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• Before the Higgs discovery, massive Yang-Mills theory violated perturbative unitarity 
— problem with high-energy growth of 2 -> 2 processes 

• Discovery of the (elementary) Higgs made the SM theory self-consistent 

• The Higgs brings in the Hierarchy problem: radiative corrections push the Higgs 
mass to the new physics (high) scale:  

• In this talk: consider n~100s of Higgs bosons produced in the final state n lambda 
>> 1. Investigate scattering processes at ~ 100 TeV  energies. 

• HIGGSPLOSION: n-particle rates computed in a weakly-coupled theory can become 
unsuppressed above critical values of n and E. Perturbative and non-perturbative 
semi-classical calculations. n! ~ exponential growth with n or E. (Scale n~E/m). 

• A new unitarity problem — caused by the elementary Higgs bosons — appears to 
occur (?) for processes with large final state multiplicities n >> 1 

• HIGGSPLOSION offers a solution to both problems: it restores the unitarity of high-
multiplicity processes and dynamically cuts off the values of the loop momenta 
contributing to the radiative corrections to the Higgs mass. 

1 Introduction

The recent discovery of a light Higgs boson at the Large Hadron Collider (LHC) [1, 2] constitutes
an outstanding success of the Standard Model (SM) of particle physics. Before its discovery,
the presence of a light scalar boson with a mass within the reach of the LHC was predicted,
to ensure unitarity in scattering processes between longitudinal gauge bosons. While the SM
is certainly an incomplete theory of nature, it fails to explain the observed matter-antimatter
asymmetry and it does not provide a cold dark matter candidate, it is widely believed that the
Higgs boson interactions with all other SM particles renders it a self-consistent theory, up to
very high energy scales. As such it is currently arguably impossible to point to a specific energy
scale at which the SM has to be augmented by new physics to explain fundamental questions
in nature.

Yet, the Higgs boson, as a light elementary scalar particle, su↵ers from a so-called fine-
tuning problem. Quantum corrections are involuntarily dragging the Higgs boson mass to
the new physics mass scale mnew, viz m2

h ' m2
0 + �m2

new. In order to obtain the observed
physical mass of mh ' 125 GeV the bare parameter of the theory m0 has to be increasingly
precisely tuned, depending on how widely the electroweak scale is separated from the new
physics scale. The guiding principle that parameters of our quantum field theory should not
have to be unnaturally precisely tuned is currently our strongest argument for the existence
of a new physics scale, not too far away from the electroweak scale. Popular ways to avoid
the Hierarchy problem altogether are supersymmetric and composite Higgs models, which each
however have their own so-called little Hierarchy problems.

Looking beyond 2 ! 2 scattering processes, which are unitarized due to tree-level cancella-
tion e↵ects between gauge and Higgs boson interactions, the SM might still be an inconsistent
theory at energy scales as low as O(100) TeV, as perturbative unitarity might be violated in
2 ! nh multi-Higgs boson production processes. At su�ciently high energies it becomes kine-
matically possible to produce high multiplicity final states with n o 1 particles in a weakly
interacting theory. It was pointed out already more than a quarter of a century ago in Refs. [3, 4]
that the factorial growth in n can arise from the large numbers of Feynman diagrams contribut-
ing to the scattering amplitude Mn at large n. This reasoning works in any quantum field
theory where there is no destructive interference between Feynman diagrams in computations
of on-shell quantities, and is indeed the case in the scalar field theory with ��4-type inter-
actions [5], where tree graphs all have the same sign, and the leading-order high-multiplicity
amplitudes indeed acquire the factorial behaviour, Mn ⇠ �n/2 n!. This observation, assuming
that the amplitudes do not decay rapidly in moving o↵ the multi-particle thresholds, leads to
the factorial growth of the decay rates, �n ⇠ �n n!⇥fn(E), of highly energetic states and signals
that perturbation theory becomes e↵ectively strongly coupled for n > 1/� [6, 7, 8, 9, 10] and
can result in sharply growing with energy high-multiplicity observables. For example, it was
shown recently in Refs. [10, 11] that such high multiplicity production processes may be within
reach of a future hadron collider at 100 TeV. Already at 50 TeV the perturbative cross-sections
for 140 Higgs bosons are at picobarn level.

In this work, we will address both short-comings of the SM discussed: the Hierarchy problem
and the apparent breakdown of perturbative unitarity in high multiplicity processes simultane-
ously using the Higgsplosion mechanism. We will show that the sharply growing cross-sections
actually prevent the violation of perturbative unitarity in multi-Higgs processes and further nat-
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2. in more detail (depending on time)

• Full propagator & Higgsplosion/Higgspersion  

• All tree-level amplitudes from classical solutions 

• The semi-classical approach for computing quantum effects 

• Effects of Higgsplosion on Precision Observables

Organisation of the talk:
1. main part

• Main idea and simple expressions for n-point amplitudes and rates 

• Interpretation of tree-level results and inclusion of quantum effects: 
loops and semiclassical methods. Higgsplosion and Higgspersion. 

