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SM: Unitarity, Hierarchy and HIGGSPLOSION

Before the discovery of the Higgs boson, massive Yang-Mills theory
violated unitarity — problem with high-energy growth of 2 -> 2 processes

Discovery of the (elementary) Higgs made the SM theory self-consistent

But a new unitarity problem — caused by the elementary Higgs bosons —
appears to occur for processes with large final state multiplicities n >> 1

Plus: Higgs brings in the Hierarchy problem: radiative corrections push the

Higgs mass to the new physics (high) scale: ,

mi m% + dm?

new

In this talk: consider n~100s of Higgs bosons produced in the final state
n x lambda >> 1. Investigate scattering processes at ~ 100 TeV energies

HIGGSPLOSION offers a solution to both: it restores the unitarity of high-
multiplicity processes and dynamically cuts off the values of the loop
momenta contributing to the radiative corrections to the Higgs mass.
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SM: Unitarity, Hierarchy and HIGGSPLOSION

After the discovery of the Higgs boson - complete Standard Model

Situation at tree-level
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HIGGSPLOSION and HIGGSPERSION

At high energies (100 TeV range), production of multiple Higgs and vector
bosons becomes kinematically possible

HIGGSPLOSION: Cross-sections computed in weakly-coupled
perturbation theory become unsuppressed above certain critical values of
nand E

This also applies to partial decay widths of highly-energetic states

But there are no violations of perturbative unitarity due to the related
HIGGSPERSION mechanism [exponential growth is tamed above Ec]

[Similar considerations should also apply to high-multiplicity longitudinal W
and Z production]



HIGGSPLOSION and HIGGSPERSION
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Warm-up: 1,2,3,4 Higgs bosons production
8 eV < E <100 TeV

multiple Higgs production

. .

Up to 4 Higgses with
MSTW2008 pdf set &
MadGraph5_aMCQ@QNLO

for different energies

MadGraph5 aMC@NLO

20 40 60 80 100

vsimevi  Degrande-VVK-Mattelaer 1605.06372

What if ~100 Higgs bosons are produced in the final state at 100 TeV ?
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Gluon fusion multi-Higgs production at large n

Two immediate problems to address:

1-loop polygons with up to n-2 edges
iIncreasing technical complexity

1-> n x h tree-level (& loop-corrected)
Higgs branchings grow as n!

|

Will address this first

k l
L polygons
Agg—)nxh — 2 : Agg—)kxh* z : H Ah;_)niXh

polygons ni+...+ng=n =1 I

T

 Degrande-VVK-Mattelaer 1605.06372 « VVK 1504.05023
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Tree-level n-point Amplitudes on mass threshold

The amplitude A;_,,, for the field ¢ to create n particles in the ¢* theory,

L,(6) = 5 (06) — LM>6 — 106+ 0.

is derived by applying the LSZ reduction technique:

<Oout’¢($)|0in>p'

p—0

(nlé(x)[0) = tim | _tim / a7 (M — p?)

Tree-level approximation is obtained via (Oout|@(2)|0in) , — @c1(x) Where ¢ (x)
is a solution to the classical field equation.

On mass threshold limit all outgoing particles are produced at rest, p; = 0
and we set all p/; = (w, 0) and p(z) = p(t) = po(w) e**. Hence,

0 0 0
M? — p? s (M? — w? = ,
M5y M 50 T )
1wt
2(t) = po(w) € = 29 ", 2y = finite const

M2 — w2 — e



Tree-level amplitudes in phin4 on mass threshold

Brown 9209203

The generating function of tree amplitudes on multiparticle thresholds is a clas-
sical solution. It solves an ordinary differential equation with no source term,

d2p+ M?*¢p+ Mg = 0.

The solution contains only positive frequency harmonics, i.e. the Taylor expan-
sion in z(t),

pai(t) = 2(t) + Y dpz(t)",  z:= zgeM!
n=2

Coefficients d,, determine the actual amplitudes by differentiation w.r.t. z,

B n
Al—)n — <£> ¢Cl

Gal(t) = A1) Ai_, = nl ( A )

1— 2 2(t)? WE

= nld, Factorial growth!!
z=0




Tree-level 1*->n Amplitudes on multi-particle mass thresholds
determined by classical solutions that are uniform in space: h(x,t)=h(t)

Lagrangian for the scalar field: \

L(h) = % (9h)? = 7 (h* = )",

The classical equation for the spatially uniform field h(t),

prototype of the Higgs
In the unitary gauge

d2h = —Ah°> + \? h,
has a closed-form solution with correct initial conditions hyy = v+ 2+ ...

z(t) ’
1 =55

) = 203 (0) 4, =3 ()

etht = 2 el 22 vt

hcl(t) = v

where z(t) = zg

i.e. with dyp =1/2 and all d,,>1 = 1.

