——

b _‘v— — — a

December 11, 2017

e A KT T T

HIggsplosion
Valya Khoze
IPPP Durham

« VWK & Spannowsky 1704.03447, 1707.01531 e VVK 1705.04365
* VVK, Reiness, Spannowsky, Waite 1709.08655
* & with Scholtz & Spannowsky — to appear



Before the Higgs discovery, massive Yang-Mills theory violated perturbative unitarity
— problem with high-energy growth of 2 -> 2 processes

Discovery of the (elementary) Higgs made the SM theory self-consistent

The Higgs brings in the Hierarchy problem: radiative corrections push the Higgs

mass to the new physics (high) scale: 9

my m% + dm?

new

In this talk: consider n~100s of Higgs bosons produced in the final state n lambda
>> 1. Investigate scattering processes at ~ 100 TeV energies.

HIGGSPLOSION: n-particle rates computed in a weakly-coupled theory can become
unsuppressed above critical values of n and E. Perturbative and non-perturbative
semi-classical calculations. n! ~ exponential growth with n or E. (Scale n~E/m).

A new unitarity problem — caused by the elementary Higgs bosons — appears to
occur (?) for processes with large final state multiplicities n >> 1

HIGGSPLOSION offers a solution to both problems: it restores the unitarity of high-
multiplicity processes and dynamically cuts off the values of the loop momenta
contributing to the radiative corrections to the Higgs mass.



Organisation of the talk:

1. main part

Main idea and simple expressions for n-point amplitudes and rates

Interpretation of tree-level results and inclusion of quantum effects:
loops and semiclassical methods. Higgsplosion and Higgspersion.

Some phenomenology / inc. future colliders => Summary

2. INn more detall (depending on time)

Full propagator & Higgsplosion/Higgspersion

The semi-classical approach for computing quantum effects

Effects of Higgsplosion on Precision Observables



Compute 1 -> n amplitudes @LO with non-relativistic final-state momenta:

see classic 1992-1994 papers:
Brown; Voloshin;

Argyres, Kleiss, Papodopoulos
Libanov, Rubakov, Son, Troitski

more recently: VVK 1411.2925
2 _ A
4

prototype of the SM Higgs
in the unitary gauge

= %(@Lh) (h2 — p2)?

Tree-level 1* — n amplitudes in the limit ¢ — 0 for any n are given by

n—1

A 2 7 I n
—| n! . _pe — 2
An(p1, ... D) = n! (QM,%) (1 51e P 15+(’)(5 ))
v

. ..'. 1 in ]- ]- = N
factorial growth amplitude on the n-particle threshold € = = B =~ W7 izzlpf
Kinetic energy per particle per mass

In the large-n-non-relativistic limit the result is

A 2 7
) exp [—gne:] , n— o0, € =0, ne = fixed



Can now integrate over the n-particle phase-space

The cross-section and/or the n-particle partial decay I,

1
Fn(s) — d(I)n — |Ah*—>n><h’2
n!

The n-particle Lorentz-invariant phase space volume element

n n d3p
. 4 (4 J
/d(I)n — (27‘-) 5 )(Pln — ij) H/ (27.‘.)3 2]90 ’

in the large-n non-relativistic limit with ne; fixed becomes,

1 [/ M2\" 3
O, ~ ( h) exp [_n (logg—h + 1) + "eh + O(nei)]

2 2 37T 4

/n

Son 1994:
Libanov, Rubakov, Troitskii 1997; more recently: VVK 1411.2925



* The n! growth of perturbative amplitudes is not entirely surprising: the number of
contributing Feynman diagrams is known to grow factorially with n. [In scalar QFT
there are no partial cancellations between individual diagrams (unlike QCD).]

* Important to distinguish between the two types of large-n corrections:

(a) present case where the leading-order tree-level contribution to the 1*->n Amplitude
grows factorially with the particle multiplicity n of the final state.

(b) higher-order perturbative corrections to some leading-order quantities
xKk*k
* These amplitudes were first studied in the 90s in scalar QFTs

* But now it is realised that the characteristic energy scale for EW applications starts
in the 50-100 TeV range. FCC would provide an exciting challenge to realise this in
the context of the multi- Higgs and Massive Vector bosons production in the SM.