• Some phenomenology / inc. future colliders  =>  Summary
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Compute 1 -> n amplitudes @LO with non-relativistic final-state momenta:         Off-threshold in phi^4 with SSB (Higgs-like)

19

� (@µ@µ +M2
h)' = 3�v '2 + �'3

This classical equation for '(x) = h(x)� v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:
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Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

An(p1 . . . pn) = An + Mn E
kin
n := An + Mn n " ,

" =
1

nMh
E kin

n =
1

n

1

2M2
h

nX

i=1

~p 2
i .

In the non-relativistic limit we have " ⌧ 1.

Tree-level 1⇤ ! n amplitudes in the limit " ! 0 for any n are given by

An(p1, . . . pn) = n!
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In the large-n-non-relativistic limit the result is

An(p1, . . . pn) = n!
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, n ! 1, " ! 0, n" = fixed

amplitude on the n-particle threshold

see classic 1992-1994 papers: 
Brown; Voloshin; 
Argyres, Kleiss, Papodopoulos 
Libanov, Rubakov, Son, Troitski 

more recently: VVK 1411.2925 

kinetic energy per particle per mass

L =
1

2
(@µh)

2 � �

4
(h2 � v2)2

prototype of the SM Higgs  
in the unitary gauge 

factorial growth
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Can now integrate over the n-particle phase-space

The cross-section and/or the n-particle partial decay �n

�n(s) =

Z
d�n
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Son 1994; 
Libanov, Rubakov, Troitskii 1997;     more recently: VVK 1411.2925 



• The n! growth of perturbative amplitudes is not entirely surprising: the number of 
contributing Feynman diagrams is known to grow factorially with n. [In scalar QFT 
there are no partial cancellations between individual diagrams (unlike QCD).] 

• Important to distinguish between the two types of large-n corrections: 

• (a) present case where the leading-order tree-level contribution to the 1*->n Amplitude 
grows factorially with the particle multiplicity n of the final state.  

• (b) higher-order perturbative corrections to some leading-order quantities 

• These amplitudes were first studied in the 90s in scalar QFTs  

• But now it is realised that the characteristic energy scale for EW applications starts 
in the 50-100 TeV range. FCC would provide an exciting challenge to realise this in 
the context of the multi- Higgs and Massive Vector bosons production in the SM.
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Contrast asymptotic growth of higher-order corrections in  
perturbation theory with the ~n! contributions to Gamma_n(s)

Not the same types of beasts

It is the decay width Gamma_n(s) which is the central object of interest 
and the driving force of Higgsplosion.
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Contrast asymptotic growth of higher-order corrections in  
perturbation theory with the ~n! contributions to Gamma_n(s)

Not the same types of beasts
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]

R = exp
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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In the non-rel. limit for perturbative Higgs bosons only production we obtained:
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More generally, in the large-n limit with �n = fixed and " = fixed, one expects
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[e.g.Libanov, Rubakov, Troitsky review 1997]

where the holy grail function Fh.g. is of the form,
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Perturbative as well as semi-classical calculations result in the 
exponential form for the n-particle width Gamma ~ exp[F_holy_grail]

• Libanov, Rubakov, Son, Troitsky; Son: 1994-1995
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bare cross-section 
[ignoring the width 

effect for now]

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp
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�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the copupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log
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The 1-loop corrected threshold amplitude for the pure n Higgs production:

�4
with SSB : A

tree+1loop
1!n = n! (2v)1�n

 
1 + n(n� 1)

p
3�

8⇡

!

There are strong indications, based on the analysis of leading singularities of the

multi-loop expansion around singular generating functions in scalar field theory,

that the 1-loop correction exponentiates,

Libanov, Rubakov, Son, Troitsky 1994

A1!n = A
tree
1!n ⇥ exp

⇥
B �n2

+ O(�n)
⇤

in the limit � ! 0, n ! 1 with �n2
fixed. Here B is determined from the

1-loop calculation (as above) – Smith; Voloshin 1992):
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In the Higgs model, 1st equation leads to the exponential enhancement of the

tree-level threshold amplitude at least in the leading order in n2�.

Can also include loop corrections to amplitudes on thresholds:

In the non-rel. limit for perturbative Higgs bosons only production we obtained:
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Extreme energy dependence for 1  ->  n cross section*

including 1-loop result reduces ‘ignition’ scale
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
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nMh
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n '
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n
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2M2
h

nX
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~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
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, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
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◆
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p
3
�n

4⇡
. (3.14)
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Semi-classical approach for computing the rate R(1->n,E)
• DT Son1995

Multi-particle decay rates �n can also be computed using an alternative semi-
classical method. This is an intrinsically non-perturbative approach, with no
reference in its outset made to perturbation theory.