P n
A1—>n — (&) hcl

Factorial growth of large-n scalar amplitudes on mass thresholds: E=nm
10

= n! (20)" Factorial growth

L. Brown 9209203

z=0



« The n! growth of perturbative amplitudes is not entirely surprising: it reflects the large-n
behaviour of perturbation theory:

e [Use of classical solutions is equivalent to summing over tree-level Feynman diagrams;
the number of contributing Feynman diagrams is known to grow factorially with n]

 |Important to distinguish between the two types of large-n corrections:
(a) higher-order perturbative corrections to some leading-order quantities

(b) our case where the leading-order tree-level contribution to the 1*->n Amplitude grows
factorially with the particle multiplicity n of the final state.

« The n! growth of n-point perturbative Amplitudes persists also above the threshold =>
can integrate over n-particle phase space to obtain cross-sections

e This was studied in the 90s in scalar QFTs (Voloshin; Son; Libanov, Rubakov, Troitski; ...)

 But now realised that the characteristic energy scale for EW applications starts in the
50-100 TeV range. FCC would provide an exciting challenge to realise this in the context
of the multi- Higgs and Massive Vector bosons production in the SM.

« [Critical energy scale above which the production may be unsuppressed is ~50-100 TeV]
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Similar story also holds in the Gauge-Higgs theory for tree-level
amplitudes on multi-particle mass thresholds VVK 1404 4876

These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:

palzu®) = 20 i kff o) ()" (),
n (1w ® k
Lalzw?) = w ZZ”Q’“ (20) ((%)2) ,

n=0 k=0

where d(n,2k) and a(n, 2k) are determined from the iterative solution of EOM.
By repeatedly differentiating these with respect to z and w® for the Higgs
to n Higgses and m longitudinal Z bosons threshold amplitude we get,

Ah = nxh+mx Zr) = 20)' """ nlmld(n,m),

and for the longitudinal Z decaying into n Higgses and m + 1 vector bosons,

1
(2v)"F

A(Zp, > nxh+(m+1)x Zp) = n!(m+ 1)a(n,m).

Factorial growth reemains (in n and in m) !
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Tree-level Amplitudes above mass thresholds are determined by
recursive solutions to classical equations — now include the
Kinematic dependence

— ("0 + M) p = 3vp® + Ap?

This classical equation for ¢(x) = h(x) — v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P2~ M) Au(pr-..pn) = 30y 08 0 S A (01, ) A, (017 (D)
P

ni,n2

A3 B S A o) A H2) A 07 )
P

ni,n2,n3

Away from the multi-particle threshold, the external particles 3-momenta p; are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to EX® (Galilean Symmetry),

An(p1-°~pn) = A, + MnETIL{in = A, + ./\/lnne,

1 . 1 1 <
_ Ekm _ —>.2.
- th " n 2M}% ;pz

In the non-relativistic limit we have ¢ < 1.
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Above the n-particle thresholds: L pwn _ 11 S5
. . . n 2
solution of the recursion relations n My, n 2Mj —

l 7 1 n
— ] 1—n D . 2
An(p1-..pn) = nl(2v) (1 e 6n_15+(9(5 ))

An important observation is that by exponentiating the order-ne contribution,
one obtains the expression for the amplitude which solves the original recursion
relation to all orders in (ne)™ in the large-n non-relativistic limit,

7
An(pl...pn):n!(2v)1_”exp[—6n€], n—oo, €—0, ne=fixed.

Simple corrections of order e, with coeflicients that are not-enhanced by n are
expected, but the expression is correct to all orders ne in the double scaling
large-n limit. The exponential factor can be absorbed into the z variable so
that

523 n(2eF) . VWK 1411.2925

remains a solution to the classical equation and the original recursion relations.

Can now integrate over the phase-space
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Phase-space integration

n Higgs bosons & m vector bosons,
take m=0 below:

1 2
Onm = [ dPpm —— |An*Snxhtmxz. |
I

n!m)!