Contrast asymptotic growth of higher-order corrections in
perturbation theory with the ~n! contributions to Gamma_n(s)

Not the same types of beasts

It is the decay width Gamma_n(S) which is the central object of interest

and the driving force of Higgsplosion.
/



Contrast asymptotic growth of higher-order corrections in
perturbation theory with the ~n! contributions to Gamma_n(s)
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For Gamma_n(EA2) we'll find this

Not the same types of beasts



Perturbative as well as semi-classical calculations result in the
exponential form for the n-particle width Gamma ~ exp|[F_holy_grail]

« Libanov, Rubakov, Son, Troitsky; Son: 1994-1995

In the non-rel. limit for perturbative Higgs bosons only production we obtained:

bare cross-section AN 3n c 25
[ignoring the width I'y(s) o< exp [n (log — — 1) + — (log — + 1) — — ns]
effect for now] 4 2 3T 12

More generally, in the large-n limit with An = fixed and ¢ = fixed, one expects

1
[',(s) X exp [X Fhg (An,e)

|

le.g. Libanov, Rubakov, Troitsky review 1997|

where the holy grail function Fj, . is of the form,

1 AN
X Fh.g.()\na 5) — T (fO()‘n) + f(E))
In our higgs model, i.e. the scalar theory with SSB,
AN
fo(An) = log Vi 1 at tree level
3 € 25
2 (log — e 1
fle) — 5 (log 37T—|—1) 5 € fore <

9



Can also include loop corrections to amplitudes on thresholds:

The 1-loop corrected threshold amplitude for the pure n Higgs production:

¢t with SSB: AL oo — 1 (2)1 - (1 +n(n - 1)—\/@)

1—n 87T

There are strong indications, based on the analysis of leading singularities of the
multi-loop expansion around singular generating functions in scalar field theory,
that the 1-loop correction exponentiates,

Libanov, Rubakov, Son, Troitsky 199/

Ain = AT, x exp [BAn? + O(An)]

in the limit A\ — 0, n — oo with An fixed. Here B is determined from the
1-loop calculation (as above) — Smith; Voloshin 1992): B_ L V3

47
foOm) = log2 —1 4an V3 L o0m)?
4 47
3 g 25
f(€) — 5 (lOg 3—7_‘_ 1) — E E fOI‘g <K 1

10
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Explosive growth of 1->n process

Ro(s) = —

_ 2
= /dﬂn\/\/l(l L)

A 3 25
R(A\;n,e) = exp |n log—;g-—-l —F-;g-(k¥;:2—+—1) — —nE
4 2 3T

hh

Extreme energy dependence for 1* -> n cross section
including 1-loop result reduces ‘ignition’ scale

tree
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loo
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h
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Really need to switch to the regime of Ialrrlwbda n>>1

E(TeV)




Was argued that these results can be used to assess what
collider energy needed to test where perturbation theory
becomes strong

- higgs br&hc\n'\\ns
mm‘?‘ \n/ ! / | ! ! L | ! ' ' | ' ' | V ! J |
O % 1L+ 14TeV o 25TeV x 35TeV |
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using the 1-loop improved expression L. A SR SO AR B L
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[in gluon fusion]

Degrande, VVK, Mattelaer ‘16

12 number of Higgs



Semi-classical approach for computing the rate R(1->n,E)
e DT Son1995

Multi-particle decay rates I';,, can also be computed using an alternative semi-
classical method. This is an intrinsically non-perturbative approach, with no
reference in its outset made to perturbation theory.

The path integral is computed in the steepest descent method, controlled by
two large parameters, 1/\ — oo and n — oo.

A—0, n—oo, with A =fixed, e = fixed.

The semi-classical computation in the regime where,
n =fhxed <1, e=fixed<1,

reproduces the tree-level perturbative results for non-relativistic final states.

Remarkably, this semi-classical calculation also reproduces the leading-order
quantum corrections arising from resumming one-loop effects.