The path integral is computed in the steepest descent method, controlled by
two large parameters, 1/� ! 1 and n ! 1.

� ! 0 , n ! 1 , with �n = fixed , " = fixed .

The semi-classical computation in the regime where,

�n = fixed ⌧ 1 , " = fixed ⌧ 1 ,

reproduces the tree-level perturbative results for non-relativistic final states.

Remarkably, this semi-classical calculation also reproduces the leading-order
quantum corrections arising from resumming one-loop e↵ects.
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Semi-classical approach for computing the rate R(1->n,E)

• VVK 1705.04365

The semiclassical approach is equally applicable and more relevant to the real-

isation of the non-perturbative Higgsplosion case where,

�n = fixed � 1 , " = fixed ⌧ 1 .

This calculation was carried out for the spontaneously broken theory with the

result given by,
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Higher order corrections are suppressed by O(1/
p
�n) and powers of ".

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n"

�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
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⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale
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s = E linearly with n, E / n, keeping the copupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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using the semi-classical approach and the thin-wall approximation 

• VVK 1705.04365

Thus we have computed the rate R in the large lambda n limit: 
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]

R = exp
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [10]. These results will be reported in a forthcoming publication [22].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form
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As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [22]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [10]. These results will be reported in a forthcoming publication [22].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [10]. These results will be reported in a forthcoming publication [22].
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
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Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [10]. These results will be reported in a forthcoming publication [22].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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including 1-loop result reduces ‘ignition’ scale
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain

6

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp
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�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:
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�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp
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Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where
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so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,
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or, equivalently, after the LSZ reduction of the incoming line,
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which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is
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and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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• Unitarity restored!
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Summary of the main idea

The Dyson propagator (continued to Euclidean space) is,

�R(x1, x2) = h0|�(x1)�(x2)|0i =

Z
d4p

(2⇡)4
1

p2 +m2 + ⌃R(p2)
eip0�⌧ + i~p�~x .

When the theory enters the Higgsplosion regime, the self-energy undergoes a

sharp exponential growth,

⌃R(p
2
) ⇠

(
0 : for p2 < E2

⇤
1 : for p2 � E2

⇤

The loop momentum integral becomes cut o↵ by ⌃ outside the ball of radius E⇤

�R(x1, x2) =

Z

p2E2
⇤

d4p

(2⇡)4
1

p2 +m2
eip0�⌧ + i~p�~x

⇠
(

1/|�x|2 : for 1/E⇤ ⌧ |�x| ⌧ 1/m

E2
⇤ : for |�x| . 1/E⇤

.
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A conventional wisdom: in the description of nature based on a local QFT, one

should always be able to probe shorter and shorter distances with higher and

higher energies.

Higgsplosion is a dynamical mechanism, or a new phase of the theory, which

presents an obstacle to this principle at energies above E⇤.

E⇤ is the new dynamical scale of the theory, where multi-particle decay rates

become unsuppressed.

Schematically, E⇤ = C m
� , where C is a model-dependent constant of O(100).

This expression holds in the weak-coupling limit � ! 0.

Summary of the main idea
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Higgsplosion

At energy scales above E⇤ the dynamics of the system is changed:

1. Distance scales below |x| . 1/E⇤ cannot be resolved in interactions;

2. UV divergences are regulated;

3. The theory becomes asymptotically safe;

4. And the Hierarchy problem of the Standard Model is therefore absent.

Consider the scaling behaviour of the propagator of a massive scalar particle

�(x) := h0|T (�(x)�(0))|0i ⇠

8
><

>:

m2 e�m|x|
: for |x| � 1/m

1/|x|2 : for 1/E⇤ ⌧ |x| ⌧ 1/m

E2
⇤ : for |x| . 1/E⇤

,

where for |x| . 1/E⇤ one enters the Higgsplosion regime.

This is a non-perturbative criterium. Can in principle be computed on a lattice.
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Loop integrals are e↵ectively cut o↵ at E⇤ by the exploding width �(p2) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k2i ⇠ m2 n E2

⇤ .

The width of the propagating degree of freedom becomes much greater than its
mass: it is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle
quanta of the same field �.