The n-particle Lorentz-invariant phase space volume element

_ 4c(4)(p | Pj
]:1 j:1 J
in the large-n non-relativistic limit with nej fixed becomes,

1 [/ M2\" 3n £ ne

Repeating the same steps now including vector boson emissions,

A\ 2
Onom ~ €XP [2 logd(n,m) + n (log In — 1) + m (log <93_;n> — 1)

3n Eh 3m EV 25 5 5
" (log 21 T (1og Y e, — 31
+ 5 (log . + 1) + ; (log - + 1) 75 eh 3.15mey + O(nej, + msv)]

e VVK 1411.2925
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In general: Methods based on classical solutions result in the
exponential form for the n-particle cross-section: exp[F_holy_grail]

Libanov, Rubakov, Son, Troitsky; M Voloshin; ...

In the non-rel. limit for perturbative Higgs bosons only production we obtained:

bare cross-section AN,
[ignoring the width 0, X exp [n | log— —1
effect for now] 4

3n
_|__

(lo £
2 5 37

12

25
+1) — —ne]

More generally, in the large-n limit with A\n = fixed and ¢ = fixed, one expects

1

Op X €XP [X Fh,g,()\n,s)]

le.g. Libanov, Rubakov, Troitsky review 1997]

known function

where the holy grail function Fy, ¢ is of the form,
/ at tree level

1
A

N Fh.g. (Anv 5) —

AN
A

(fo(An) + f(e))

In our higgs model, i.e. the scalar theory with SSB,

~
AN

Known at eps<<1

fo()\n) —
fle) —

AN

log — —1
08

3

2

(

lo £
g37r

+1)

25
12°°

at tree level

fore <1

Next step:
compute f(e)

16
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1. Compute cross-sections with MadGraph 2 -> 5,6,7 at all energies (i.e. arbitrary epsilon)
ignoring the width in the

propagator for now log O_%ree SSB & no SSB
2 —20] | |
phi _. 8
\ V¥ phi :": ’:Ehj Fih_l . ?1 phi i . 6 -
phi » n..P'l"\E’“‘ 5 s - log 0%}
- - ~~ 5 L
¥ . phi %D . log 0.7noSSB
g " ?h.l ----- / T -
phi  phi A
*-:::E')'hT-- —40
1 "~~~ 3
* VVK 1504.05023 ¢
0 S
’ f(e) ] 2. Assume large n, subtract fy(An)and
-2 e eeene o extract f(e)using
- | | |
, . I —logo, = — Fpe.(An,e) = An) + f(e
_6j ] n g N h.g.( ) fO( ) f( )
o ] AN
~ - j An) = logt— —1
ol e ] fo(An) 0g 16
e | | f(e) asymptotes to a const at large eps

L R - (highly relativistic final state)
€



Can also include loop corrections to amplitudes on thresholds:

The 1-loop corrected threshold amplitude for the pure n Higgs production:

$* with SSB:  AlreeHIooP 1 (9y)1-n (1 tn(n — 1)\/§A>

1—n 87T

There are strong indications, based on the analysis of leading singularities of the
multi-loop expansion around singular generating functions in scalar field theory,

that the 1-loop correction exponentiates,
Libanov, Rubakov, Son, Troitsky 199/

Ain = AT, x exp [BAn® + O(An)]

in the limit A — 0, n — oo with \n? fixed. Here B is determined from the
1-loop calculation (as above) — Smith; Voloshin 1992): B_ L V3

4
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In Summary: first purely at tree level

1. Compute cross-sections with MadGraph 2 -> 5,6,7 at all energies (i.e. arbitrary epsilon)

2. Scale to large n using the known n-dependence in the holy grall
without including the leading-loop factor in the exponent

bare cross-section

e VVK 1504.05023 [ignoring the width

tree effect for now]
log 0,

40

— n=1500
— n=1400
— n=1300
— n=1200
— n=1100
— n=1000

-20

log o,

—40

—60

~100 "
300

E(TeV)
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In Summary [taking into account leading order loop effects]:
1. Compute cross-sections with MadGraph 2 -> 5,6,7 at all energies (i.e. arbitrary epsilon)

2. Scale to large n using the known n-dependence in the holy grall V3
including the leading-loop factor to the exponent + A\n -

bare cross-section
lOOp [ignoring the width

l Og O-I’l effect for now]

¢ VVK 1504.05023

— n=150
— n=140
— n=130
— n=120
— n=110




Very recently: computed the rate R in the large lambda n limit:

using the semi-classical approach of Son and the thin-wall approximation

e VWK 1705.04365 R = exp [AA" <10g)f +l3.02;;i:| — 1+ g(logg%—l—l) - i;)]