13



Semi-classical approach for computing the rate R(1->n,E)
['h(s) x R(\;n,e)

The semiclassical approach is equally applicable and more relevant to the real-
isation of the non-perturbative Higgsplosion case where,

An=fxed >1, e=fixed<K1.

This calculation was carried out for the spontaneously broken theory with the

result given by, VWK 1705.04365

AT AN 1 3 £ 25
Rp(A;n,e) = exp [T (logz + 0.85VAn + 5 + §lc)g3—7T — Es)] :

Higher order corrections are suppressed by O(1/v/An) and powers of ¢.

14



Thus we have computed the rate R in the large lambda n limit:

using the semi-classical approach and the thin-wall approximation

VVK 1705.04365 R = exp [A;L <log)f +13.02 Z—: — 1+ g(loggiﬂ —|—1> — ﬁe)]
An > 1 small ¢
101 : | | | | | | — | | {
' E/M=205
106§ E
E/M=200
100 - |
. ' Higgsplosion realised
E/M=195 at large lambda n
0.01 »
107 E/M=190 :
100 120 140 160 180

VVK & Spannowsky 1704.0344 n n < Nmax = E/Mj,
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Include self-energy

p% —m? — ReX(p?) + imp,I'(p?)
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VVK & Spannowsky 1704.0344
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Summary of the main idea

The Dyson propagator (continued to Euclidean space) is,

d* 1 . .
AR(ZCl,mz) — <O’gb($1)¢(aﬁ2)’0> — /(27‘_})94 p2+m2-|-2R(p2) GZPOAT—F’LPAQZ.

When the theory enters the Higgsplosion regime, the self-energy undergoes a
sharp exponential growth,

0 : for p? < E?
oo : for p? > E?

Sr(p°) ~ {

The loop momentum integral becomes cut off by X outside the ball of radius F

d4p 1 : CoA =
A (1 T _ / epoAT + ipAZX
R( 1 2) 2 < 2 (27_‘_)4 p2 4 m2

1/|Ax]? : for 1/E, < |Az| < 1/m
E? . for |[Azx| S 1/E, |

17



Summary of the main idea

A conventional wisdom: in the description of nature based on a local QFT, one
should always be able to probe shorter and shorter distances with higher and
higher energies.

Higgsplosion is a dynamical mechanism, or a new phase of the theory, which
presents an obstacle to this principle at energies above F.,.

E, is the new dynamical scale of the theory, where multi-particle decay rates
become unsuppressed.

Schematically, £, = C %, where C is a model-dependent constant of O(100).

This expression holds in the weak-coupling limit A — 0.

18



Higgsplosion

At energy scales above F, the dynamlcs of the System 1S Changed
1. Distance Scales belovv ]:U| < 1 / E cannot be resolved in interactions:
2. UV divergences are regulated;

3. The theory becomes asymptotically safe;

4. And the Hlerarchy problem of the Standard Model is therefore absent.

Con81der the scahng behav1our of the propagator of a massive Scalar partlcle

m2e~™zl . for |z| > 1/m
A(x) := (0|T(¢(x) ¢(0))|0) ~ < 1/|z|?  for 1/E, < |z| < 1/m
E? . for |x| S 1/F,

where for |x| < 1/F, one enters the Higgsplosion regime.

This is a non-perturbative criterium. Can in principle be computed on a lattice.

19



Higgsplosion

Loop integrals are effectively cut off at E, by the exploding width I'(p?) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k? ~ m? << E2.

The width of the propagating degree of freedom becomes much greater than its
mass: 1t is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle
quanta of the same field ¢.

VVK & Michael Spannowsky 1704.03447, 1707.01531

20



Asymptotic Safety

For all parameters of the theory (running coupling constants, masses, etc):

—— Higgsplosion '
---- No Higgsplosion S

UV fixed point

o




Higgsploding the Hierarchy problem

X=heavy state

1u 1.9 w2 AP 2,9 2 I [
EX — 58 X@MX — iMXX — TX h* — /LXh _!;_-._ A \\ P

e T S—

d*p 1 E?