Higgsplosion

• VVK & Michael Spannowsky 1704.03447, 1707.01531
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For all parameters of the theory (running coupling constants, masses, etc):

10�3 10�2 10�1 100 101 102 103

µ/E⇤

100

�
(µ

)/
�
(E

⇤)

Higgsplosion

No Higgsplosion

UV fixed point
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Higgsploding the Hierarchy Problem

which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,

LX =
1

2
@µX @µX �

1

2
m2

X X2
�

�P

4
X2h2 . (5.1)

where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X⇤

! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find

�M2
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Z
d4p
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◆

Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to

�M2
h / �P

s?
M2

X

s? . (5.2)

This is suppressed by the factor of
⇣p

s?
MX

⌘4
'

⇣
25TeV
MX

⌘4
relative to the normal expectations

without the Higgsplosion-driven disintegration of the heavy particles.
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momenta at p2 = s?. Hence the integral in the expression above amounts to
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relative to the normal expectations

without the Higgsplosion-driven disintegration of the heavy particles.
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For �(s?) ' MX at s? ⌧ M2
X =) �M2

h / �P
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s? ⌧ �P M2
X . (5.3)

The reasoning above equally applies to any heavy modes, as far as they have a non-vanishing
interaction with the Higgs. These modes could be the heavy 1012 GeV sterile neutrinos which
are important for the standard thermal Leptogenesis [26, 27, 28], a heavy inflaton [29, 30], GUT-
scale particles [31, 32], flavons [33, 34], or the heavy degrees of freedom that would appear at
the fa ' 1011 GeV scale relevant for the axion [35, 36, 37, 38].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,

M2
h =

@2Ve↵

@h2
, (5.4)

where

Ve↵ =
1

64⇡2

Z p
s?

d4p STr log
�
p2 +MX(h)2

�
. (5.5)

STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s? where the Higgsplosion of the

heavy states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the

existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
of heavy particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the
heavy particle’s width increases rapidly beyond a certain energy threshold, these contributions
are tamed and the Hierarchy problem can be avoided.
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Due to Higgsplosion the multi-particle contribution to the width of  
X explode at          where

which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,
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2
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4
X2h2 . (5.1)

where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X⇤

! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find
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Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to
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This is suppressed by the factor of
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relative to the normal expectations

without the Higgsplosion-driven disintegration of the heavy particles.
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contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,
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where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X⇤

! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find
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Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to
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It provides a sharp UV cut-off in the integral, possibly at For �(s?) ' MX at s? ⌧ M2
X =) �M2

h / �P
s?
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X

s? ⌧ �P M2
X . (5.3)

The reasoning above equally applies to any heavy modes, as far as they have a non-vanishing
interaction with the Higgs. These modes could be the heavy 1012 GeV sterile neutrinos which
are important for the standard thermal Leptogenesis [26, 27, 28], a heavy inflaton [29, 30], GUT-
scale particles [31, 32], flavons [33, 34], or the heavy degrees of freedom that would appear at
the fa ' 1011 GeV scale relevant for the axion [35, 36, 37, 38].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,

M2
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@h2
, (5.4)

where

Ve↵ =
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Z p
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d4p STr log
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p2 +MX(h)2

�
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STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s? where the Higgsplosion of the

heavy states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the

existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
of heavy particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the
heavy particle’s width increases rapidly beyond a certain energy threshold, these contributions
are tamed and the Hierarchy problem can be avoided.
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Hence, the contribution to the Higgs mass amounts to

and thus mends the Hierarchy problem by

X
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without the Higgsplosion-driven disintegration of the heavy particles.
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The reasoning above equally applies to any heavy modes, as far as they can decay and have
a non-vanishing interaction with the Higgs boson. These modes could be the heavy 1012 GeV
sterile neutrinos which are important for the standard thermal Leptogenesis [29, 30, 31], a heavy
inflaton [32, 33], GUT-scale particles [34, 35], flavons [36, 37], or the heavy degrees of freedom
that would appear at the fa ' 1011 GeV scale relevant for the axion [38, 39, 40, 41].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,
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STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s? where the Higgsplosion of the

heavy states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the

existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
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X=heavy state
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?
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which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. In the scenario which is of main interest
to us in this work, the decay rates (or equivalently, the imaginary part of ⌃) happen to grow
rather than vanish at infinity. In this case one cannot use the dispersion relation to restore the
real part from the imaginary part of the self-energy by closing up the contour, and the Källén-
Lehmann representation in the form (4.7), (4.9) simply becomes invalid. Hence the growing
multi-particle decay rates do not necessarily imply the breakdown of unitarity of the theory.
In the previous sub-section we have already argued that the relevant physical cross-sections in
this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. This obviously requires that X and the Higgs boson h can interact with
each other and we further assume that X is not absolutely stable. This picture is captured by
a simple Lagrangian,

LX =
1

2
@µX @µX �

1

2
M2

X X2
�

�P

4
X2h2 � µXh2 . (5.1)

The Higgs-portal interactions �P X2h2 ensure that X-loops contribute to the Higgs boson mass
while the interaction µXh2 lifts the X ! �X parity symmetry and ensures that X can decay
into multiple Higgs bosons X ! hh.