An > 1 small e

10" ¢ —
' E/M=205
10° * E
E/M=200
100 :
< E/M=195

0.01 ¢ E
10-5 & E/M=190 |
10710 1 1 1 4 /\ x l B W

100 120 140 160 180

n < Nmax = F/Mj,



Now: full Gluon fusion process including polygons
k
Agg—nxh = Z Agglliofi* Z H Az —nixh
polygons T ni+...+ng=n 1=1 T

1*->n multi-Higgs processes.
Already computed

1-loop polygons
MadGraph5_.aMC@NLO Compute numerically
in the high-energy limit where E>> all kin scales

 Degrande-VVK-Mattelaer 1605.06372
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Finally: combine wi
& convol

th the mult

-

ute with g

uo

N P

Iggs branchings

DFs

Results: 20 to 150 Higgs bosons @ different collider energies

T T T { T T T { T T T { T T T T T
11+ 14TeV o 25TeV x 35TeV l
A 50 TeV m 100 TeV A
I AAA |
-20 AA
A
) AKX X
o % AAA XXX
O + XXX
‘.6 ++ XXX
i + xX
Q + XXx
7 -60 T, O05XXXX XXX
o 10 Tr, OOOogXXXXXxxxxxxxxxxxxxxXX .
e ++ OOOOOO
O +, Ooooooooooooooo
10-80 + ., oooooooooooooooo -
(0]
+ OOO
++ o) 0
t, O¢
+
10-100 | +, Boxes, one-loop |
+
| | | | | | | J+_=_ | | | | | | | | | | |
20 40 60 80 100 120 140

number of Higgs

-3 ¢ Degrande-VVK-Mattelaer 1605.06372



1. Can reach observable level at ~50-100TeV

.......................
1L+ 14TeV o 26 TeV x 35TeV
A 50TeV m 100 TeV AAA
I AT
10-20 AAA
0" - AAA
8 AKX XX
= X
S 107401+8 B
= + XXX
(8] + xX
o) + xXX
(? 60 +, 00 X XXXXX
3 107" +++ 0000 XXX XXX XXX XX XXX XXX XXX
o + (0]6)
O ++ OOOOOOOOO
g0 +++ OOOOOOOOOOOOOOOOOOOOOO 00 1
*y 0o
+ ., OOO(
+
10-100 | i, Boxes, one-loop ,
||||||||||| +_‘_| L L L | L L L | L L L | L
20 40 60 80 100 120 140

1010

number of Higgs

106 L

100 -

0.01 -

10—6 L

10—10

E/M=205

E/M=200

E/M=195

E/M=190

100

| I I | I I I |
120 140 160

180

Multi-Higgs processes

h
kb,

hh h

—Xplosive growth at even higher energies 7

loo
log o "

1 L 1
20 30 50 70

E(TeV)

— n=150
— n=140
— n=130
— n=120
— n=110



2. Explosive growth at even higher energies — No

nelude the width _previous calculations neglected ‘width'/self-
effect in the cross-section energy contribution to scalar propagator

Analytic expression for process

-
-
--

_/\/l x X X ./\/l *_ym P
99 M2 i M D(p2) e RN "'

Yo PN

g RAC T
. . 2 2 ~sIIph e

results in limit s> M;, m; In T

A 2.2 4 (T4 1 p n—1 4

R : for R 51

For large R cross section small 0g0—nxn ~
9 ggrnxh {1/72%0 . for R > 1 at s — o0

-> no violation of perturbative unitarity for large multiplicities
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Higgsploding the Hierarchy problem

1 1 X=heavy state
Lx = =0"X9,X — §M§( X? — %PX%? — puXh? y

2 - <
T I * /
d4p 1 ! | D
AM; ~ A 5= ===
: P/ 1674 M3 — p2 +iIlm Xy (p?) '

_ / d'p ( Mg — p? - iIm X (p*) )
) 16t \(MZ - )2 + ImEx(p?)2 (M2 — p?)? + (ImZx(p?))?

