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• Before the discovery of the Higgs boson, massive Yang-Mills theory 
violated unitarity — problem with high-energy growth of 2 -> 2 processes 

• Discovery of the (elementary) Higgs made the SM theory self-consistent 

• But a new unitarity problem — caused by the elementary Higgs bosons — 
appears to occur for processes with large final state multiplicities n >> 1 

• Plus: Higgs brings in the Hierarchy problem: radiative corrections push the 
Higgs mass to the new physics (high) scale:  

• In this talk: consider n~100s of Higgs bosons produced in the final state   
n x lambda >> 1. Investigate scattering processes at ~ 100 TeV  energies 

• HIGGSPLOSION offers a solution to both: it restores the unitarity of high-
multiplicity processes and dynamically cuts off the values of the loop 
momenta contributing to the radiative corrections to the Higgs mass.

SM: Unitarity, Hierarchy and HIGGSPLOSION
1 Introduction

The recent discovery of a light Higgs boson at the Large Hadron Collider (LHC) [1, 2] constitutes
an outstanding success of the Standard Model (SM) of particle physics. Before its discovery,
the presence of a light scalar boson with a mass within the reach of the LHC was predicted,
to ensure unitarity in scattering processes between longitudinal gauge bosons. While the SM
is certainly an incomplete theory of nature, it fails to explain the observed matter-antimatter
asymmetry and it does not provide a cold dark matter candidate, it is widely believed that the
Higgs boson interactions with all other SM particles renders it a self-consistent theory, up to
very high energy scales. As such it is currently arguably impossible to point to a specific energy
scale at which the SM has to be augmented by new physics to explain fundamental questions
in nature.

Yet, the Higgs boson, as a light elementary scalar particle, su↵ers from a so-called fine-
tuning problem. Quantum corrections are involuntarily dragging the Higgs boson mass to
the new physics mass scale mnew, viz m2

h ' m2
0 + �m2

new. In order to obtain the observed
physical mass of mh ' 125 GeV the bare parameter of the theory m0 has to be increasingly
precisely tuned, depending on how widely the electroweak scale is separated from the new
physics scale. The guiding principle that parameters of our quantum field theory should not
have to be unnaturally precisely tuned is currently our strongest argument for the existence
of a new physics scale, not too far away from the electroweak scale. Popular ways to avoid
the Hierarchy problem altogether are supersymmetric and composite Higgs models, which each
however have their own so-called little Hierarchy problems.

Looking beyond 2 ! 2 scattering processes, which are unitarized due to tree-level cancella-
tion e↵ects between gauge and Higgs boson interactions, the SM might still be an inconsistent
theory at energy scales as low as O(100) TeV, as perturbative unitarity might be violated in
2 ! nh multi-Higgs boson production processes. At su�ciently high energies it becomes kine-
matically possible to produce high multiplicity final states with n o 1 particles in a weakly
interacting theory. It was pointed out already more than a quarter of a century ago in Refs. [3, 4]
that the factorial growth in n can arise from the large numbers of Feynman diagrams contribut-
ing to the scattering amplitude Mn at large n. This reasoning works in any quantum field
theory where there is no destructive interference between Feynman diagrams in computations
of on-shell quantities, and is indeed the case in the scalar field theory with ��4-type inter-
actions [5], where tree graphs all have the same sign, and the leading-order high-multiplicity
amplitudes indeed acquire the factorial behaviour, Mn ⇠ �n/2 n!. This observation, assuming
that the amplitudes do not decay rapidly in moving o↵ the multi-particle thresholds, leads to
the factorial growth of the decay rates, �n ⇠ �n n!⇥fn(E), of highly energetic states and signals
that perturbation theory becomes e↵ectively strongly coupled for n > 1/� [6, 7, 8, 9, 10] and
can result in sharply growing with energy high-multiplicity observables. For example, it was
shown recently in Refs. [10, 11] that such high multiplicity production processes may be within
reach of a future hadron collider at 100 TeV. Already at 50 TeV the perturbative cross-sections
for 140 Higgs bosons are at picobarn level.

In this work, we will address both short-comings of the SM discussed: the Hierarchy problem
and the apparent breakdown of perturbative unitarity in high multiplicity processes simultane-
ously using the Higgsplosion mechanism. We will show that the sharply growing cross-sections
actually prevent the violation of perturbative unitarity in multi-Higgs processes and further nat-

1

2



SM: Unitarity, Hierarchy and HIGGSPLOSION

After the discovery of the Higgs boson - complete Standard Model

Energy

Multiplicity
Situation at tree-level

W

W

W

W

W

W

W

Wγ
W

W

W

WZ

W

W

W

W
W

W

W

WH

W

W

W

Wγ
W

W

W

WZ

Perturbative unitarity violated 
at very high multiplicities

model inconsistent  
(at high multiplicities)

+    Hierarchy problem (Loop level)

DESY Hamburg              Seminar      Michael Spannowsky             24.04.2017                   40

Extreme energy dependence for 1  ->  n cross section

[Khoze ’15]

DESY Hamburg              Seminar      Michael Spannowsky             24.04.2017                   42

*

including 1-loop result reduces ‘ignition’ scale
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain

6

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n"

�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log

✓
�n

4

◆
� 1 , (3.12)

f(")|"!0 ! f(")asympt =
3

2

⇣
log

⇣ "

3⇡

⌘
+ 1

⌘
�

25

12
" . (3.13)

One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
�n

4

◆
� 1 +

p
3
�n

4⇡
. (3.14)
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Explosive growth of 1->n process1 Introduction

The recent discovery of a light Higgs boson at the Large Hadron Collider (LHC) [1, 2] constitutes
an outstanding success of the Standard Model (SM) of particle physics. Before its discovery,
the presence of a light scalar boson with a mass within the reach of the LHC was predicted,
to ensure unitarity in scattering processes between longitudinal gauge bosons. While the SM
is certainly an incomplete theory of nature, it fails to explain the observed matter-antimatter
asymmetry and it does not provide a cold dark matter candidate, it is widely believed that the
Higgs boson interactions with all other SM particles renders it a self-consistent theory, up to
very high energy scales. As such it is currently arguably impossible to point to a specific energy
scale at which the SM has to be augmented by new physics to explain fundamental questions
in nature.

Yet, the Higgs boson, as a light elementary scalar particle, su↵ers from a so-called fine-
tuning problem. Quantum corrections are involuntarily dragging the Higgs boson mass to
the new physics mass scale mnew, viz m2

h ' m2
0 + �m2

new. In order to obtain the observed
physical mass of mh ' 125 GeV the bare parameter of the theory m0 has to be increasingly
precisely tuned, depending on how widely the electroweak scale is separated from the new
physics scale. The guiding principle that parameters of our quantum field theory should not
have to be unnaturally precisely tuned is currently our strongest argument for the existence
of a new physics scale, not too far away from the electroweak scale. Popular ways to avoid
the Hierarchy problem altogether are supersymmetric and composite Higgs models, which each
however have their own so-called little Hierarchy problems.

Looking beyond 2 ! 2 scattering processes, which are unitarized due to tree-level cancella-
tion e↵ects between gauge and Higgs boson interactions, the SM might still be an inconsistent
theory at energy scales as low as O(100) TeV, as perturbative unitarity might be violated in
2 ! nh multi-Higgs boson production processes. At su�ciently high energies it becomes kine-
matically possible to produce high multiplicity final states with n o 1 particles in a weakly
interacting theory. It was pointed out already more than a quarter of a century ago in Refs. [3, 4]
that the factorial growth in n can arise from the large numbers of Feynman diagrams contribut-
ing to the scattering amplitude Mn at large n. This reasoning works in any quantum field
theory where there is no destructive interference between Feynman diagrams in computations
of on-shell quantities, and is indeed the case in the scalar field theory with ��4-type inter-
actions [5], where tree graphs all have the same sign, and the leading-order high-multiplicity
amplitudes indeed acquire the factorial behaviour, Mn ⇠ �n/2 n!. This observation, assuming
that the amplitudes do not decay rapidly in moving o↵ the multi-particle thresholds, leads to
the factorial growth of the decay rates, �n ⇠ �n n!⇥fn(E), of highly energetic states and signals
that perturbation theory becomes e↵ectively strongly coupled for n > 1/� [6, 7, 8, 9, 10] and
can result in sharply growing with energy high-multiplicity observables. For example, it was
shown recently in Refs. [10, 11] that such high multiplicity production processes may be within
reach of a future hadron collider at 100 TeV. Already at 50 TeV the perturbative cross-sections
for 140 Higgs bosons are at picobarn level.

In this work, we will address both short-comings of the SM discussed: the Hierarchy problem
and the apparent breakdown of perturbative unitarity in high multiplicity processes simultane-
ously using the Higgsplosion mechanism. We will show that the sharply growing cross-sections
actually prevent the violation of perturbative unitarity in multi-Higgs processes and further nat-
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• At high energies (100 TeV range), production of multiple Higgs and vector 
bosons becomes kinematically possible 

• HIGGSPLOSION: Cross-sections computed in weakly-coupled 
perturbation theory become unsuppressed above certain critical values of 
n and E 

• This also applies to partial decay widths of highly-energetic states 

• But there are no violations of perturbative unitarity due to the related 
HIGGSPERSION mechanism [exponential growth is tamed above Ec] 

• [Similar considerations should also apply to high-multiplicity longitudinal W 
and Z production]

HIGGSPLOSION and HIGGSPERSION
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HIGGSPLOSION and HIGGSPERSION

Extreme energy dependence for 1  ->  n cross section
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain

6

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n"

�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log

✓
�n

4

◆
� 1 , (3.12)

f(")|"!0 ! f(")asympt =
3

2

⇣
log

⇣ "

3⇡

⌘
+ 1

⌘
�

25

12
" . (3.13)

One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
�n

4

◆
� 1 +

p
3
�n

4⇡
. (3.14)
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
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4
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◆
+

3n

2

⇣
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�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log

✓
�n

4

◆
� 1 , (3.12)

f(")|"!0 ! f(")asympt =
3

2

⇣
log

⇣ "

3⇡

⌘
+ 1

⌘
�

25

12
" . (3.13)

One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
�n

4

◆
� 1 +

p
3
�n

4⇡
. (3.14)
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Explosive growth of 1->n process

4.1 Unitarity

We will now argue that as soon as the cross-sections have reached the observable level, any
subsequent increase in the available energy will not result in the unbounded growth of the rates.
Instead, the cross-sections will actually decrease, and there will be no violation of perturbative
unitarity. For concreteness, consider the simplest process with a single intermediate o↵-shell
Higgs propagator.4 The amplitude for this process reads (cf. Eq. (4.1)):

Mgg!h⇤ ⇥
i

p2 � M2
h + iMh �(p2)

⇥ Mh⇤!n⇥h , (4.2)

where �(s) is the energy-dependent total width of the Higgs at the scale s, and it will lead to
the Higgspersion of the total cross-section at asymptotically high energies. In other words, the
o↵-shell current Ah⇤!n⇥h in Eq. (4.1) includes the full dressed propagator times the amplitude
Mh⇤!n⇥h.