Calculating the contribution to the Higgs boson mass from the scalar X, we find
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Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to

�M2
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s?
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X

s? . (5.2)
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Prospects of direct observation of Higgslposion
Vector boson fusion at high-energy pp colliders (FCC)

…
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]

R = exp

"
�n

�

 
log

�n

4
+ 3.02

r
�n

4⇡
� 1 +

3

2

⇣
log

"

3⇡
+ 1
⌘
�

25

12
"

!#
. (3.15)

This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted

8

�n/M
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• preliminary: no Higgs 
decays into SM d.o.f 
included;                         
& no vector bosons in 
final states yet

Vector boson fusion at high-energy pp colliders (FCC)

using pt jet > 40 GeV



Summary 

• The Higgsplosion / Higgspersion mechanism makes theory UV finite  (all 
loop momentum integrals are dynamically cut-off at scales above the  
Higgsplosion energy). 

• UV-finiteness => all coupling constants slopes become flat above the 
Higgsplosion scale => automatic asymptotic safety 

• [Below the Higgsplosion scale there is the usual logarithmic running] 

• 1. Asymptotic Safety 

• 2. No Landau poles for the U(1) and the Yukawa couplings 

• 3. The Higgs self-coupling does not turn negative => stable EW vacuum 

• No new physics degrees of freedom required — very minimal solution
25



Now in more detail

• Full propagator & Higgsplosion/Higgspersion 

• All tree-level amplitudes from classical solutions 

• The semi-classical approach for computing 
quantum effects to Gamma_n at large lambda n 

• Effects of Higgsplosion on Precision Observables
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a) The Propagator and Higgspersion basics

In a generic QFT model with a massive scalar consider:

1. The Feynman propagator of � is the 2-point function,

�(p) =

Z
d4x eip·xh0|T (�(x)�(0)) |0i =

i

p2 �m2
0 � ⌃(p2) + i✏

,

2. The self-energy ⌃(p2) is the the sum of all 2-point (1PI) diagrams,

�i⌃(p2) =
X

�(1PI)� .

In perturbation theory,

i

p2 �m2
0 � ⌃(p2)

=
i

p2 �m2
0

+
i

p2 �m2
0

1X

n=1

✓
�i⌃(p2)

i

p2 �m2
0

◆n

.

But the expression for the full quantum propagator on the left is valid
no-perturbatively.

3. The physical (or pole) mass m is defined as the pole of the quantum
propagator,

m2 �m2
0 � ⌃(m2) = 0 , or m2 = m2

0 + ⌃(m2) .
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1.

2.

3.

4. The field renormalisation Z� is determined from the slope of ⌃(p2) at m2
,

Z� =

 
1� d⌃

dp2

����
p2=m2

!�1

.

Using the definition of the pole mass and the renormalisation constant,

�(p) =
iZ�

p2 �m2 � Z�[⌃(p2)� ⌃(m2)� ⌃0(m2)(p2 �m2)]
.

5. The renormalised quantities �R(p) and ⌃R(p2) are,

�R(p) = Z (�1)
� �(p) ,

⌃R(p) = Z�

�
⌃(p2)� ⌃(m2

)� ⌃
0
(m2

)(p2 �m2
)
�
.

Hence, the result for the renormalised propagator in terms of all finite

quantities is,

�R(p) =
i

p2 �m2 � ⌃R(p2) + i✏
.

a) The Propagator and Higgspersion basics
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1.

2.

3.

4.

5.

6. The optical theorem provides the physical interpretation of the Im⌃,

Im⌃R(p
2
) = �m�(p2) ,

with the decay width being determined by the partial widths of n-particle
decays at energies s � (nm)

2
,

�(s) =

1X

n=2

�n(s) , �n(s) =
1

2m

Z
d�n

n!
|M(1 ! n)|2 .

7. The origin of Higgsplosion is that �n(s) grows factorially with n in the

large-n limit,
1
n! |Mn|2 ⇠ n!�n ⇠ en log(�n)

. When n scales linearly with

the available energy, n ⇠
p
s/m, this translates into the exponential de-

pendence of the decay rate �(s) on
p
s.

8. Hence in a Higgsploding theory, the propagator,

�R(p) =
i

p2 �m2 � Re⌃R(p2) + im�(p2) + i✏
,

is e↵ectively cut o↵ at p2 � E2
⇤ by the exploding width �n(p2).

a) The Propagator and Higgspersion basics
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1.

2.

3.

4.

5.

6. The optical theorem provides the physical interpretation of the Im⌃,

Im⌃R(p
2
) = �m�(p2) ,

with the decay width being determined by the partial widths of n-particle
decays at energies s � (nm)

2
,

�(s) =

1X

n=2

�n(s) , �n(s) =
1

2m

Z
d�n

n!
|M(1 ! n)|2 .