Due tfo Higgsplosion the multi-particle contribution to the width of
X explode at p* = s, where /s, ~ O(25)TeV

——y It provides a sharp UV cut-off in the integral, possibly at s. < Mx

Hence, the contribution to the Higgs mass amounts to

S
For T(s,)~ My at s, <My = AM; x \p M’; s, < Ap M%

and thus mends the Hierarchy problem by (Mx
26



Summary 1/2

The SM Higgs boson introduces the Hierarchy problem
and the perturbative unitarity problem for high-n production

The SM heals itself and resolves both these problems if the Higgsplosion
mechanism Is operative

S
For T'(sy)~Mx at s, <My = AM; x \p M—’; 5. < A\p M3

X
R . for R <1
o n ~
WEE T 1R =0 ¢ for R>1at s — oo

No new physics degrees of freedom required — very minimal solution

Predictions / falsifiability of Higgsplosion at 100 TeV (FCC). Applications to
Cosmology, reheating,

Leptogenesis, Flavour structure, Axions, (no) GUTs, etc
27



Summary 2/2

The Higgsplosion / Higgspersion mechanism makes theory UV finite (all
loop momentum integrals are dynamically cut-off at scales above the
Higgsplosion energy).

UV-finiteness => all coupling constants slopes become flat above the
Higgsplosion scale => automatic asymptotic safety

[Below the Higgsplosion scale there is the usual logarithmic running]

1. Asymptotic Safety

2. No Landau poles for the U(1) and the Yukawa couplings

3. The Higgs self-coupling does not turn negative => stable EW vacuum

No new physics degrees of freedom required — very minimal solution
28



Backup slides

Full Propagator with running width:

Ap(p) = /d% e {0|T (¢(x) $(0)) |0) = :

p? — m3 — X(p?) + ie

m?* —mi —X(m?) =0, or m? = mi+ReX(m?).

Ay(p) = : = 1
T P B0 -2m)] T P \1 - el - O —m?) )

p2m2>
iZ - iZ
T p2-m?2—iZyImE(p?) p2-m2+imD(p?)’

>
<
S

{
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Gluon fusion process including polygons
k
lygon
Agg—>n><h — Z Aggzﬁcox}sb* Z H -Ahjf—>nz-><h
polygons T ni+...+ng=n 1=1 T

1*->n multi-Higgs processes.
Already computed

1-loop polygons
MadGraph5_.aMC@NLO Compute numerically
in the high-energy limit where E>> all kin scales

30



Ugg—mh (pb)

Polygon contributions:

2 and 3 Higgs production

4 Higgs production

. m
10_7 B " [ ] 7 Y
-10 |
[ ] " n 10 o
I v —~ - e
10—10 B ! i 0 O | o
2 - . | & :
A ‘ < 13 A © -
| A A * < 10077 )
1073 § A A 0
A A 12X
| N a °
10-16 | 4 R 10-16 A _
- A Triangles 2h m Boxes 2h A A Triangles 4h B Boxes 4h
- A Triangles 3h m Boxes 3h e Pentagones 3h o Pentagones 4h @ Hexagones 4h A
10—19 L . ! . . ! . . L L . ! . . ! R
10 20 50 100 200 10 20 50 100 200
E(TeV) E(TeV)
Ogg— hh O0gg— hhh 0 gg— hhhh
s > my , Mp, limit Trianel o mi M loo? [ mu My 2 m; logd [ ™ M, 2 my logt [ mu My
’ HNangles || Ye —g3 108 (/5 ) w2 | Yt 52108 |\ 5 ) ot | Ye 52108 (/5 ) %6
2 4
41 41 My 41 My
Boxes Vi s Yi s it —h
2 2 2
_ 6% 1004 (1t 61 154 (me ) Mi
Pentagons y; 5 log ( \/§> yi -+ log ( L) 2
_ _ 81
Hexagons Yr
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* Compare to the high-energy scaling behaviour resulting from the effective vertices:

O.eft eft eft
gg— hh gg—> hhh gg—) hhhh
2 4 6
1 M o M, o My o
astr(G,G*) h —3s —45 —&s
2 4
U\ 1.9 M; M,
astr(G,GH*) h S —35 —45
M?
uvy L3 _ 2 2
astr(G,G*) h S —3s

* The pattern established for polygons with 2+k edges:

| 1 (M, 2(n—Fk) 1 : k = even
(2 _|_ k‘)—pOlngHS . Ugg—)nxh X g yt (7) X mt log (T\Y/L%) : k’ — Odd .

* allows to associate the full 1-loop result from rank-(2+k) polygons in the high E limit
to the effective vertex - now including the form-factors - via:

S h .k = even Z 2
Ve = 0 25 G ann) (y ) {

T 1 Jog? (”}) . k=odd > 3.

* For h substitute the classical solution generating functional to represent subsequent
Higgs branchings. Ck constants are krsawn (computed). [More detail in the paper.]




