudorapidity η`, i.e.

A`(η`) =
dσ(`+)/dη` − dσ(`−)/dη`

dσ(`+)/dη` + dσ(`−)/dη`
. (3.2)

Global PDF fits have previously used Tevatron Run I data on A` [13]. The MSTW 2008 fit [2]
was the first to instead use Run II data [14, 15], provided in two E e

T bins for the case of CDF
data on Ae [14]. The latest DØ data on Ae [16] and Aµ [17] are badly described by current NLO
PDFs, especially for p`

T > 35 GeV, while refitting the PDFs causes tension with a number of other
data sets, although this tension is reduced with modified deuteron corrections. It is not possible to
describe both the DØ Ae [16] and Aµ [17] data simultaneously. The effect of NNLO corrections [18,
19] (or pW

T -resummation, as implemented in RESBOS) is small, but acts in the right direction.
CDF have recently determined AW [20] using a new technique to obtain the neutrino’s longitudinal
momentum by constraining the `ν mass to MW . The MSTW 2008 PDFs using VRAP [21] give a
good description (better than the previous MRST 2006 PDFs) of the CDF AW data, while modified
fits to the new DØ A` data [16, 17] tend to undershoot the CDF AW data. Before the new precise
A` data can be usefully included in global PDF fits, more work is needed to qualify and resolve the
apparent discrepancies between (i) CDF and DØ data, (ii) Ae and Aµ data, and (iii) data and theory.

3.2 Inclusive jet production

The Tevatron Run I data on inclusive jet production were included in global PDF fits up to
MRST 2006 (and the current CTEQ6.6) as an important constraint on the high-x gluon distribution.
The MSTW 2008 analysis [2] was the first to include Run II jet data [22, 23], finding a preference
for a smaller gluon distribution at high x than that obtained with the previous Run I data. Fitting
only to Run I jet data gives a bad description of Run II jet data, and vice versa, while fitting neither
gives a similar description as only fitting Run II jet data. Some similar findings have been made
by the CTEQ group [24], although with a little less discrepancy and change in gluon. There is
therefore some apparent inconsistency between the Run I and Run II jet data, while the Run II jet
data are slightly more consistent with the rest of the data included in the global fit. The final MSTW
2008 analysis therefore dropped the Run I jet data from the fit. There is only a slight change in the
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gluon if the CDF Run II data obtained using the kT jet algorithm [22] are replaced by the CDF Run
II data obtained using the cone-based Midpoint jet algorithm [25]. The new smaller high-x gluon
is also preferred by the DØ Run II dijet mass spectrum [26], especially at high rapidities, where the
data prefer MSTW 2008 over CTEQ6.6.

The NNLO trend is similar to NLO, with the caveat that the exact NNLO jet cross sections are
unavailable, so 2-loop threshold corrections are used instead. The smaller high-x gluon (and smaller
αS) in MSTW 2008 compared to MRST 2006 means that the predicted Higgs cross sections at the
Tevatron are also smaller. The MSTW 2008 NNLO PDFs were used for the Tevatron exclusion
results from last March [27] and last November [28], whereas previous results used MRST 2002
NNLO PDFs, which fit Tevatron Run I jet data and also had an incomplete heavy-flavour treatment.

4. LHC

It is common to determine the strong coupling αS at the same time as the PDFs. For example,
the MSTW 2008 NNLO analysis obtained αS(M2

Z) = 0.1171±0.0014 from only experimental un-
certainties [29], with an additional theory uncertainty (. 0.003), cf. the Particle Data Group world
average value of αS(M2

Z) = 0.1176± 0.002. The same value of αS should be used in subsequent
cross-section calculations. However, since the PDFs and αS are correlated, the uncertainty on a
hadronic cross section due to both PDFs and αS cannot simply be obtained by adding the two sepa-
rate uncertainties in quadrature. A prescription has recently been developed [29] to allow consistent
calculation of the combined “PDF+αS” uncertainty on a hadronic cross section. The additional un-
certainty due to αS is particularly important for processes where multiple powers of αS appear at
lowest-order, such as Higgs production via gluon–gluon fusion or inclusive jet production, both of
which enter at O(α2

S ) at the LHC.
The W and Z total cross sections at the LHC are a potential “standard candle” for determina-

tion of the machine luminosity. The NNLO total cross sections using MSTW 2008 NNLO PDFs
have a “PDF+αS” uncertainty of around 2–3%, while the additional uncertainty from varying the
renormalisation and factorisation scales is less than 1%. Dependence on other theoretical uncer-
tainties, such as heavy-quark masses and the specific choice of GM-VFNS used in the PDF fit, is
currently under study. Most uncertainties largely cancel in the W/Z and W +/W− ratios.

The parton luminosity function, ∂Lab/∂M2
X , can be interpreted as the appropriate convolution

of PDFs for production of a final state with invariant mass MX from initial-state partons a and b.
It proves very useful when studying properties of hadronic cross sections, for example, the PDF
uncertainty or the dependence on different LHC beam energies [30, 31].

Of course, as data begins accumulating at the LHC, precision measurements will provide fur-
ther constraints on PDFs. In particular, measurement of low-mass Drell–Yan production at high
rapidity by LHCb [32, 33] may extend the small-x reach of HERA, although as already noted,
useful inclusion in PDF fits may require small-x resummation.

The importance of PDFs can only increase now that we have firmly entered the LHC era.
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