7. The origin of Higgsplosion is that �n(s) grows factorially with n in the

large-n limit,
1
n! |Mn|2 ⇠ n!�n ⇠ en log(�n)

. When n scales linearly with

the available energy, n ⇠
p
s/m, this translates into the exponential de-

pendence of the decay rate �(s) on
p
s.

8. Hence in a Higgsploding theory, the propagator,

�R(p) =
i

p2 �m2 � Re⌃R(p2) + im�(p2) + i✏
,

is e↵ectively cut o↵ at p2 � E2
⇤ by the exploding width �n(p2).

The driving force of Higgsplosion is the partial width, i.e. the 1-> n particle decay width 
Gamma_n(p^2) at large p^2. It gives rise to the Imaginary part of the self-energy.  

   We don’t know much about the Real part from first principles, it could be small or large, but 
even if large, it cannot cancel the Imaginary part contribution. [Note that one cannot use the 

usual dispersion relation to relate Real and Imaginary parts as cannot close contour at infinity] 

a) The Propagator and Higgspersion basics



         b) Tree-level n-point Amplitudes on mass threshold
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The amplitude A1!n for the field � to create n particles in the �4 theory,

L⇢(�) =
1

2
(@�)2 � 1

2
M2�2 � 1

4
��4 + ⇢ � ,

is derived by applying the LSZ reduction technique:

hn|�(x)|0i = lim
⇢!0

2

4
nY

j=1

lim
p2
j!M2

Z
d4xje

ipj ·xj (M2 � p2j )
�

�⇢(xj)

3

5 h0out|�(x)|0ini⇢ .

Tree-level approximation is obtained via h0out|�(x)|0ini⇢ �! �cl(x) where �cl(x)
is a solution to the classical field equation.

On mass threshold limit all outgoing particles are produced at rest, ~pj = 0
and we set all pµj = (!,~0) and ⇢(x) = ⇢(t) = ⇢0(!) ei!t. Hence,

(M2 � p2j )
�

�⇢(xj)
�! (M2 � !2)

�

�⇢(tj)
=

�

�z(tj)
,

z(t) :=
⇢0(!) ei!t

M2 � !2 � i✏
:= z0 ei!t , z0 = finite const



         b) Tree-level amplitudes in phi^4 on mass threshold
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         Brown 9209203
The generating function of tree amplitudes on multiparticle thresholds is a clas-
sical solution. It solves an ordinary di↵erential equation with no source term,

d2t�+M2�+ ��3 = 0 .

The solution contains only positive frequency harmonics, i.e. the Taylor expan-
sion in z(t),

�cl(t) = z(t) +
1X

n=2

dn z(t)
n , z := z0 e

iMt

Coe�cients dn determine the actual amplitudes by di↵erentiation w.r.t. z,

A1!n =

✓
@

@z

◆n

�cl

����
z=0

= n! dn Factorial growth!!

�cl(t) =
z(t)

1� �
8M2 z(t)2

A1!n = n!

✓
�

8M2

◆n�1
2
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         L. Brown 9209203

L(h) =
1

2
(@h)2 � �

4

�
h2 � v2

�2
,

The classical equation for the spatially uniform field h(t),

d2th = ��h3 + �v2 h ,

again has a closed-form solution with correct initial conditions hcl = v+ z+ . . .

hcl(t) = v
1 + z(t)

2v

1� z(t)
2v

, where z(t) = z0 e
iMht = z0 e

i
p
2� v t

hcl(t) = 2v
1X

n=0

✓
z(t)

2v

◆n

dn = v + 2v
1X

n=1

✓
z(t)

2v

◆n

,

i.e. with d0 = 1/2 and all dn�1 = 1.

A1!n =

✓
@

@z

◆n

hcl

����
z=0

= n! (2v)1�n Factorial growth!!

      Factorial growth of large-n scalar amplitudes on mass thresholds: E=nm

Lagrangian for the scalar field: 
prototype of the Higgs 
in the unitary gauge 

         b) Tree-level amplitudes for a scalar theory with SSB



Similar story also holds in the Gauge-Higgs theory for tree-level 
amplitudes on multi-particle mass thresholds

34

          VVK 1404.4876
These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:

hcl(z, w
a) = 2v

1X

n=0

1X

k=0

d(n, 2k)
⇣ z

2v

⌘n
✓
wawa

(2v)2

◆k

,

Aa
L cl(z, w

a) = wa
1X

n=0

1X

k=0

a(n, 2k)
⇣ z

2v

⌘n
✓
wawa

(2v)2

◆k

,

where d(n, 2k) and a(n, 2k) are determined from the iterative solution of EOM.
By repeatedly di↵erentiating these with respect to z and wa for the Higgs

to n Higgses and m longitudinal Z bosons threshold amplitude we get,

A(h ! n⇥ h+m⇥ ZL) = (2v)1�n�m n!m! d(n,m) ,

and for the longitudinal Z decaying into n Higgses and m+ 1 vector bosons,

A(ZL ! n⇥ h+ (m+ 1)⇥ ZL) =
1

(2v)n+m
n! (m+ 1)! a(n,m) .