X Ap —25 Ef <K )\]D]W2 .
1674 p2 + M2 + Yx(p?) M2 X

AM7 NAP/

Due to Higgsplosion the multi-particle contribution to the width of
X explode at p® = s« where V5« =~ O(25)TeV

~fp It provides a sharp UV cut-off in the integral, possibly at s. < My

Hence, the contribution to the Higgs mass amounts to

S
For T(s,)~ My at s, <My = AM; x \p M’; s, < Ap M%

X

4 4
and thus mends the Hierarchy problem by (]\/E) ~ (25Tev)

22



Prospects of direct observation of Higgslposion

Vector boson fusion at high-energy pp colliders (FCC)

energy excess over+/Sx carried away by jets

quark pdfs v

A
> R\ /
q Z/W "O '¢"v
'\/ S* ¢"’ ¢""¢V | | | |
Vs’ et [ n non-relativistic Higgses
A . . .
ZIW - Higgsplosion at 1/ S«
< . Se o
q : \A E/M=205
quark pdfs

E/M=200

Fn/M 100

E/M=195

E/M=190

e = 2 — ReS(s.) + imnT(s.) P 4

Propagator with Higgspersion at 1/ Sx

23



Vector boson fusion at high-energy pp colliders (FCC)

Higgsplosion at pp colliders

Higgsplosion at 100TeV Collider

1000 —r—————————— . . 6; ] ' ' ' ;
100 | 5 ‘
- 10F 4 : B s N
&, = | ]
- 1F = * ;
: g °| | |
& 0.100 | g | . :
s 2f ’ ;
0010} [ . ]
0.001 | ' ;
S0 o 100 l 150 l 200 ’ 140 o 142 A 144 l 146 l 148 .
51"2[TeV] Number of Higgses in the final state
. Higgsplosion at pp Colliders
using pyjer > 40 GeV ool — - 1 - 1 f
« ° * o 4 : s"%= 200 TeV
VVK, J Scholtz, M Spannowsk ® N ! .
, , M op N K S| ] s'%= 150 TeV
- ' s * T T e .
2 J N S ’ s"%= 120 TeV
py a a
A : i & 1L 4 : < $ 4 1z
preliminary: no Higgs 2 I S A §"“= 100 TeV
decays into SM d.o.f ° v ¥
. y Y s"%= 80 TeV
included; 0.10 | | .
& no vector bosons in > o o i o s"=860TeV
flnal States yet 0 01 :‘ M 1 M 1 M M M 1 M M M 1 1 1 ..l'. 1 S1f2= 40 Tev
140 142 144 146 148

Number of Higgses in the final state



sSummary

The Higgsplosion / Higgspersion mechanism makes theory UV finite (all
loop momentum integrals are dynamically cut-off at scales above the
Higgsplosion energy).

UV-finiteness => all coupling constants slopes become flat above the
Higgsplosion scale => automatic asymptotic safety

[Below the Higgsplosion scale there is the usual logarithmic running]

1. Asymptotic Safety

2. No Landau poles for the U(1) and the Yukawa couplings

3. The Higgs self-coupling does not turn negative => stable EW vacuum

No new physics degrees of freedom required — very minimal solution
25



Now In more gdetall

* Full propagator & Higgsplosion/Higgspersion
* All tree-level amplitudes from classical solutions

* [he semi-classical approach for computing
guantum effects to Gamma_n at large lambda n

* Effects of Higgsplosion on Precision Observables

20



a) The Propagator and Higgspersion basics

In a generic QFT model with a massive scalar consider:
1. The Feynman propagator of ¢ is the 2-point function,
1
P2 —m2 — (p?) +ic’

Alp) = / d*z e (0T (¢(z) $(0)) [0) =

2. The self-energy 3 (p?) is the the sum of all 2-point (1PI) diagrams,

—iS(p?) = Y —(1PI) — .

In perturbation theory,

@)

. . . . n
) i ) )
pQ—m%—Z(pQ) pQ—m% pQ—m% Z( pQ—mg

n=1

But the expression for the full quantum propagator on the left is valid
no-perturbatively.