In the limit s � M2
h , m

2
t , the corresponding parton-level cross-section becomes,

��
gg!n⇥h ⇠ y2tm

2
t log

4

✓
mt
p
s

◆
⇥

1

s2 +M4
hR

2
⇥ (2�)n�1

Rn , (4.3)

and asymptotes to 1/R in the limit R ! 1. The inclusion of the decay width is of course
only relevant when �(s) becomes comparable to s/Mh. This conclusion is general and applies
to higher-order polygons with more than one internal Higgs propagator.

In summary the multi-particle high-energy cross-section has the behaviour of the type,

�gg!n⇥h ⇠

(
R : for R . 1

1/R ! 0 : for R � 1 at s ! 1 .
(4.4)

The first line in the equation above is the result of Higgsplosion and the second line is the
consequence of the Higgspersion mechanism.

4.2 A comment on the Källén-Lehmann formula

It can also be helpful to address potential unitarity violations in the theory [23, 24] using the
Källén-Lehmann representation of the propagator for a scalar field �,

��(p) =

Z 1

0

ds

2⇡

i

p2 �m2
⇢(s) , (4.5)

where ⇢(s) is the spectral density function, see e.g. [25],

⇢(s) =
X

n

2⇡ �

 
p
s�

nX

i=1

pi

!
|h0|�(0)|ni|2 = 2⇡Z� �(s�m2

�) +
X

n�2

Z
d⇧n|A(1⇤ ! n)|2(s)

= 2⇡Z� �(s�m2
�) +

1

(s�m2)2

X

n�2

Z
d⇧n|M(1 ! n)|2(s) , (4.6)

4
This corresponds to the contribution of triangle diagrams to the gluon fusion production. The processes

from all higher-order polygons, with more than one intermediate Higgs propagator can be dealt with in a similar

fashion.
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the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n"

�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the copupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log

✓
�n

4

◆
� 1 , (3.12)

f(")|"!0 ! f(")asympt =
3

2

⇣
log

⇣ "

3⇡

⌘
+ 1

⌘
�

25

12
" . (3.13)

One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
�n

4

◆
� 1 +

p
3
�n

4⇡
. (3.14)
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Warm-up: 1,2,3,4 Higgs bosons production  
                 8 TeV < E < 100 TeV

• Degrande-VVK-Mattelaer 1605.06372

4 Convolution with Parton Distribution Functions

The PDFs have a huge influence for the production of a few Higgs bosons as can be seen in
Fig. 5 where we plot the Leading Order cross-sections with up to 4 Higgs bosons computed by
Madgraph5 aMC@NLO. The lower panel in this figure shows the ratio of these cross-sections
to the ones obtained at 8 TeV. The larger the number of Higgses produced, the bigger is the
enhancement with the collider energy, as expected from the PDF enhancement e↵ect of a more
energetic collider. On the other hand, the cross-sections drop by a few orders of magnitude for
each extra Higgs in the final state. As a matter of fact, the PDF rapid fall heavily suppresses
the rate of processes with a higher threshold.

Figure 5: Leading Order cross-sections with up to 4 Higgs bosons computed by Mad-
graph5 aMC@NLO using MSTW2008 PDF [35]. The band correspond to the scale systematics
by changing the scales by factor of two.

Although the energy of the exponential growth for the production of many Higgses is within
the reach of the FCC, one could wonder if this e↵ect is not completely washed away by PDF
suppression due to the very high threshold. We show in Fig. 6 that this is not the case, and the
rapid growth of partonic rates leads to picobarn cross-sections already for a 50 TeV collider for
the production of &140 bosons. For lower energy collider, the PDFs are killing the cross-section
before reaching the fast growth regime. On the right plot of Fig. 6, we display the cross-sections
with a lower cut on the average kinetic energy " per particle per mass. Since this variable is
directly related to the partonic centre of mass energy,

p

ŝ = ("+ 1)nMh, (4.1)

this cut is equivalent to a cut on the partonic energy of the collision. It should be noted that
the largest contribution to the cross-section occurs when " is ⇠ a few (neither large nor small).
Much higher value of " are just not kinematically available. On the other side, the threshold is
quite suppressed such that the contribution of the region " . 1 is also negligible. The plot only
includes the contribution of the boxes since these are expected to be dominant for large values
of ", and are of the same size as the other even polygons for " ⇠ 1, as shown in the previous
section.

14

Up to 4 Higgses with 
MSTW2008 pdf set & 

for different energies

closed-form expressions for such O(3) symmetric solutions are presently unknown even in the
simplest scalar QFT models.

Alternatively, one can derive the amplitudes and cross-sections dependence on the external
states kinematics at tree-level by solving the full (3 + 1)-dimensional Euler-Lagrange equations
recursively in n. This is achieved by writing down the perturbative recursion relations corre-
sponding to the classical solutions, as explained in Refs. [9, 21, 22], and solving them first in
the non-relativistic limit, and then in general kinematics. The latter step is required to enable
the integration over the n-particle phase space to obtain the cross-section. This programme
was carried out in Ref. [5] using MadGraph5 aMC@NLO [23, 24]. The approach followed in
this paper will not require the knowledge of the ~x-dependent singular solutions, instead we will
use the formalism and results of [5] based on combining the known scaling behaviour at large
n inferred from the mass-threshold amplitude (1.8), with a numerical computation of tree-level
cross-sections at fixed n directly.

This paper is organised as follows. In Section 2 we will compute the gluon fusion cross-
sections for the double, triple, and quadruple Higgs production at fixed center-of-mass gluon
energies in the range between 10 and 160 TeV. We will identify the contributions coming from
the triangles, boxes, pentagons and hexagons and represent them in the high-energy regime
in terms of e↵ective vertices with energy-dependent form-factors. We will demonstrate that
this approximation is well-justified in the high-energy kinematics where

p
s is much greater

than masses of the Higgs and the top quark. We will then combine the e↵ective vertices with
the classical generating functions for tree-level amplitudes describing the subsequent multi-
Higgs branchings. In this way we will obtain the generating functions for scattering amplitudes
describing gg ! n ⇥ h processes in the high multiplicity regime near the multi-particle mass
thresholds. We will use these results in Section 3 to estimate the multi-particle cross-sections
based on their scaling behaviour with multiplicity and energy [9, 5]. Finally in Section 4 we
will convolute the partonic cross-sections with the parton distribution functions (PDFs) of the
gluons. Our projections for the high-multiplicity Higgs production cross-sections at proton-
proton colliders are summarised in Fig. 6 and our conclusions are presented in Section 5.

2 Polygons and e↵ective vertices in the
p
s ! 1 limit

We now consider the first stage of the process (1.1) involving the high-energy fixed multiplicity

k-Higgs production A
polygons

gg!k⇥h⇤ . The double and triple Higgs production at colliders was studied
in Refs.[25, 26, 27, 28] and [29, 30, 31, 32] and is rather suppressed at the LHC and the
FCC energies. Our main goal, however, is to determine whether the high multiplicity rates
with n � 2, 3 Higgses can become unsuppressed in perturbation theory. As explained in the
Introduction, we will address the large-n limit by computing the fixed multiplicity gg ! k ⇥ h

⇤

1-loop processes in the high-energy limit and combine them with the subsequent h⇤ ! ni ⇥ h

branchings, cf. Eq. (1.1).

Using the MadGraph5 aMC@NLO framework [34] we computed the double, triple and
quadruple Higgs production cross-sections in the gluon fusion channel at 1-loop level in the
high-energy regime. Specifically, with the applications to the FCC hadronic colliders in mind,
we concentrate on the centre of mass energies

p
s much greater than the Higgs and top quark

masses.

4

• What if ~100 Higgs bosons are produced in the final state at 100 TeV ?

6
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bosons would become unsuppressed and dominate the total rates may be potentially
within the reach of the next generation of colliders.

We will address the two problems listed above in stages: first we will consider the polygon
contributions to the multi-Higgs cross-sections by working in the high-energy limit

p
s ! 1

with a fixed number of Higgses, k =fixed. Then we will combine these fixed-multiplicity loop-
level results in the ultra-high-energy limit with the subsequent tree-level branchings. Here each
intermediate highly energetic Higgs particle h

⇤
i emitted at the end of the polygon-production

stage, undergoes the tree-level production h
⇤
i ! ni ⇥ h into the high multiplicity n-Higgs final

state, n =
P

i ni. The full amplitude chain for this process is,

Agg!n⇥h =
X

polygons

A
polygons

gg!k⇥h⇤

X

n1+...+nk=n

kY

i=1

Ah⇤
i
!ni⇥h . (1.1)

The 1⇤i ! ni amplitudes1 appearing as the right-most factor in (1.1) can be computed very
e�ciently for all ni using the classical generating functions technique. For convenience and
future reference in we will now present the result for these amplitudes on multi-Higgs mass
thresholds.

The computation of polygons contributions to the processes (1.1) combined with the sub-
sequent branchings and the resulting estimate for the multi-Higgs production cross-sections,
which is the main motivation of this paper, will be addressed in Sections 2-4.

1.1 Ah⇤!n⇥h from classical solutions

At tree-level, all n-point scattering amplitudes for an o↵-shell field h to produce n Higgs par-
ticles, A1!n, can be obtained from a classical solution of the Euler-Lagrange equations corre-
sponding to the Higgs Lagrangian

Lh =
1

2
@
µ
h @µh �

�

4

�
h
2
� v

2
�2

, (1.2)

following the generating functions technique initiated in Ref. [7] (� is the Higgs self-coupling
and v the vacuum expectation value). For an overview of the classical generating functions
technique and its applications, the interested Reader can consult the Appendix. In the rest of
the current section we will simply state the features of this approach which are relevant for our
study.

As the final state is made out of the outgoing particles, the relevant solution hcl(x) should
contain only the positive frequency modes, e+inMht where Mh =

p
2� v is the Higgs boson mass.

This specifies the initial conditions, or equivalently the analytic structure of the solution – its
time-dependence is described by the complex variable z,

z(t) = z0 e
iMht , (1.3)

on which the configuration hcl depends holomorphically,

hcl(~x, t) = v +
1X

n=1

an(~x) z(t)
n
. (1.4)

1
We will always adopt the short-hand convention that the propagator for the incoming virtual Higgs was not

LSZ amputated, i.e. Ah
⇤
i !ni⇥h :=

1
si�M

2
h
ALHZ

h
⇤
i !ni⇥h

.