Factorial growth reemains (in n and in m) !
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� (@µ@µ +M2
h)' = 3�v '2 + �'3

This classical equation for '(x) = h(x)� v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P 2
in �M2

h)An(p1 . . . pn) = 3�v
nX

n1,n2

�nn1+n2

X

P
An1(p

(1)
1 , . . . , p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)

+�
nX

n1,n2,n3

�nn1+n2+n3

X

P
An1(p

(1)
1 . . . p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)An3(p
(3)
1 . . . p(3)n2

)

Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

An(p1 . . . pn) = An + Mn E
kin
n := An + Mn n " ,

" =
1

nMh
E kin

n =
1

n

1

2M2
h

nX

i=1

~p 2
i .

In the non-relativistic limit we have " ⌧ 1.

Tree-level Amplitudes above mass thresholds are determined by 
recursive solutions to classical equations — now include the 
kinematic dependence
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• VVK 1411.2925

An(p1 . . . pn) = n! (2v)1�n

✓
1�

7

6
n " �

1

6

n

n� 1
"+O("2)

◆
.

An important observation is that by exponentiating the order-n" contribution,
one obtains the expression for the amplitude which solves the original recursion
relation to all orders in (n")m in the large-n non-relativistic limit,

An(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed .

Simple corrections of order ", with coe�cients that are not-enhanced by n are
expected, but the expression is correct to all orders n" in the double scaling
large-n limit. The exponential factor can be absorbed into the z variable so
that

'(z) =
1X

n=1

dn
⇣
z e�

7
6 "

⌘n
,

remains a solution to the classical equation and the original recursion relations.

         Off-threshold in phi^4 with SSB (Higgs-like)

19

� (@µ@µ +M2
h)' = 3�v '2 + �'3
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h)An(p1 . . . pn) = 3�v
nX

n1,n2

�nn1+n2

X

P
An1(p

(1)
1 , . . . , p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)

+�
nX

n1,n2,n3

�nn1+n2+n3

X

P
An1(p

(1)
1 . . . p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)An3(p
(3)
1 . . . p(3)n2

)

Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

An(p1 . . . pn) = An + Mn E
kin
n := An + Mn n " ,

" =
1

nMh
E kin

n =
1

n

1

2M2
h

nX

i=1

~p 2
i .

In the non-relativistic limit we have " ⌧ 1.

        Can now integrate over the phase-space

Above the n-particle thresholds:  
solution of the recursion relations



c) The main idea of the semi-classical set-up:

Rn(E) is the probability rate for a local operator O(0) to create n particles of
total energy E from the vacuum,

Rn(E) =

Z
1

n!
d�n h0| O

† S† PE |nihn|PE SO |0i

PE is the projection operator on states with fixed energy E.

O = ej h(0) ,

and the limit j ! 0 is taken in the computation of the probability rates,

Rn(E) = lim
j!0

Z
1

n!
d�n h0| e

j h(0)† S† PE |nihn|PE S ej h(0) |0i .

Note: non-dynamical (non-propagating) initial state O|0i.
The semi-classical (steepest descent) limit:

� ! 0 , n ! 1 , with �n = fixed , " = fixed .

Evaluate the path integral in this double-scaling limit.  
n enters via the coherent state formalism.

• DT Son1995
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c) Semi-classical approach for computing the rate R(1->n,E)
• DT Son1995

1. Solve the classical equation without the source-term,

�S

�h(x)
= 0

by finding a complex-valued solution h(x) with a point-like singularity at
the origin xµ = 0 and regular everywhere else in Minkowski space.

2. Impose the initial and final-time boundary conditions,

lim
t!�1

h(x) = v +

Z
d3k

(2⇡)3/2
1p
2!k

ak e
ikµx

µ

lim
t!+1

h(x) = v +

Z
d3k

(2⇡)3/2
1p
2!k

⇣
bk e

!kT�✓ e�ikµx
µ

+ b⇤k e
ikµx

µ
⌘
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1.

2.

3. Compute the energy and the particle number using the t ! +1 asymp-
totics of h(x),

E =

Z
d3k !k b

⇤
k bk e

!kT�✓ , n =

Z
d3k b⇤k bk e

!kT�✓ .

At t ! �1 the energy and the particle number are vanishing. The energy
is conserved by regular solutions and changes discontinuously from 0 to E
at the singularity at t = 0.