3. The physical (or pole) mass m is defined as the pole of the quantum
propagator,

m* —mg —X(m?) =0, or m®=mj + Z(m?).

27



a) The Propagator and Higgspersion basics

4. The field renormalisation Z, is determined from the slope of X(p?) at m?,

Using the definition of the pole mass and the renormalisation constant,

) iZ,
AP = T = 2,507 - Sn?) — S )P — m?)]

5. The renormalised quantities Ar(p) and X z(p?) are,

Ar(p) = Z, Y Ap),
Srp) = Zy (B(?) — S(m?) - ' (m?)(p? —m?)) .

Hence, the result for the renormalised propagator in terms of all finite
quantities 1is,

(

A = .
r(P) p? —m? — Yg(p?) + ie

28



a) The Propagator and Higgspersion basics

6. The optical theorem provides the physical interpretation of the Im -,
ImYg(p°) = —mT(p?),

with the decay width being determined by the partial widths of n-particle
decays at energies s > (nm)?,

=érn<s>, La(s) = 5 |

7. The origin of Higgsplosion is that I';,(s) grows factorially with n in the
large-n limit, —|M,,|? ~ nIA™ ~ e” log(An)  When n scales linearly with
the available energy, n ~ \/s/m, this translates into the exponential de-
pendence of the decay rate I'(s) on /s.

TIM(1 = n)|?.

8. Hence in a Higgsploding theory, the propagator,

1

A —
R(P) p? —m? — ReXgr(p?) + imI'(p?) + i€’

is effectively cut off at p* > E? by the exploding width T, (p?).

29



a) The Propagator and Higgspersion basics

6. The optical theorem provides the physical interpretation of the Im >,
Im¥g(p?) = —mT(p?),

with the decay width being determined by the partial widths of n-particle

decays at energies s > (nm)?,

The driving force of Higgsplosion is the partial width, i.e. the 1-> n particle decay width
Gamma_n(pA2) at large p/A2. It gives rise to the Imaginary part of the self-energy.

We don’t know much about the Real part from first principles, it could be small or large, but
even if large, it cannot cancel the Imaginary part contribution. [Note that one cannot use the
usual dispersion relation to relate Real and Imaginary parts as cannot close contour at infinity]

8. Hence in a Higgsploding theory, the propagator,

1
p? —m? — ReXgr(p?) +|imI'(p?) |+ i€’

Agr(p) =

is effectively cut off at p* > E? by the exploding width I',,(p?).

30



b) Tree-level n-point Amplitudes on mass threshold

The amplitude A;_,,, for the field ¢ to create n particles in the ¢* theory,

£,(6) = 5 (00) — M6 — 06 + 0.

is derived by applying the LSZ reduction technique:

(nl(a)l0) = lim T[ Jim [ dayersos(ar? - g} (Ooue|6()[0mm),
L

p—0

Tree-level approximation is obtained via (Oout|@(2)|0in) , — @c1(z) where ¢e(x)
is a solution to the classical field equation.

On mass threshold limit all outgoing particles are produced at rest, p; = 0
and we set all p; = (w, 0) and p(z) = p(t) = po(w) e™*. Hence,

J J J
M? — p? >y (M? — w? = ,
Mgy M TR T )
twt
2(t) = po(w) € = 29 e, 2y = finite const

M2 — w2 — e ’



b) Tree-level amplitudes in phiN4 on mass threshold

Brown 9209203

The generating function of tree amplitudes on multiparticle thresholds is a clas-
sical solution. It solves an ordinary differential equation with no source term,

dip+ M?¢p+ Xp® = 0.

The solution contains only positive frequency harmonics, i.e. the Taylor expan-
sion in z(t),

¢cl(t) = Z(t) 4 Zdn z(t)n, 2= 2 675Mt
n=2

Coefficients d,, determine the actual amplitudes by differentiation w.r.t. z,

8 n
A, = (—) Dcl = nld, Factorial growth!!
0z =0
2(1) A\ T
a(t) = A, = nl
ball) = =50 A (SMQ)

32



b) Tree-level amplitudes for a scalar theory with SSB

Lagrangian for the scalar field: \

L(h) = % () = 7 (1* - v?)?