2

Gluon fusion multi-Higgs production at large n

• VVK 1504.05023

Two immediate problems to address: 
  

1-loop polygons with up to n-2 edges 
increasing technical complexity 

1-> n x h tree-level (& loop-corrected) 
Higgs branchings grow as n! 

Will address this first
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         Tree-level n-point Amplitudes on mass threshold

8

The amplitude A1!n for the field � to create n particles in the �4 theory,

L⇢(�) =
1

2
(@�)2 � 1

2
M2�2 � 1

4
��4 + ⇢ � ,

is derived by applying the LSZ reduction technique:

hn|�(x)|0i = lim
⇢!0

2

4
nY

j=1

lim
p2
j!M2

Z
d4xje

ipj ·xj (M2 � p2j )
�

�⇢(xj)

3

5 h0out|�(x)|0ini⇢ .

Tree-level approximation is obtained via h0out|�(x)|0ini⇢ �! �cl(x) where �cl(x)
is a solution to the classical field equation.

On mass threshold limit all outgoing particles are produced at rest, ~pj = 0
and we set all pµj = (!,~0) and ⇢(x) = ⇢(t) = ⇢0(!) ei!t. Hence,

(M2 � p2j )
�

�⇢(xj)
�! (M2 � !2)

�

�⇢(tj)
=

�

�z(tj)
,

z(t) :=
⇢0(!) ei!t

M2 � !2 � i✏
:= z0 ei!t , z0 = finite const



         Tree-level amplitudes in phi^4 on mass threshold

9

         Brown 9209203
The generating function of tree amplitudes on multiparticle thresholds is a clas-
sical solution. It solves an ordinary di↵erential equation with no source term,

d2t�+M2�+ ��3 = 0 .

The solution contains only positive frequency harmonics, i.e. the Taylor expan-
sion in z(t),

�cl(t) = z(t) +
1X

n=2

dn z(t)
n , z := z0 e

iMt

Coe�cients dn determine the actual amplitudes by di↵erentiation w.r.t. z,

A1!n =

✓
@

@z

◆n

�cl

����
z=0

= n! dn Factorial growth!!

�cl(t) =
z(t)

1� �
8M2 z(t)2

A1!n = n!

✓
�

8M2

◆n�1
2



Tree-level 1*->n Amplitudes on multi-particle mass thresholds 
determined by  classical solutions that are uniform in space: h(x,t)=h(t) 
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         L. Brown 9209203

L(h) =
1

2
(@h)2 � �

4

�
h2 � v2

�2
,

The classical equation for the spatially uniform field h(t),

d2th = ��h3 + �v2 h ,

again has a closed-form solution with correct initial conditions hcl = v+ z+ . . .

hcl(t) = v
1 + z(t)

2v

1� z(t)
2v

, where z(t) = z0 e
iMht = z0 e

i
p
2� v t

hcl(t) = 2v
1X

n=0

✓
z(t)

2v

◆n

dn = v + 2v
1X

n=1

✓
z(t)

2v

◆n

,

i.e. with d0 = 1/2 and all dn�1 = 1.

A1!n =

✓
@

@z

◆n

hcl

����
z=0

= n! (2v)1�n Factorial growth!!

      Factorial growth of large-n scalar amplitudes on mass thresholds: E=nm

Lagrangian for the scalar field: 
prototype of the Higgs 
in the unitary gauge 



• The n! growth of perturbative amplitudes is not entirely surprising: it reflects the large-n 
behaviour of perturbation theory: 

• [Use of classical solutions is equivalent to summing over tree-level Feynman diagrams; 
the number of contributing Feynman diagrams is known to grow factorially with n] 

• Important to distinguish between the two types of large-n corrections: 

• (a) higher-order perturbative corrections to some leading-order quantities 

• (b) our case where the leading-order tree-level contribution to the 1*->n Amplitude grows   
factorially with the particle multiplicity n of the final state. 

• The n! growth of n-point perturbative Amplitudes persists also above the threshold => 
can integrate over n-particle phase space to obtain cross-sections 

• This was studied in the 90s in scalar QFTs (Voloshin; Son; Libanov, Rubakov, Troitski; …) 

• But now realised that the characteristic energy scale for EW applications starts in the 
50-100 TeV range. FCC would provide an exciting challenge to realise this in the context 
of the multi- Higgs and Massive Vector bosons production in the SM. 

• [Critical energy scale above which the production may be unsuppressed is ~50-100 TeV]
11



Similar story also holds in the Gauge-Higgs theory for tree-level 
amplitudes on multi-particle mass thresholds
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          VVK 1404.4876
These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:

hcl(z, w
a) = 2v

1X

n=0

1X

k=0

d(n, 2k)
⇣ z

2v

⌘n
✓
wawa

(2v)2

◆k

,

Aa
L cl(z, w

a) = wa
1X

n=0

1X

k=0

a(n, 2k)
⇣ z

2v

⌘n
✓
wawa

(2v)2

◆k

,

where d(n, 2k) and a(n, 2k) are determined from the iterative solution of EOM.
By repeatedly di↵erentiating these with respect to z and wa for the Higgs

to n Higgses and m longitudinal Z bosons threshold amplitude we get,

A(h ! n⇥ h+m⇥ ZL) = (2v)1�n�m n!m! d(n,m) ,

and for the longitudinal Z decaying into n Higgses and m+ 1 vector bosons,

A(ZL ! n⇥ h+ (m+ 1)⇥ ZL) =
1

(2v)n+m
n! (m+ 1)! a(n,m) .

Factorial growth reemains (in n and in m) !
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� (@µ@µ +M2
h)' = 3�v '2 + �'3

This classical equation for '(x) = h(x)� v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P 2
in �M2

h)An(p1 . . . pn) = 3�v
nX

n1,n2

�nn1+n2

X

P
An1(p

(1)
1 , . . . , p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)

+�
nX
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1 . . . p(1)n1

)An2(p
(2)
1 . . . p(2)n2
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(3)
1 . . . p(3)n2

)

Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

An(p1 . . . pn) = An + Mn E
kin
n := An + Mn n " ,

" =
1

nMh
E kin

n =
1

n

1

2M2
h

nX

i=1

~p 2
i .

In the non-relativistic limit we have " ⌧ 1.

Tree-level Amplitudes above mass thresholds are determined by 
recursive solutions to classical equations — now include the 
kinematic dependence
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An(p1 . . . pn) = n! (2v)1�n

✓
1�

7

6
n " �

1

6

n

n� 1
"+O("2)

◆
.

An important observation is that by exponentiating the order-n" contribution,
one obtains the expression for the amplitude which solves the original recursion
relation to all orders in (n")m in the large-n non-relativistic limit,

An(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed .

Simple corrections of order ", with coe�cients that are not-enhanced by n are
expected, but the expression is correct to all orders n" in the double scaling
large-n limit. The exponential factor can be absorbed into the z variable so
that

'(z) =
1X

n=1

dn
⇣
z e�

7
6 "

⌘n
,

remains a solution to the classical equation and the original recursion relations.

         Off-threshold in phi^4 with SSB (Higgs-like)
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Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

An(p1 . . . pn) = An + Mn E
kin
n := An + Mn n " ,

" =
1

nMh
E kin

n =
1

n

1

2M2
h

nX

i=1

~p 2
i .

In the non-relativistic limit we have " ⌧ 1.

        Can now integrate over the phase-space

Above the n-particle thresholds:  
solution of the recursion relations
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         Phase-space integration

�n,m =

Z
d�n,m

1

n!m!
|Ah⇤!n⇥h+m⇥ZL |

2 ,

The n-particle Lorentz-invariant phase space volume element

Z
d�n = (2⇡)4�(4)(Pin �

nX

j=1

pj)
nY

j=1

Z
d3pj

(2⇡)3 2p0j
,

in the large-n non-relativistic limit with n"h fixed becomes,

�n '
1
p
n

✓
M2

h

2

◆n

exp


3n

2

⇣
log

"h
3⇡

+ 1
⌘
+

n"h
4

+ O(n"2h)

�
.

Repeating the same steps now including vector boson emissions,

�n,m ⇠ exp


2 log d(n,m) + n

✓
log

�n

4
� 1

◆
+ m

✓
log

✓
g2m

32

◆
� 1

◆

+
3n

2

⇣
log

"h
3⇡

+ 1
⌘
+

3m

2

⇣
log

"V
3⇡

+ 1
⌘
�

25

12
n"h � 3.15m"V + O(n"2h +m"2V )

�

• VVK 1411.2925

n Higgs bosons & m vector bosons, 
take m=0 below:



In the non-rel. limit for perturbative Higgs bosons only production we obtained:

�n / exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
� 25

12
n "

�

More generally, in the large-n limit with �n = fixed and " = fixed, one expects

�n / exp


1

�
Fh.g.(�n, ")

�
[e.g.Libanov, Rubakov, Troitsky review 1997]

where the holy grail function Fh.g. is of the form,

1

�
Fh.g.(�n, ") =

�n

�
(f0(�n) + f("))

In our higgs model, i.e. the scalar theory with SSB,

f0(�n) = log
�n

4
� 1 at tree level

f(") ! 3

2

⇣
log

"

3⇡
+ 1

⌘
� 25

12
" for " ⌧ 1

In general: Methods based on classical solutions result in the 
exponential form for the n-particle cross-section: exp[F_holy_grail]

• Libanov, Rubakov, Son, Troitsky;  M Voloshin; …

known at eps<<1

known function  
at tree level

     Next step: 
       compute            

                for any epsilon

Large-n limit with �n = fixed and " = fixed,

1

n
log �n =

1

�n
Fh.g.(�n, ") = f0(�n) + f(")

In the pure unbroken �4 theory

f0(�n) = log
�n

16
� 1 at tree level

fasympt(") =
3

2

⇣
log

"

3⇡
+ 1

⌘
� 17

12
" for " ⌧ 1

16

bare cross-section 
[ignoring the width 

effect for now]



1. Compute cross-sections with MadGraph 2 -> 5,6,7 at all energies (i.e. arbitrary epsilon)

• VVK 1504.05023
2. Assume large n, subtract           and  

     extract        using 
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           asymptotes to a const at large eps 
(highly relativistic final state) 
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The 1-loop corrected threshold amplitude for the pure n Higgs production:

�4
with SSB : A

tree+1loop
1!n = n! (2v)1�n

 
1 + n(n� 1)

p
3�

8⇡

!

There are strong indications, based on the analysis of leading singularities of the

multi-loop expansion around singular generating functions in scalar field theory,

that the 1-loop correction exponentiates,

Libanov, Rubakov, Son, Troitsky 1994

A1!n = A
tree
1!n ⇥ exp

⇥
B �n2

+ O(�n)
⇤

in the limit � ! 0, n ! 1 with �n2
fixed. Here B is determined from the

1-loop calculation (as above) – Smith; Voloshin 1992):

�4
with SSB : B = +

p
3

8⇡
,

�4
w. no SSB : B = �

1

64⇡2

⇣
log(7 + 4

p
3)� i⇡

⌘
,

In the Higgs model, 1st equation leads to the exponential enhancement of the

tree-level threshold amplitude at least in the leading order in n2�.