4. Eliminate the T and ✓ parameters in favour of E and n using the expres-
sions above. Finally, compute the function W (E, n)

W (E, n) = ET � n✓ � 2ImS[h]

and thus determine the semiclassical rate Rn(E) = exp [W (E, n)]

c) Semi-classical approach for computing the rate R(1->n,E)
• DT Son1995
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c) Semi-classical approach for computing the rate R(1->n,E)

In practice: Match the two branches of the solution h1(⌧, ~x) and h2(t, ~x) on a
complexified time surface ⌧ = ⌧0(~x).

h1(⌧, ~x) and h2(t, ~x) are finite regular solutions with boundary conditions

lim
⌧!+1

h1(⌧, ~x) � v = 0

lim
t!+1

h2(t, ~x) � v =

Z
d3k

(2⇡)3/2
1p
2!k

⇣
bk e

!kT�✓ e�ikµx
µ

+ b⇤k e
ikµx

µ
⌘
.

The Euclidean action of the complete solution h(x) along our complex-time
contour is obtained by extremizing the integral

SEucl[⌧0(~x)] =

Z
d3x

"
�
Z ⌧0(~x)

+1
d⌧ LEucl(h1) �

Z 0

⌧0(~x)
d⌧ LEucl(h2) � i

Z 1

0
dtL(h2)

#

over all surfaces ⌧ = ⌧0(~x) (containing the origin).

• DT Son1995
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c) Semi-classical approach for computing the rate R(1->n,E)

2 Son’s formalism

The classical solution describing the generating function of tree-level amplitudes on multi-
particle mass thresholds is given by

hcl(t) = v

✓
1 + z0 eiMht/(2v)

1� z0 eiMht/(2v)

◆
. (2.1)

We now perform the Wick rotation from the real Minkowski time t to the Euclidean time
tEucl = it. To use the same notation for the imaginary time variable as in [4] we will use the
variable ⌧ defined as

⌧ := � tEucl = � it . (2.2)

The sign convention in (2.2) where ⌧ is identified with the negative of the Euclidean time,
implies that the early time t ! �1 corresponding to the incoming states maps to ⌧ ! +1.
In this limit the classical solution approaches the vacuum hcl ! v with exponential accuracy,
i.e. the corrections are O(e�Mh⌧ ).

In terms of the Wick rotated time variable tau, the classical solution (2.1) corresponds to a
singular domain wall,

hcl(⌧) = v

 
eMh(⌧�⌧1)/2 + e�Mh(⌧�⌧1)/2

eMh(⌧�⌧1)/2 � e�Mh(⌧�⌧1)/2

!
= v cotanh

✓
Mh

2
(⌧ � ⌧1)

◆
. (2.3)

3 Thin wall critical bubbles
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with the ⌧1 parameter ⌧1 = 1
Mh
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�
giving the location of the solution in time.

The expression on the right hand side of (2.3) has a straightforward interpretation as a
singular domain wall located at ⌧ = ⌧1 that separates two domains of the field h(⌧, ~x). The
domain on the right of the wall ⌧ � ⌧1 has h ⇠ +v, and the domain on the left of the wall,
⌧ ⌧ ⌧1, is characterised by h ⇠ �v. The field configuration is singular at the position of the
wall, ⌧ = ⌧1, for all values of ~x, i.e. the singularity surface is flat. The thickness of the wall is
set by 1/Mh.
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c) Semi-classical approach for computing the rate R(1->n,E)
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with the ⌧1 parameter ⌧1 = 1
Mh

log
�

z0
2v

�
giving the location of the solution in time.

The expression on the right hand side of (2.3) has a straightforward interpretation as a
singular domain wall located at ⌧ = ⌧1 that separates two domains of the field h(⌧, ~x). The
domain on the right of the wall ⌧ � ⌧1 has h ⇠ +v, and the domain on the left of the wall,
⌧ ⌧ ⌧1, is characterised by h ⇠ �v. The field configuration is singular at the position of the
wall, ⌧ = ⌧1, for all values of ~x, i.e. the singularity surface is flat. The thickness of the wall is
set by 1/Mh.
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Using the thin-wall bubble solution in the �n � 1 limit we get

1

�
g(�n) := �W (E, n;�) =
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' 0.854n
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W (E, n;�) = W (E, n;�)tree � 2nMh⌧1 � 2(SEucl[⌧0(x)]� SEucl[0])
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Here focus on a class of observables which have no tree-level contributions

At LHC energies effects of Higgsplosion are small (next slide). 

However O(1) effects can be achieved for these loop-induced  
processes if the interactions are probed close to ~ 2E*.

• VVK, J Reiness, M Spannowsky, P Waite 1709.08655
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