The classical equation for the spatially uniform field h(t),

prototype of the Higgs
In the unitary gauge

d?h = —Ah* 4+ M* h,
has a closed-form solution with correct initial conditions hyy = v+ 2+ ...

z(t) ’
1 =55

) = 203 (0) 4, =3 ()

etht = 2 el 22 vt

hcl(t) = v

where z(t) = zg

i.e. with dg =1/2 and all d,,>1 = 1.

B n
A1—>n — (@) hcl

Factorial growth of large-n scalar amplitudes on mass thresholds: E=nm
33

= n! (20) " Factorial growth

L. Brown 9209203

z=0



Similar story also holds in the Gauge-Higgs theory for tree-level
amplitudes on multi-particle mass thresholds VVK 1404 4876

These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:

oot - S e (G (5)

i
Palzw?) = w ;};an% ( ) (1(02&:)};)]6’

where d(n, 2k) and a(n,2k) are determined from the iterative solution of EOM.
By repeatedly differentiating these with respect to z and w® for the Higgs
to n Higgses and m longitudinal Z bosons threshold amplitude we get,

Ah —=nxh+mx Zr) = 20)' """ nlmld(n,m),

and for the longitudinal 7Z decaying into n Higgses and m + 1 vector bosons,

1
(QU)n—I—m

AZ, > nxh+(m+1)x Zp) = n!(m 4+ 1) a(n,m).

Factorial growth reemains (in n and in m) !

34



Tree-level Amplitudes above mass thresholds are determined by
recursive solutions to classical equations — now include the
Kinematic dependence

— ("0 + M) p = 3 p® + Ag?

This classical equation for ¢(z) = h(x) — v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P2~ M2 Au(pr-..pn) = 330 Y 0% 0 > A (08, o) A, (017 p2)
P

ni,n2

+A Z 5Z1+n2+n3 Z‘Anl (pgl) " 'p'l(111)) “An2 (pf) e p"(%QQ)) 'An3 (pgg) o p7(7“32))
P

ni,n2,n3

Away from the multi-particle threshold, the external particles 3-momenta p; are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to EX" (Galilean Symmetry),

An(plpn) — -An"_ MnEfrl;,{in ‘= An—l_ Mnnga

In the non-relativistic limit we have ¢ < 1.

35



Above the n-particle thresholds: co 1 prn _ Z 22
. . . 2
solution of the recursion relations n My n 2M

l 7 1 n
A =nl 2" (1 —=ne — = e+ 0O ).
prcopn) = (o) (1= fne = T O
An important observation is that by exponentiating the order-ne contribution,
one obtains the expression for the amplitude which solves the original recursion
relation to all orders in (ne)™ in the large-n non-relativistic limit,

7
An(pl...pn):n!(%)l”exp[—gnel, n—oo, ¢—0, ne=fixed.

Simple corrections of order ¢, with coeflicients that are not-enhanced by n are
expected, but the expression is correct to all orders ne in the double scaling
large-n limit. The exponential factor can be absorbed into the z variable so
that

Z (e ) ’ .+ VVK 1411.2925

remains a solution to the classical equation and the original recursion relations.

Can now integrate over the phase-space

36



c) The main idea of the semi-classical set-up:
e DT Son1995

R, (FE) is the probability rate for a local operator O(0) to create n particles of
total energy F from the vacuum,

1
Ro(E) — / i, (00" 5" Peln){n| P S 00

Pg is the projection operator on states with fixed energy E.
O = MO
and the limit 7 — 0 is taken in the computation of the probability rates,

1 . .
Ro(E) = lim | —d®, (0]e/MOT St Poln)in| P S el ™ |0) .
i—=0 | n!

Note: non-dynamical (non-propagating) initial state O|0).
The semi-classical (steepest descent) limit:

A—0, n—o00, with An =fixed, e = fixed.

Evaluate the path integral in this double-scaling limit.
n enters via the coherent state formalism.



c) Semi-classical approach for computing the rate R(1->n,E)
e DT Son1995

1. Solve the classical equation without the source-term,

0.5
oh(x)

by finding a complex-valued solution h(x) with a point-like singularity at
the origin * = 0 and regular everywhere else in Minkowski space.