Can also include loop corrections to amplitudes on thresholds:

In the non-rel. limit for perturbative Higgs bosons only production we obtained:

�n / exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
� 25

12
n "

�

More generally, in the large-n limit with �n = fixed and " = fixed, one expects

�n / exp


1

�
Fh.g.(�n, ")

�
[e.g.Libanov, Rubakov, Troitsky review 1997]

where the holy grail function Fh.g. is of the form,

1

�
Fh.g.(�n, ") =

�n

�
(f0(�n) + f("))

In our higgs model, i.e. the scalar theory with SSB,

f0(�n) = log
�n

4
� 1 at tree level

f(") ! 3
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"
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⌘
� 25

12
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+�n

p
3
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+�n

p
3

4⇡
B=   



1. Compute cross-sections with MadGraph 2 -> 5,6,7 at all energies (i.e. arbitrary epsilon)

• VVK 1504.05023

2. Scale to large n using the known n-dependence in the holy grail  
without including the leading-loop factor in the exponent

In Summary: first purely at tree level 
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bare cross-section 
[ignoring the width 

effect for now]



1. Compute cross-sections with MadGraph 2 -> 5,6,7 at all energies (i.e. arbitrary epsilon)

• VVK 1504.05023

2. Scale to large n using the known n-dependence in the holy grail 
including the leading-loop factor to the exponent
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using the semi-classical approach of Son and the thin-wall approximation 

• VVK 1705.04365

Very recently: computed the rate R in the large lambda n limit: 
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]

R = exp

"
�n
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4
+ 3.02
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�n

4⇡
� 1 +

3
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⇣
log

"
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+ 1
⌘
�

25

12
"

!#
. (3.15)

This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [10]. These results will be reported in a forthcoming publication [22].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
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As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [22]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [10]. These results will be reported in a forthcoming publication [22].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [10]. These results will be reported in a forthcoming publication [22].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form
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As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [22]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [10]. These results will be reported in a forthcoming publication [22].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [22]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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bosons would become unsuppressed and dominate the total rates may be potentially
within the reach of the next generation of colliders.

We will address the two problems listed above in stages: first we will consider the polygon
contributions to the multi-Higgs cross-sections by working in the high-energy limit

p
s ! 1

with a fixed number of Higgses, k =fixed. Then we will combine these fixed-multiplicity loop-
level results in the ultra-high-energy limit with the subsequent tree-level branchings. Here each
intermediate highly energetic Higgs particle h

⇤
i emitted at the end of the polygon-production

stage, undergoes the tree-level production h
⇤
i ! ni ⇥ h into the high multiplicity n-Higgs final

state, n =
P

i ni. The full amplitude chain for this process is,

Agg!n⇥h =
X

polygons

A
polygons

gg!k⇥h⇤

X

n1+...+nk=n

kY

i=1

Ah⇤
i
!ni⇥h . (1.1)

The 1⇤i ! ni amplitudes1 appearing as the right-most factor in (1.1) can be computed very
e�ciently for all ni using the classical generating functions technique. For convenience and
future reference in we will now present the result for these amplitudes on multi-Higgs mass
thresholds.

The computation of polygons contributions to the processes (1.1) combined with the sub-
sequent branchings and the resulting estimate for the multi-Higgs production cross-sections,
which is the main motivation of this paper, will be addressed in Sections 2-4.

1.1 Ah⇤!n⇥h from classical solutions

At tree-level, all n-point scattering amplitudes for an o↵-shell field h to produce n Higgs par-
ticles, A1!n, can be obtained from a classical solution of the Euler-Lagrange equations corre-
sponding to the Higgs Lagrangian

Lh =
1

2
@
µ
h @µh �

�

4

�
h
2
� v

2
�2

, (1.2)

following the generating functions technique initiated in Ref. [7] (� is the Higgs self-coupling
and v the vacuum expectation value). For an overview of the classical generating functions
technique and its applications, the interested Reader can consult the Appendix. In the rest of
the current section we will simply state the features of this approach which are relevant for our
study.

As the final state is made out of the outgoing particles, the relevant solution hcl(x) should
contain only the positive frequency modes, e+inMht where Mh =

p
2� v is the Higgs boson mass.

This specifies the initial conditions, or equivalently the analytic structure of the solution – its
time-dependence is described by the complex variable z,

z(t) = z0 e
iMht , (1.3)

on which the configuration hcl depends holomorphically,

hcl(~x, t) = v +
1X

n=1

an(~x) z(t)
n
. (1.4)

1
We will always adopt the short-hand convention that the propagator for the incoming virtual Higgs was not

LSZ amputated, i.e. Ah
⇤
i !ni⇥h :=

1
si�M

2
h
ALHZ

h
⇤
i !ni⇥h

.

2

1-loop polygons 
Compute numerically  
in the high-energy limit where E>> all kin scales 

Now: full Gluon fusion process including polygons

1*->n multi-Higgs processes.  
Already computed

closed-form expressions for such O(3) symmetric solutions are presently unknown even in the
simplest scalar QFT models.

Alternatively, one can derive the amplitudes and cross-sections dependence on the external
states kinematics at tree-level by solving the full (3 + 1)-dimensional Euler-Lagrange equations
recursively in n. This is achieved by writing down the perturbative recursion relations corre-
sponding to the classical solutions, as explained in Refs. [9, 21, 22], and solving them first in
the non-relativistic limit, and then in general kinematics. The latter step is required to enable
the integration over the n-particle phase space to obtain the cross-section. This programme
was carried out in Ref. [5] using MadGraph5 aMC@NLO [23, 24]. The approach followed in
this paper will not require the knowledge of the ~x-dependent singular solutions, instead we will
use the formalism and results of [5] based on combining the known scaling behaviour at large
n inferred from the mass-threshold amplitude (1.8), with a numerical computation of tree-level
cross-sections at fixed n directly.

This paper is organised as follows. In Section 2 we will compute the gluon fusion cross-
sections for the double, triple, and quadruple Higgs production at fixed center-of-mass gluon
energies in the range between 10 and 160 TeV. We will identify the contributions coming from
the triangles, boxes, pentagons and hexagons and represent them in the high-energy regime
in terms of e↵ective vertices with energy-dependent form-factors. We will demonstrate that
this approximation is well-justified in the high-energy kinematics where

p
s is much greater

than masses of the Higgs and the top quark. We will then combine the e↵ective vertices with
the classical generating functions for tree-level amplitudes describing the subsequent multi-
Higgs branchings. In this way we will obtain the generating functions for scattering amplitudes
describing gg ! n ⇥ h processes in the high multiplicity regime near the multi-particle mass
thresholds. We will use these results in Section 3 to estimate the multi-particle cross-sections
based on their scaling behaviour with multiplicity and energy [9, 5]. Finally in Section 4 we
will convolute the partonic cross-sections with the parton distribution functions (PDFs) of the
gluons. Our projections for the high-multiplicity Higgs production cross-sections at proton-
proton colliders are summarised in Fig. 6 and our conclusions are presented in Section 5.

2 Polygons and e↵ective vertices in the
p
s ! 1 limit

We now consider the first stage of the process (1.1) involving the high-energy fixed multiplicity

k-Higgs production A
polygons

gg!k⇥h⇤ . The double and triple Higgs production at colliders was studied
in Refs.[25, 26, 27, 28] and [29, 30, 31, 32] and is rather suppressed at the LHC and the
FCC energies. Our main goal, however, is to determine whether the high multiplicity rates
with n � 2, 3 Higgses can become unsuppressed in perturbation theory. As explained in the
Introduction, we will address the large-n limit by computing the fixed multiplicity gg ! k ⇥ h

⇤

1-loop processes in the high-energy limit and combine them with the subsequent h⇤ ! ni ⇥ h

branchings, cf. Eq. (1.1).

Using the MadGraph5 aMC@NLO framework [34] we computed the double, triple and
quadruple Higgs production cross-sections in the gluon fusion channel at 1-loop level in the
high-energy regime. Specifically, with the applications to the FCC hadronic colliders in mind,
we concentrate on the centre of mass energies

p
s much greater than the Higgs and top quark

masses.

4
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Figure 6: Left panel: Cross-sections for multi-Higgs production (3.6) at proton colliders includ-
ing the PDFs for di↵erent energies of the proton-proton collisions plotted as the function of
the Higgs multiplicity. Only the contributions from the boxes are included. The right panel
illustrates the dependence on average energy variable " by applying a sequence of cuts on " at
100 TeV.

5 Conclusions

We have carried out a detailed study of multi-Higgs production processes in the gluon fusion
channel in the high energy regime relevant to Future Circular hadron colliders and in the high-
Higgs-multiplicity limit. Our results are based on the computation of the leading polygons –
the triangles, boxes, pentagons and hexagons – to the scattering processes, further combined
with the subsequent branchings to reach high final state multiplicities.

We find that the characteristic energy and multiplicity scales where these perturbative rates
become observable and grow exponentially with increasing energy are within the 50 and 100
TeV regime with of order of 130 Higgses (or more) in the final state. This is the regime
where a dramatic change away from the usual weakly-coupled perturbative description of the
electro-weak physics should occur. One can speculate that this is related to transitioning to a
classicalization regime [36, 37] (albeit in non-gravitational QFT settings) where the dominant
processes above the critical energy scale correspond to the higher and higher numbers of the
relatively soft Higgs and vector bosons appearing in the final state (before their decay). It is
not expected that the perturbation theory would be a valid description in this regime, but it
does provide an indication for the critical values of the energy and occupation numbers.
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including 1-loop result reduces ‘ignition’ scale
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain

6

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n"

�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log

✓
�n

4

◆
� 1 , (3.12)

f(")|"!0 ! f(")asympt =
3

2

⇣
log

⇣ "

3⇡

⌘
+ 1

⌘
�

25

12
" . (3.13)

One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
�n

4

◆
� 1 +

p
3
�n

4⇡
. (3.14)
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]

R = exp

"
�n

�

 
log

�n

4
+ 3.02

r
�n

4⇡
� 1 +

3

2

⇣
log

"

3⇡
+ 1
⌘
�

25

12
"

!#
. (3.15)

This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted

8
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4.1 Unitarity

We will now argue that as soon as the cross-sections have reached the observable level, any
subsequent increase in the available energy will not result in the unbounded growth of the rates.
Instead, the cross-sections will actually decrease, and there will be no violation of perturbative
unitarity. For concreteness, consider the simplest process with a single intermediate o↵-shell
Higgs propagator.4 The amplitude for this process reads (cf. Eq. (4.1)):

Mgg!h⇤ ⇥
i

p2 � M2
h + iMh �(p2)

⇥ Mh⇤!n⇥h , (4.2)

where �(s) is the energy-dependent total width of the Higgs at the scale s, and it will lead to
the Higgspersion of the total cross-section at asymptotically high energies. In other words, the
o↵-shell current Ah⇤!n⇥h in Eq. (4.1) includes the full dressed propagator times the amplitude
Mh⇤!n⇥h.

In the limit s � M2
h , m

2
t , the corresponding parton-level cross-section becomes,

��
gg!n⇥h ⇠ y2tm

2
t log

4

✓
mt
p
s

◆
⇥

1

s2 +M4
hR

2
⇥ (2�)n�1

Rn , (4.3)

and asymptotes to 1/R in the limit R ! 1. The inclusion of the decay width is of course
only relevant when �(s) becomes comparable to s/Mh. This conclusion is general and applies
to higher-order polygons with more than one internal Higgs propagator.

In summary the multi-particle high-energy cross-section has the behaviour of the type,

�gg!n⇥h ⇠

(
R : for R . 1

1/R ! 0 : for R � 1 at s ! 1 .
(4.4)

The first line in the equation above is the result of Higgsplosion and the second line is the
consequence of the Higgspersion mechanism.

4.2 A comment on the Källén-Lehmann formula

It can also be helpful to address potential unitarity violations in the theory [23, 24] using the
Källén-Lehmann representation of the propagator for a scalar field �,

��(p) =

Z 1

0

ds

2⇡

i

p2 �m2
⇢(s) , (4.5)

where ⇢(s) is the spectral density function, see e.g. [25],

⇢(s) =
X

n

2⇡ �

 
p
s�

nX

i=1

pi

!
|h0|�(0)|ni|2 = 2⇡Z� �(s�m2

�) +
X

n�2

Z
d⇧n|A(1⇤ ! n)|2(s)

= 2⇡Z� �(s�m2
�) +

1

(s�m2)2

X

n�2

Z
d⇧n|M(1 ! n)|2(s) , (4.6)

4
This corresponds to the contribution of triangle diagrams to the gluon fusion production. The processes

from all higher-order polygons, with more than one intermediate Higgs propagator can be dealt with in a similar

fashion.
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4.1 Unitarity

We will now argue that as soon as the cross-sections have reached the observable level, any
subsequent increase in the available energy will not result in the unbounded growth of the rates.
Instead, the cross-sections will actually decrease, and there will be no violation of perturbative
unitarity. For concreteness, consider the simplest process with a single intermediate o↵-shell
Higgs propagator.4 The amplitude for this process reads (cf. Eq. (4.1)):
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⇥ Mh⇤!n⇥h , (4.2)

where �(s) is the energy-dependent total width of the Higgs at the scale s, and it will lead to
the Higgspersion of the total cross-section at asymptotically high energies. In other words, the
o↵-shell current Ah⇤!n⇥h in Eq. (4.1) includes the full dressed propagator times the amplitude
Mh⇤!n⇥h.

In the limit s � M2
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t , the corresponding parton-level cross-section becomes,
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and asymptotes to 1/R in the limit R ! 1. The inclusion of the decay width is of course
only relevant when �(s) becomes comparable to s/Mh. This conclusion is general and applies
to higher-order polygons with more than one internal Higgs propagator.

In summary the multi-particle high-energy cross-section has the behaviour of the type,

�gg!n⇥h ⇠
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R : for R . 1

1/R ! 0 : for R � 1 at s ! 1 .
(4.4)

The first line in the equation above is the result of Higgsplosion and the second line is the
consequence of the Higgspersion mechanism.

4.2 A comment on the Källén-Lehmann formula

It can also be helpful to address potential unitarity violations in the theory [23, 24] using the
Källén-Lehmann representation of the propagator for a scalar field �,
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which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,

LX =
1

2
@µX @µX �

1

2
m2

X X2
�

�P

4
X2h2 . (5.1)

where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X⇤

! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find
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Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to

�M2
h / �P
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s? . (5.2)

This is suppressed by the factor of
⇣p
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⌘4
'
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relative to the normal expectations

without the Higgsplosion-driven disintegration of the heavy particles.
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For �(s?) ' MX at s? ⌧ M2
X =) �M2

h / �P
s?
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X

s? ⌧ �P M2
X . (5.3)

The reasoning above equally applies to any heavy modes, as far as they have a non-vanishing
interaction with the Higgs. These modes could be the heavy 1012 GeV sterile neutrinos which
are important for the standard thermal Leptogenesis [26, 27, 28], a heavy inflaton [29, 30], GUT-
scale particles [31, 32], flavons [33, 34], or the heavy degrees of freedom that would appear at
the fa ' 1011 GeV scale relevant for the axion [35, 36, 37, 38].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,

M2
h =
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@h2
, (5.4)

where
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d4p STr log
�
p2 +MX(h)2

�
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STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s? where the Higgsplosion of the

heavy states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the

existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
of heavy particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the
heavy particle’s width increases rapidly beyond a certain energy threshold, these contributions
are tamed and the Hierarchy problem can be avoided.
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The reasoning above equally applies to any heavy modes, as far as they have a non-vanishing
interaction with the Higgs. These modes could be the heavy 1012 GeV sterile neutrinos which
are important for the standard thermal Leptogenesis [26, 27, 28], a heavy inflaton [29, 30], GUT-
scale particles [31, 32], flavons [33, 34], or the heavy degrees of freedom that would appear at
the fa ' 1011 GeV scale relevant for the axion [35, 36, 37, 38].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,
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STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
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of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
of heavy particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the
heavy particle’s width increases rapidly beyond a certain energy threshold, these contributions
are tamed and the Hierarchy problem can be avoided.
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section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
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which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. In the scenario which is of main interest
to us in this work, the decay rates (or equivalently, the imaginary part of ⌃) happen to grow
rather than vanish at infinity. In this case one cannot use the dispersion relation to restore the
real part from the imaginary part of the self-energy by closing up the contour, and the Källén-
Lehmann representation in the form (4.7), (4.9) simply becomes invalid. Hence the growing
multi-particle decay rates do not necessarily imply the breakdown of unitarity of the theory.
In the previous sub-section we have already argued that the relevant physical cross-sections in
this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. This obviously requires that X and the Higgs boson h can interact with
each other and we further assume that X is not absolutely stable. This picture is captured by
a simple Lagrangian,

LX =
1

2
@µX @µX �

1

2
M2

X X2
�

�P

4
X2h2 � µXh2 . (5.1)

The Higgs-portal interactions �P X2h2 ensure that X-loops contribute to the Higgs boson mass
while the interaction µXh2 lifts the X ! �X parity symmetry and ensures that X can decay
into multiple Higgs bosons X ! hh.

Calculating the contribution to the Higgs boson mass from the scalar X, we find

�M2
h ⇠ �P

Z
d4p

16⇡4

1

M2
X � p2 + i Im⌃X(p2)

= �P

Z
d4p

16⇡4

✓
M2

X � p2

(M2
X � p2)2 + (Im⌃X(p2))2

�
i Im⌃X(p2)

(M2
X � p2)2 + (Im⌃X(p2))2

◆
.

Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to

�M2
h / �P

s?
M2

X

s? . (5.2)
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Summary 1/2
• The SM Higgs boson introduces the Hierarchy problem 

•  and the perturbative unitarity problem for high-n production 

• The SM heals itself and resolves both these problems if the Higgsplosion 
mechanism is operative  

• No new physics degrees of freedom required — very minimal solution 

• Predictions / falsifiability of Higgsplosion at 100 TeV (FCC). Applications to 
Cosmology, reheating,  

•  Leptogenesis, Flavour structure, Axions, (no) GUTs,  etc

4.1 Unitarity

We will now argue that as soon as the cross-sections have reached the observable level, any
subsequent increase in the available energy will not result in the unbounded growth of the rates.
Instead, the cross-sections will actually decrease, and there will be no violation of perturbative
unitarity. For concreteness, consider the simplest process with a single intermediate o↵-shell
Higgs propagator.4 The amplitude for this process reads (cf. Eq. (4.1)):

Mgg!h⇤ ⇥
i

p2 � M2
h + iMh �(p2)

⇥ Mh⇤!n⇥h , (4.2)

where �(s) is the energy-dependent total width of the Higgs at the scale s, and it will lead to
the Higgspersion of the total cross-section at asymptotically high energies. In other words, the
o↵-shell current Ah⇤!n⇥h in Eq. (4.1) includes the full dressed propagator times the amplitude
Mh⇤!n⇥h.

In the limit s � M2
h , m

2
t , the corresponding parton-level cross-section becomes,

��
gg!n⇥h ⇠ y2tm

2
t log

4

✓
mt
p
s

◆
⇥

1

s2 +M4
hR

2
⇥ (2�)n�1

Rn , (4.3)

and asymptotes to 1/R in the limit R ! 1. The inclusion of the decay width is of course
only relevant when �(s) becomes comparable to s/Mh. This conclusion is general and applies
to higher-order polygons with more than one internal Higgs propagator.

In summary the multi-particle high-energy cross-section has the behaviour of the type,

�gg!n⇥h ⇠

(
R : for R . 1

1/R ! 0 : for R � 1 at s ! 1 .
(4.4)

The first line in the equation above is the result of Higgsplosion and the second line is the
consequence of the Higgspersion mechanism.

4.2 A comment on the Källén-Lehmann formula

It can also be helpful to address potential unitarity violations in the theory [23, 24] using the
Källén-Lehmann representation of the propagator for a scalar field �,

��(p) =

Z 1

0

ds

2⇡

i

p2 �m2
⇢(s) , (4.5)

where ⇢(s) is the spectral density function, see e.g. [25],

⇢(s) =
X

n

2⇡ �

 
p
s�

nX

i=1

pi

!
|h0|�(0)|ni|2 = 2⇡Z� �(s�m2

�) +
X

n�2

Z
d⇧n|A(1⇤ ! n)|2(s)

= 2⇡Z� �(s�m2
�) +

1

(s�m2)2

X

n�2

Z
d⇧n|M(1 ! n)|2(s) , (4.6)

4
This corresponds to the contribution of triangle diagrams to the gluon fusion production. The processes

from all higher-order polygons, with more than one intermediate Higgs propagator can be dealt with in a similar

fashion.
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which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. When, on the other hand, decay rates
do not tend to vanish at infinity, one cannot use the dispersion relation to restore the real part
from the imaginary part of the self-energy by closing up the contour, and the Källén-Lehmann
representation in the form (4.7), (4.9) simply becomes invalid. Hence the growing multi-particle
decay rates do not necessarily imply the breakdown of unitarity of the theory. In the previous
sub-section we have already argued that the relevant physical cross-sections in this case do not
blow up and hence do not destroy the unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,

LX =
1

2
@µX @µX �

1

2
m2

X X2
�

�P

4
X2h2 . (5.1)

where h is the Higgs boson.
Calculating the contribution to the Higgs boson mass from the scalar X, we find

�M2
h ⇠ �P

Z
d4p

16⇡4

1

M2
X � p2 + i Im⌃X(p2)

= �P

Z
d4p

16⇡4

✓
M2

X � p2

(M2
X � p2)2 + (Im⌃X(p2))2

�
i Im⌃X(p2)

(M2
X � p2)2 + (Im⌃X(p2))2

◆

Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to

�M2
h / �P

s?
M2

X

s? . (5.2)

This is suppressed by the factor of
⇣p

s?
MX

⌘4
'

⇣
25TeV
MX

⌘4
relative to the normal expectations

without the Higgsplosion-driven disintegration of the heavy particles.