2. Impose the initial and final-time boundary conditions,

lim  h(x) + / Tk ot
im r) = v ax e M
t— —00 (27‘(‘)3/2 \/Zwk K
k1 . |
. . wkT—0 _—ik,x" * ik, xt
tlgrnoo h(z) = v+ / PSRN (bke e + b e )
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c) Semi-classical approach for computing the rate R(1->n,E)
e DT Son1995

3. Compute the energy and the particle number using the ¢t — 400 asymp-
totics of h(x),

E = /d3k wi b b e <=0 = /d?’k by, by e“x1 0

At t — —oo the energy and the particle number are vanishing. The energy
is conserved by regular solutions and changes discontinuously from 0 to E
at the singularity at t = 0.

4. Eliminate the T and 6 parameters in favour of £ and n using the expres-
sions above. Finally, compute the function W (FE,n)

W(E,n) = ET — nf — 2ImS|h]

and thus determine the semiclassical rate R, (F) = exp |[W(FE,n)]
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c) Semi-classical approach for computing the rate R(1->n,E)
e DT Son1995

In practice: Match the two branches of the solution hq(7,Z) and hs(t,Z) on a
complexified time surface 7 = 7(Z).

hi(1,Z) and hg(t, ) are finite regular solutions with boundary conditions

lim hy(r, %) —v = 0
T—>+00
k1 . .
: - _ weT—60 —ik,z" * ikt
tlgrnoo ho(t, %) — v / COEEN (bke e + b e ) .

The Euclidean action of the complete solution h(x) along our complex-time
contour is obtained by extremizing the integral

) To(f) 0 @)
Suellro(@)] = / P |- / dr Lnet(hy) — / dr Lrnat(hy) — i / dt £(hy)
0

—I—OO TO (f)

over all surfaces 7 = 79(¥) (containing the origin).
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c) Semi-classical approach for computing the rate R(1->n,E)

The matching surface N T
in Imaginary time The time-evolution
containing the singularity | contour of h(t,x)
of h at the origin (t, x)=0 in complex time
> T 0 .
Y
j
- Too To(f)
NG T

81

The matching surface ...the domain wall of thin-wall bubbles
as the domain wall of radius r> r_0 (critical radius)



c) Semi-classical approach for computing the rate R(1->n,E)

W(E,n; \)tree

(o) + 1)
fo(An) = log (Z) —1

. Too " 1 4 e~ Mn(T=7e) 5
h(1,%) = v (1 S 7y ey + 6h(T, )

W(E,n;\) = W(E,n; \)"™° — 2nMp7o — 2(Sguc|m0(2)] — SEucl0])

The quantum correction to the tree-level result W'ee is

1

5 g()\n) — _thToo — Re(SEucl [7_0(33)] — SEUCI[O])

— th’Too| — Re(SEucl[TO(x)] — SEucl[O])
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c) Semi-classical approach for computing the rate R(1->n,E)

W(E,n; )" = fo(An) + f(e))

5
o) = 1os(21)

[@leso = @y = 5 (log () +1)

1 + e—Mh(T—TOO)
- v (1 — e Mp(T—7)

) + Sh(r, 7)

W(E,n;\) = W(E,n; \)"™° — 2nMp7o — 2(Sguc|m0(2)] — SEucl0])

Using the thin-wall bubble solution in the An > 1 limit we get

1 s 2 T(5/4) v
< (An) BTG S 0.854 nvVAn

1
Xg()\n) = AW (E,n; \) =

VVK1705.04365
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d) Effects of Higgsplosion on Precision Observables

* VVK, J Reiness, M Spannowsky, P Waite 1709.08655
Here focus on a class of observables which have no tree-level contributions

g 8
14 t
h h
9 v/Z
g W y
W
h h
______________ 7
v/ Z v/

At LHC energies effects of Higgsplosion are small (next slide).

However O(1) effects can be achieved for these loop-induced
processes If the interactions are probed close to ~ 2E”*.
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