For �(s?) ' MX at s? ⌧ M2
X =) �M2

h / �P
s?
M2

X

s? ⌧ �P M2
X . (5.3)
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Summary 2/2

• The Higgsplosion / Higgspersion mechanism makes theory UV finite  (all 
loop momentum integrals are dynamically cut-off at scales above the  
Higgsplosion energy). 

• UV-finiteness => all coupling constants slopes become flat above the 
Higgsplosion scale => automatic asymptotic safety 

• [Below the Higgsplosion scale there is the usual logarithmic running] 

• 1. Asymptotic Safety 

• 2. No Landau poles for the U(1) and the Yukawa couplings 

• 3. The Higgs self-coupling does not turn negative => stable EW vacuum 

• No new physics degrees of freedom required — very minimal solution
28



Backup slides 

29

2 Propagators and partial decay widths of massive fields

We are interested in investigating quantum e↵ects caused by steeply growing multi-particle
decay rates of a highly virtual (or highly energetic) degree of freedom in the initial state above
a certain critical energy. The decay widths enter the propagators of the relevant states, thus we
start in this section with a brief review of the full propagator for a massive scalar. In subsequent
sections this will be used in our discussion of two cases: the Higgs propagators appearing as
intermediate states in high-energy cross-sections, and the ultra-heavy states contributing to the
Higgs mass through loop e↵ects.

Consider a simple quantum field theory of a single real scalar field � described by the
Lagrangian

L =
1

2
@µ�@µ� �

1

2
m2

0 �
2
� Lint(�) , (2.1)

where m0 denotes the bare mass parameter and the interaction term Lint(�) includes the usual
renormalizable self-interactions of �, for example Lint = �

4! �
4 or Lint = �

4 (�
2
� v2)2. The

Feynman propagator of � is the Fourier transformation of the 2-point Green function, and
reads

��(p) =

Z
d4x eip·xh0|T (�(x)�(0)) |0i =

i

p2 �m2
0 � ⌃(p2) + i✏

, (2.2)

where ⌃(p2) is the self-energy of �, i.e. �i⌃(p2) is the the sum of all one-particle-irreducible
(1PI) diagrams contributing to the two-point function. It is related to the amplitude for a 1 ! 1
particle scattering, M(p ! p) via the LSZ reduction formalism, so that

M(p ! p) = �Z�⌃(p
2) , (2.3)

and Z� is the wave-function renormalization constant. What we have on the right hand side of
Eq. (2.2) is the resummed or dressed propagator since it can be Taylor expanded in terms of
the bare propagators and the self-energy insertions,

i

p2 �m2
0 � ⌃(p2)

=
i

p2 �m2
0

+
i

p2 �m2
0

1X

n=1

✓
�i⌃(p2)

i

p2 �m2
0

◆n

. (2.4)

For simplicity, from now on, we are dropping the i✏ factor in the propagators.
The physical (or pole mass) mass m is then defined as the location of the pole in the full

propagator of Eq. (2.2). It is the solution of the equation,1

m2
�m2

0 � ⌃(m2) = 0 , or m2 = m2
0 +Re⌃(m2) . (2.5)

The meaning of the self-energy at the fixed scale p2 = m2 is that it provides the shift to
the bare mass, Re⌃(m2) = �m2, in order to obtain the observable and finite physical mass
m2 = m2

0 + �m2.

1
In our toy-model the particles are absolutely stable near their mass-shell. The model contains only self-

interactions of the field � and the decays become kinematically allowed only at energies above the multi-particle

mass-thresholds, i.e. p2 > (2m)
2
. Hence the self-energy ⌃ at p2 = m2

contains no imaginary part as it is below

the multi-particle mass-thresholds. Hence ⌃(p2 = m2
) = Re⌃(p2 = m2

) and the pole in (2.5) is on the real axis.
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We will thus use the following expression for the scalar field propagator

��(p) '
iZ�

p2 �m2 � iZ� Im⌃(p2)
=

iZ�

p2 �m2 + im�(p2)
, (2.9)

where we traded the imaginary part of the self-energy for the energy-dependent decay width
�(p2), cf. Eq. (2.3),

�Z� Im⌃(p2) = ImM(p ! p) = m�(p2) , (2.10)

with the decay width being determined by the partial widths of n-particle decays at energies
s � (nm)2,

�(s) =
1X

n=2

�n(s) , �n(s) =
1

2m

Z
d⇧n|M(1 ! n)|2 . (2.11)

M is the amplitude for the 1⇤ ! n process and the integral is over the n-particle Lorentz-
invariant phase space.

In summary, for the UV-renormalised propagator �R(p) = Z�1
� , we will use the following

expression in terms of the pole mass m2, the renormalised self-energy ⌃R(p2) = Z�⌃(p2), or
the physical width �(p2), and the renormalised coupling constant(s),

�R(p) =
i

p2 �m2 � i Im⌃R(p2)
=

i

p2 �m2 + im�(p2)
. (2.12)

All quantities in the expression above are UV-finite. The framework of using the propagator
for the Higgs boson with the energy-dependent width as the correct description, applicable for
all kinematic regions is widely used in the literature, see e.g. Refs. [15, 16], and is consistent
with our treatment.2 In the following section we will concentrate on the decay width �(s).

3 Multi-particle decay width of the Higgs boson

We now consider the ultra-high multiplicity Higgsplosions of highly energetic virtual particles
in the Standard Model. Specifically, we will describe the main features of the mechanism using
a simplified model for the Standard Model Higgs boson in terms of a QFT of a single real scalar
field h(x) with non-vanishing vacuum expectation value (VEV) hhi = v,

L =
1

2
@µh @µh �

�

4

�
h2 � v2

�2
. (3.1)

This theory is a reduction of the SM Higgs sector in the unitary gauge to a single scalar degree of
freedom, h(x) which for our purposes we take to be stable, so there are no decays into fermions,
and we have also decoupled all vector bosons etc. The physical VEV-less scalar '(x) = h(x)�v,
describes the Higgs boson of mass Mh =

p
2� v and satisfies the classical equation arising from

Eq. (3.1),
� (@µ@µ +M2

h)' = 3�v '2 + �'3. (3.2)

2
In this paper we focus exclusively on multi-Higgs decays and are not concerned with the decays of the Higgs

into lighter SM particles below its mass threshold. These can be readily incorporated.
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Full Propagator with running width:

Using the equation (2.5) for the physical mass we can represent the dressed propagator
Eq. (2.2) in the form,

��(p) =
i

p2 �m2 � [⌃(p2)� ⌃(m2)]
=

i

p2 �m2

 
1

1� d⌃
dp2 |p2=m2 +O(p2 �m2)

!
,

which in the limit p2 ! m2 results in the well-known pole form of the propagator,

��(p)|p2!m2 '
iZ�

p2 �m2
, where Z� =

 
1�

d⌃

dp2

����
p2=m2

!�1

. (2.6)

Z� is the field renormalization constant which has already appeared in Eq. (2.3).

In this paper we will be mostly interested in the kinematic regime(s) far away, i.e. far above
or far below, from the single-particle mass shell region p2 ' m2 of the propagator in Eq. (2.6).
In the case of the light stable field � we are considering at present, the regime of interest is
such that multi-particle decays with ultra-high multiplicities n � 1/� � 1 can contribute to
the propagator, and hence p2 & (nm)2 � m2. In this case the propagator is described by
the full expression of Eq. (2.2), and the self-energy contains a non-vanishing imaginary part.
Specifically we will concentrate on the scenarios where multi-particle decays of a virtual � into
n-particle states, with ultra-high multiplicities n lead to decay widths which grow sharply with
energy E =

p
s above some critical value Ecrit. If this scenario is realised in nature, one can

enter the energy regime where Im⌃(s) � m2. This is the regime of interest we will concentrate
on in this work.

In the single-field toy model of Eq. (2.1) we are discussing at present, the particles described
by the field � are well-defined asymptotic states of mass m and they are absolutely stable
not too far above their single-particle mass threshold, m2

 p2 < (2m)2. Indeed, we have
assumed that � interacts only with itself, and there are no interactions with lighter states
in the Lagrangian. This results in multi-particle thresholds at p2 � (nm)2 for n = 2, 3, . . .
corresponding to � ! n⇥� decays at energies s � (nm)2 for n � 2. Thus, at around the single-
particle mass-shell the decay width is zero, the propagator is real-valued and contains only the
pole term – as indicated by Eq. (2.6). However, at higher energy scales, the multi-particle mass
thresholds are reached resulting in the appearance of the imaginary part of ⌃(p2) in the full
propagator on the right hand side of Eq. (2.2). For the full propagator we have

��(p) =
i

p2 �m2 � Re[⌃(p2)� ⌃(m2)]� iIm⌃(p2)

=
iZ�

p2 �m2 � iZ� Im⌃(p2)
+ . . . (2.7)

In deriving this expression we Taylor-expanded the quantity

Re[⌃(p2)� ⌃(m2)] = Re
d⌃

dp2

����
m2

(p2 �m2) +O((p2 �m2)2) , (2.8)

and used the definition of the wave-function renormalization constant (2.6). The dots on the
right hand side of Eq. (2.7) denote the contributions of higher order terms in the Taylor expan-
sion of Re⌃(p2) which will aways assume to be subleading to the e↵ects we want to study here
and that they can be treated as higher-order corrections in pertrurbation theory.
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the propagator, and hence p2 & (nm)2 � m2. In this case the propagator is described by
the full expression of Eq. (2.2), and the self-energy contains a non-vanishing imaginary part.
Specifically we will concentrate on the scenarios where multi-particle decays of a virtual � into
n-particle states, with ultra-high multiplicities n lead to decay widths which grow sharply with
energy E =

p
s above some critical value Ecrit. If this scenario is realised in nature, one can

enter the energy regime where Im⌃(s) � m2. This is the regime of interest we will concentrate
on in this work.

In the single-field toy model of Eq. (2.1) we are discussing at present, the particles described
by the field � are well-defined asymptotic states of mass m and they are absolutely stable
not too far above their single-particle mass threshold, m2

 p2 < (2m)2. Indeed, we have
assumed that � interacts only with itself, and there are no interactions with lighter states
in the Lagrangian. This results in multi-particle thresholds at p2 � (nm)2 for n = 2, 3, . . .
corresponding to � ! n⇥� decays at energies s � (nm)2 for n � 2. Thus, at around the single-
particle mass-shell the decay width is zero, the propagator is real-valued and contains only the
pole term – as indicated by Eq. (2.6). However, at higher energy scales, the multi-particle mass
thresholds are reached resulting in the appearance of the imaginary part of ⌃(p2) in the full
propagator on the right hand side of Eq. (2.2). For the full propagator we have

��(p) =
i

p2 �m2 � Re[⌃(p2)� ⌃(m2)]� iIm⌃(p2)

=
iZ�

p2 �m2 � iZ� Im⌃(p2)
+ . . . (2.7)

In deriving this expression we Taylor-expanded the quantity

Re[⌃(p2)� ⌃(m2)] = Re
d⌃

dp2

����
m2

(p2 �m2) +O((p2 �m2)2) , (2.8)

and used the definition of the wave-function renormalization constant (2.6). The dots on the
right hand side of Eq. (2.7) denote the contributions of higher order terms in the Taylor expan-
sion of Re⌃(p2) which will aways assume to be subleading to the e↵ects we want to study here
and that they can be treated as higher-order corrections in pertrurbation theory.
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bosons would become unsuppressed and dominate the total rates may be potentially
within the reach of the next generation of colliders.

We will address the two problems listed above in stages: first we will consider the polygon
contributions to the multi-Higgs cross-sections by working in the high-energy limit

p
s ! 1

with a fixed number of Higgses, k =fixed. Then we will combine these fixed-multiplicity loop-
level results in the ultra-high-energy limit with the subsequent tree-level branchings. Here each
intermediate highly energetic Higgs particle h

⇤
i emitted at the end of the polygon-production

stage, undergoes the tree-level production h
⇤
i ! ni ⇥ h into the high multiplicity n-Higgs final

state, n =
P

i ni. The full amplitude chain for this process is,

Agg!n⇥h =
X

polygons

A
polygons

gg!k⇥h⇤

X

n1+...+nk=n

kY

i=1

Ah⇤
i
!ni⇥h . (1.1)

The 1⇤i ! ni amplitudes1 appearing as the right-most factor in (1.1) can be computed very
e�ciently for all ni using the classical generating functions technique. For convenience and
future reference in we will now present the result for these amplitudes on multi-Higgs mass
thresholds.

The computation of polygons contributions to the processes (1.1) combined with the sub-
sequent branchings and the resulting estimate for the multi-Higgs production cross-sections,
which is the main motivation of this paper, will be addressed in Sections 2-4.

1.1 Ah⇤!n⇥h from classical solutions

At tree-level, all n-point scattering amplitudes for an o↵-shell field h to produce n Higgs par-
ticles, A1!n, can be obtained from a classical solution of the Euler-Lagrange equations corre-
sponding to the Higgs Lagrangian

Lh =
1

2
@
µ
h @µh �

�

4

�
h
2
� v

2
�2

, (1.2)

following the generating functions technique initiated in Ref. [7] (� is the Higgs self-coupling
and v the vacuum expectation value). For an overview of the classical generating functions
technique and its applications, the interested Reader can consult the Appendix. In the rest of
the current section we will simply state the features of this approach which are relevant for our
study.

As the final state is made out of the outgoing particles, the relevant solution hcl(x) should
contain only the positive frequency modes, e+inMht where Mh =

p
2� v is the Higgs boson mass.

This specifies the initial conditions, or equivalently the analytic structure of the solution – its
time-dependence is described by the complex variable z,

z(t) = z0 e
iMht , (1.3)

on which the configuration hcl depends holomorphically,

hcl(~x, t) = v +
1X

n=1

an(~x) z(t)
n
. (1.4)

1
We will always adopt the short-hand convention that the propagator for the incoming virtual Higgs was not

LSZ amputated, i.e. Ah
⇤
i !ni⇥h :=

1
si�M

2
h
ALHZ

h
⇤
i !ni⇥h

.

2

1-loop polygons 
Compute numerically  
in the high-energy limit where E>> all kin scales 

 Gluon fusion process including polygons

1*->n multi-Higgs processes.  
Already computed

closed-form expressions for such O(3) symmetric solutions are presently unknown even in the
simplest scalar QFT models.

Alternatively, one can derive the amplitudes and cross-sections dependence on the external
states kinematics at tree-level by solving the full (3 + 1)-dimensional Euler-Lagrange equations
recursively in n. This is achieved by writing down the perturbative recursion relations corre-
sponding to the classical solutions, as explained in Refs. [9, 21, 22], and solving them first in
the non-relativistic limit, and then in general kinematics. The latter step is required to enable
the integration over the n-particle phase space to obtain the cross-section. This programme
was carried out in Ref. [5] using MadGraph5 aMC@NLO [23, 24]. The approach followed in
this paper will not require the knowledge of the ~x-dependent singular solutions, instead we will
use the formalism and results of [5] based on combining the known scaling behaviour at large
n inferred from the mass-threshold amplitude (1.8), with a numerical computation of tree-level
cross-sections at fixed n directly.

This paper is organised as follows. In Section 2 we will compute the gluon fusion cross-
sections for the double, triple, and quadruple Higgs production at fixed center-of-mass gluon
energies in the range between 10 and 160 TeV. We will identify the contributions coming from
the triangles, boxes, pentagons and hexagons and represent them in the high-energy regime
in terms of e↵ective vertices with energy-dependent form-factors. We will demonstrate that
this approximation is well-justified in the high-energy kinematics where

p
s is much greater

than masses of the Higgs and the top quark. We will then combine the e↵ective vertices with
the classical generating functions for tree-level amplitudes describing the subsequent multi-
Higgs branchings. In this way we will obtain the generating functions for scattering amplitudes
describing gg ! n ⇥ h processes in the high multiplicity regime near the multi-particle mass
thresholds. We will use these results in Section 3 to estimate the multi-particle cross-sections
based on their scaling behaviour with multiplicity and energy [9, 5]. Finally in Section 4 we
will convolute the partonic cross-sections with the parton distribution functions (PDFs) of the
gluons. Our projections for the high-multiplicity Higgs production cross-sections at proton-
proton colliders are summarised in Fig. 6 and our conclusions are presented in Section 5.

2 Polygons and e↵ective vertices in the
p
s ! 1 limit

We now consider the first stage of the process (1.1) involving the high-energy fixed multiplicity

k-Higgs production A
polygons

gg!k⇥h⇤ . The double and triple Higgs production at colliders was studied
in Refs.[25, 26, 27, 28] and [29, 30, 31, 32] and is rather suppressed at the LHC and the
FCC energies. Our main goal, however, is to determine whether the high multiplicity rates
with n � 2, 3 Higgses can become unsuppressed in perturbation theory. As explained in the
Introduction, we will address the large-n limit by computing the fixed multiplicity gg ! k ⇥ h

⇤

1-loop processes in the high-energy limit and combine them with the subsequent h⇤ ! ni ⇥ h

branchings, cf. Eq. (1.1).

Using the MadGraph5 aMC@NLO framework [34] we computed the double, triple and
quadruple Higgs production cross-sections in the gluon fusion channel at 1-loop level in the
high-energy regime. Specifically, with the applications to the FCC hadronic colliders in mind,
we concentrate on the centre of mass energies

p
s much greater than the Higgs and top quark

masses.
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Figure 1: Cross-sections for the 2-Higgs, 3-Higgs and 4-Higgs production in the gluon fusion
process separated into contributions from triangles, boxes, pentagons and hexagons, as indi-
cated. Gluons are scattered at fixed energy (i.e. no gluon PDFs included) in order to simplify
the s-dependence of these cross-sections at partonic level.

The first panel in Figure 1 shows our results for the Higgs pair production and the triple
Higgs production, and the second panel gives the cross-sections for the quadruple Higgs. The
contributions from each type of polygons are shown separately (and we do not compute the
interference terms between di↵erent polygon types). For example, the triangles category corre-
sponds to the sum of all Feynman diagrams containing the gg ! h

⇤ 1-loop triangles contributing
to the gg ! h

⇤
! n⇥ h amplitude for n = 2, 3, 4. The resulting amplitude is squared and inte-

grated over the phase space to obtain the cross-section contributions induced by the triangles.
The process is then repeated for higher polygons: boxes, pentagons and hexagons.3

The interference terms between polygons with di↵erent numbers of sides (e.g. interferences
between the triangles-induced and the boxes-induced contributions to the cross-sections) are
not accounted in the computation presented in Fig. 1. However, based on the fact that di↵erent
polygon types give a very clear numerical hierarchy of the cross-sections values, as seen from
Fig. 1, (and similarly have the di↵erent analytic dependence on the parameters, as will be seen
in Tables 1 and 2 below) we expect that the missing interference terms will not modify our
results dramatically.

Varying the Higgs and top masses as well as the centre of mass energy
p
s we can extract

from these data the analytic scaling properties for di↵erent polygonal contributions to the
cross-sections applicable in the high-energy regime. These scaling properties are summarised
in Table 1. The polygons with di↵erent numbers of edges are treated separately, so that the
di↵erent entries in the Table do not mix e.g. triangles with boxes; each horizontal entry is
specific to a particular type of polygons as indicated and contains no cross-terms between
polygons with di↵erent numbers of edges. We have also fixed the energy of the gluon (i.e.
we are considering partonic cross-sections with no gluon PDFs) in order to focus on the s-
dependence of the cross-sections at partonic level.4 It follows that all even polygons (boxes,
hexagons, etc) exhibit the same 1/s scaling in the high-energy limit

p
s � Mh , mt. At the

3
To be clear, in our notation the polygon ranks (i.e. the number of polygon edges) is 2 + k where 1  k  n

so that e.g. pentagons (k = 3) contribute to gg ! 3⇥ h⇤ ! n⇥ h processes with n = 3, 4, . . .
4
The proton-proton collisions and the convolution of the partonic cross-sections with gluon PDFs will be

discussed in Section 4.
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Table 1: High-energy scaling behaviour of each polygon-type contributions to the gluon fusion
multi-Higgs production cross-sections, extracted from numerical data as in Fig. 1, and shown
as the function of s, Mh and mt and yt :=

p
2mt/v in the s � mt , Mh limit. All cross-sections

also contain the common factor of ↵2
s(
p
s). Gluon PDFs are not included.

same time the odd polygons (triangles, pentagons, and so on) are sub-dominant and go as
1/s2 log4(mt/

p
s) (with the exception of the leading double-Higgs case where the suppression

is even stronger).
The high-energy behaviour of the leading-rank polygons in Table 1 can now be easily gen-

eralised to higher multiplicities and higher polygon ranks following the same pattern. For
polygons with 2 + k edges their contribution to the gg ! n⇥ h process is:

(2 + k)�polygons : �gg!n⇥h /
1

s
y
2k
t

✓
Mh

v

◆2(n�k)

⇥

(
1 : k = even
m2

t

s log4
⇣
mtp
s

⌘
: k = odd .

(2.1)

The only exception from this rule is the k = 1, n = 2 case, i.e. left-most triangle in Table 1,
which has an additional factor of M2

h/s. As a matter of fact, the squared amplitude in multi-
Higgs production with a odd number of three Higgs vertices is enhanced compared to a naive
counting by a factor s/M2

h when the invariant mass appearing in the propagator is close to its
minimal value of order Mh. In the case of pair production, the only invariant mass is fixed at
p
s and therefore such enhancement is absent.

The pattern established in Table 1 and Eq. (2.1) enables us to simplify the full 1-loop
Feynman diagrams-based computation in Fig. 1 by reducing it to contributions from e↵ective
multi-Higgs vertices of the form

V
eft

k ⇠ ↵str(Gµ⌫G
µ⌫)hk , (2.2)

where ⇠ indicates that the dimension-(4 + k) operators on the right hand side should be mul-
tiplied by the appropriate energy-dependent form-factors Fk(s). These form-factors will be
determined momentarily.

To proceed we first consider the contributions to cross-sections from the bare e↵ective op-
erators (2.2), i.e. not including the form-factors. The corresponding cross-sections are found
to grow with s, as summarised in Table 2, and this is of course also consistent with a simple
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Table 1: High-energy scaling behaviour of each polygon-type contributions to the gluon fusion
multi-Higgs production cross-sections, extracted from numerical data as in Fig. 1, and shown
as the function of s, Mh and mt and yt :=

p
2mt/v in the s � mt , Mh limit. All cross-sections

also contain the common factor of ↵2
s(
p
s). Gluon PDFs are not included.

same time the odd polygons (triangles, pentagons, and so on) are sub-dominant and go as
1/s2 log4(mt/

p
s) (with the exception of the leading double-Higgs case where the suppression

is even stronger).
The high-energy behaviour of the leading-rank polygons in Table 1 can now be easily gen-

eralised to higher multiplicities and higher polygon ranks following the same pattern. For
polygons with 2 + k edges their contribution to the gg ! n⇥ h process is:
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The only exception from this rule is the k = 1, n = 2 case, i.e. left-most triangle in Table 1,
which has an additional factor of M2

h/s. As a matter of fact, the squared amplitude in multi-
Higgs production with a odd number of three Higgs vertices is enhanced compared to a naive
counting by a factor s/M2

h when the invariant mass appearing in the propagator is close to its
minimal value of order Mh. In the case of pair production, the only invariant mass is fixed at
p
s and therefore such enhancement is absent.

The pattern established in Table 1 and Eq. (2.1) enables us to simplify the full 1-loop
Feynman diagrams-based computation in Fig. 1 by reducing it to contributions from e↵ective
multi-Higgs vertices of the form

V
eft

k ⇠ ↵str(Gµ⌫G
µ⌫)hk , (2.2)

where ⇠ indicates that the dimension-(4 + k) operators on the right hand side should be mul-
tiplied by the appropriate energy-dependent form-factors Fk(s). These form-factors will be
determined momentarily.

To proceed we first consider the contributions to cross-sections from the bare e↵ective op-
erators (2.2), i.e. not including the form-factors. The corresponding cross-sections are found
to grow with s, as summarised in Table 2, and this is of course also consistent with a simple
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• Compare to the high-energy scaling behaviour resulting from the  effective vertices: 

• The pattern established for polygons with 2+k edges: 

• allows to associate the full 1-loop result from rank-(2+k) polygons in the high E limit 
to the effective vertex - now including the form-factors - via: 

• For h substitute the classical solution generating functional to represent subsequent 
Higgs branchings. Ck constants are known (computed). [More detail in the paper.]

�
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gg!hh �
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gg!hhh �
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gg!hhhh
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µ⌫)h1

M2
h

v2 s
0 M4
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µ⌫)h2 s

M2
h

v2 s
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↵str(Gµ⌫G
µ⌫)h3 – s

2 M2
h

v2 s
2

↵str(Gµ⌫G
µ⌫)h4 – – s

3

Table 2: High-energy scaling behaviour for multi-Higgs production cross-sections with the bare
e↵ective vertices Eq. (2.2) obtained with FeynRules [33] and Madgraph5 aMC@NLO.

dimensional analysis in the high-energy limit. The form-factors Fk(
p
s) can now be determined

by matching the contributions from Vk := V
eft

k ⇥ Fk(
p
s) of Table 2 to Table 1. We find the

following expressions for the e↵ective vertices [including the form-factors]:

Vk = Ck
↵s(
p
s)

⇡
tr(Gµ⌫G

µ⌫)

✓
yt h
p
s

◆k

⇥

(
1 : k = even � 2
mtp
s
log2

⇣
mtp
s

⌘
: k = odd � 3 .

(2.3)

Here Ck’s are the constant coe�cients to be determined by matching to the full numerical
cross-section results, and yt is the top quark Yukawa coupling.

The coe�cients Ck can now be found from matching the cross-sections �eft computed from
the E↵ective Field Theory (EFT) vertices (2.3) to our numerical results for the complete partonic
cross-sections shown in Fig. 1. Specifically the two-point e↵ective vertices are matched to boxes,
the tree-point EFTs – to pentagons, and the four-point vertices are matched to the hexagon-
induced contributions to the cross-sections. For each e↵ective vertex of rank k, the coe�cient
Ck can be obtained in n� k independent ways from matching:

C2 : �gg!n⇥h [V2]  ! �gg!n⇥h [Boxes] , for n = 2, 3, 4, . . . (2.4)

C3 : �gg!n⇥h [V3]  ! �gg!n⇥h [Pentagons] , for n = 3, 4, . . . (2.5)

C4 : �gg!n⇥h [V4]  ! �gg!n⇥h [Hexagons] , for n = 4, . . . (2.6)

and for di↵erent values of the centre of mass energy
p
s. Their values are shown in Table 3.

We conclude that the extracted numerical values of these coe�cients do not appear to depend
strongly on the number of Higgses in the final state. This is an important test for our approach;
it guarantees the robustness of the e↵ective vertices approximation (2.3) for the multi-Higgs
production cross-sections in the high energy limit.

Our construction up to this point was derived from taking the high-energy limit and holding
the Higgs multiplicity fixed. The next step is to use of the e↵ective vertices (2.3) combined with
the classical generating functionals for the tree-level amplitudes introduced in Section 1.1, to
address the desired high multiplicity limit n � 1. This is achieved by substituting the Higgs
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Table 1: High-energy scaling behaviour of each polygon-type contributions to the gluon fusion
multi-Higgs production cross-sections, extracted from numerical data as in Fig. 1, and shown
as the function of s, Mh and mt and yt :=

p
2mt/v in the s � mt , Mh limit. All cross-sections

also contain the common factor of ↵2
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s). Gluon PDFs are not included.
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s) (with the exception of the leading double-Higgs case where the suppression

is even stronger).
The high-energy behaviour of the leading-rank polygons in Table 1 can now be easily gen-

eralised to higher multiplicities and higher polygon ranks following the same pattern. For
polygons with 2 + k edges their contribution to the gg ! n⇥ h process is:
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The only exception from this rule is the k = 1, n = 2 case, i.e. left-most triangle in Table 1,
which has an additional factor of M2

h/s. As a matter of fact, the squared amplitude in multi-
Higgs production with a odd number of three Higgs vertices is enhanced compared to a naive
counting by a factor s/M2

h when the invariant mass appearing in the propagator is close to its
minimal value of order Mh. In the case of pair production, the only invariant mass is fixed at
p
s and therefore such enhancement is absent.

The pattern established in Table 1 and Eq. (2.1) enables us to simplify the full 1-loop
Feynman diagrams-based computation in Fig. 1 by reducing it to contributions from e↵ective
multi-Higgs vertices of the form

V
eft

k ⇠ ↵str(Gµ⌫G
µ⌫)hk , (2.2)

where ⇠ indicates that the dimension-(4 + k) operators on the right hand side should be mul-
tiplied by the appropriate energy-dependent form-factors Fk(s). These form-factors will be
determined momentarily.

To proceed we first consider the contributions to cross-sections from the bare e↵ective op-
erators (2.2), i.e. not including the form-factors. The corresponding cross-sections are found
to grow with s, as summarised in Table 2, and this is of course also consistent with a simple
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dimensional analysis in the high-energy limit. The form-factors Fk(
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by matching the contributions from Vk := V
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following expressions for the e↵ective vertices [including the form-factors]:
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Here Ck’s are the constant coe�cients to be determined by matching to the full numerical
cross-section results, and yt is the top quark Yukawa coupling.

The coe�cients Ck can now be found from matching the cross-sections �eft computed from
the E↵ective Field Theory (EFT) vertices (2.3) to our numerical results for the complete partonic
cross-sections shown in Fig. 1. Specifically the two-point e↵ective vertices are matched to boxes,
the tree-point EFTs – to pentagons, and the four-point vertices are matched to the hexagon-
induced contributions to the cross-sections. For each e↵ective vertex of rank k, the coe�cient
Ck can be obtained in n� k independent ways from matching:

C2 : �gg!n⇥h [V2]  ! �gg!n⇥h [Boxes] , for n = 2, 3, 4, . . . (2.4)

C3 : �gg!n⇥h [V3]  ! �gg!n⇥h [Pentagons] , for n = 3, 4, . . . (2.5)

C4 : �gg!n⇥h [V4]  ! �gg!n⇥h [Hexagons] , for n = 4, . . . (2.6)

and for di↵erent values of the centre of mass energy
p
s. Their values are shown in Table 3.

We conclude that the extracted numerical values of these coe�cients do not appear to depend
strongly on the number of Higgses in the final state. This is an important test for our approach;
it guarantees the robustness of the e↵ective vertices approximation (2.3) for the multi-Higgs
production cross-sections in the high energy limit.

Our construction up to this point was derived from taking the high-energy limit and holding
the Higgs multiplicity fixed. The next step is to use of the e↵ective vertices (2.3) combined with
the classical generating functionals for the tree-level amplitudes introduced in Section 1.1, to
address the desired high multiplicity limit n � 1. This is achieved by substituting the Higgs
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