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SM: Unitarity, Hierarchy and HIGGSPLOSION

Before the discovery of the Higgs boson, massive Yang-Mills theory
violated unitarity — problem with high-energy growth of 2 -> 2 processes

Discovery of the (elementary) Higgs made the SM theory self-consistent

But, the Higgs brings in the Hierarchy problem: radiative corrections push

the Higgs mass to the new physics (high) scale: 5

m? ~ mj + dm?

new

In this talk: consider n~100s of Higgs bosons produced in the final state
n x lambda >> 1. Investigate scattering processes at ~ 100 TeV energies

A new unitarity problem — caused by the elementary Higgs bosons —
appears to occur for processes with large final state multiplicities n >> 1

HIGGSPLOSION offers a solution to both problems: it restores the unitarity
of high-multiplicity processes and dynamically cuts off the values of the
loop momenta contributing to the radiative corrections to the Higgs mass.
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HIGGSPLOSION and HIGGSPERSION

At high energies (100 TeV range), production of multiple (i.e. 100’s) of
Higgs and massive Vector bosons becomes kinematically possible

HIGGSPLOSION: Cross-sections computed in a weakly-coupled theory
become unsuppressed above certain critical values of n and E.
Perturbative and non-perturbative semi-classical calculations.

n! ~ exponential growth with n or E. Scale n linearly with energy n~E/m.
This also applies to partial decay widths of highly-energetic states

But there are no violations of perturbative unitarity due to the related
HIGGSPERSION mechanism [exponential growth is tamed above E*]

[Similar considerations also apply to high-multiplicity longitudinal W and Z
production]



HIGGSPLOSION and HIGGSPERSION
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Summary of the main idea

A conventional wisdom: in the description of nature based on a local QFT, one
should always be able to probe shorter and shorter distances with higher and
higher energies.

Higgsplosion is a dynamical mechanism, or a new phase of the theory, which
presents an obstacle to this principle at energies above E,.

E., is the new dynamical scale of the theory, where multi-particle decay rates
become unsuppressed.
Schematically, £, = C %, where C is a model-dependent constant of O(100).
This expression holds in the weak-coupling limit A — 0.



Summary of the main idea

The Dyson propagator (continued to Euclidean space) is,

d* 1 . o
AR(azl,xg) — <O‘¢($1)¢(CI?2)’O> — /(27_‘_2)?4 p2—|—m2—|—2R(p2) epoAT—F’LPAZE.

When the theory enters the Higgsplosion regime, the self-energy undergoes a
sharp exponential growth,

0 : for p? < E?
0o : for p* > E?

Sr(p?) ~ {

The loop momentum integral becomes cut off by > outside the ball of radius E,

d4p 1 : CoA =
A (1 T _ / ezpoAT—l—sz:c
R( 1 2) P2 < 2 (27’(’)4 p2 4 m2

1/|Az|? : for 1/E, < |Az| < 1/m
E? . for |Ax| < 1/F, |



Summary of the main idea

Loop integrals are effectively cut off at E, by the exploding width I'(p?) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k? ~ m? << EZ.

The width of the propagating degree of freedom becomes much greater than its
mass: 1t is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle
quanta of the same field ¢.

One could say: There is a novel UV-IR connection: the UV behaviour of the theory
Is altered by the high-multiplicity production of non-relativistic (IR) bosons.



Higgsplosion

At energy scales above E, the dynamics of the system is changed:
1. Distance scales below |x| < 1/F, cannot be resolved in interactions;
2. UV divergences are regulated;

3. The theory becomes asymptotically safe;

4. And the Hlerarchy problem of the Standard Model is therefore absent.

Con31der the Scahng behav1our of the propagator of a massive scalar partlcle

m2 e~ . for |z] > 1/m
A(z) = (OIT(6(x) 6(ODI0) ~ { /a2 + for 1/E, < |a] < 1/m .
E? . for || < 1/F,

where for |z| < 1/F, one enters the Higgsplosion regime.

This is a non-perturbative criterium. Can in principle be computed on a lattice.



Asymptotic Safety

For all parameters of the theory (running coupling constants, masses, etc):

—— Higgsplosion '
----  No Higgsplosion S

UV fixed point
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Tree-level n-point Amplitudes on mass threshold

The amplitude A;_,,, for the field ¢ to create n particles in the ¢* theory,

L,(6) = 5 (06) — LM>6 — 106+ 0.

is derived by applying the LSZ reduction technique:

<Oout’¢($)|0in>p'

p—0

(nlé(x)[0) = tim | _tim / a7 (M — p?)

Tree-level approximation is obtained via (Oout|@(2)|0in) , — @c1(x) Where ¢ (x)
is a solution to the classical field equation.

On mass threshold limit all outgoing particles are produced at rest, p; = 0
and we set all p/; = (w, 0) and p(z) = p(t) = po(w) e**. Hence,

0 0 0
M? — p? s (M? — w? = ,
M5y M 50 T )
1wt
2(t) = po(w) € = 29 ", 2y = finite const

M2 — w2 — e



Tree-level amplitudes in phin4 on mass threshold

Brown 9209203

The generating function of tree amplitudes on multiparticle thresholds is a clas-
sical solution. It solves an ordinary differential equation with no source term,

d2p+ M?*¢p+ Mg = 0.

The solution contains only positive frequency harmonics, i.e. the Taylor expan-
sion in z(t),

pai(t) = 2(t) + Y dpz(t)",  z:= zgeM!
n=2

Coefficients d,, determine the actual amplitudes by differentiation w.r.t. z,

B n
Al—)n — <£> ¢Cl

Gal(t) = A1) Ai_, = nl ( A )

1— 2 2(t)? WE

= nld, Factorial growth!!
z=0
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Tree-level amplitudes for a scalar theory with SSB

Lagrangian for the scalar field: \

L(h) = % (9h)? = 7 (h* = )",

The classical equation for the spatially uniform field h(t),

prototype of the Higgs
In the unitary gauge

d2h = —Ah°> + \? h,
has a closed-form solution with correct initial conditions hyy = v+ 2+ ...

z(t) ’
1 =55

) = 203 (0) 4, =3 ()

etht = 2 el 22 vt

hcl(t) = v

where z(t) = zg

i.e. with dyp =1/2 and all d,,>1 = 1.

P n
A1—>n — (&) hcl

Factorial growth of large-n scalar amplitudes on mass thresholds: E=nm
12

= n! (20)" Factorial growth

L. Brown 9209203

z=0



« The n! growth of perturbative amplitudes is not entirely surprising: it reflects the large-n
behaviour of perturbation theory:

e [Use of classical solutions is equivalent to summing over tree-level Feynman diagrams;
the number of contributing Feynman diagrams is known to grow factorially with n]

 |Important to distinguish between the two types of large-n corrections:
(a) higher-order perturbative corrections to some leading-order quantities

(b) our case where the leading-order tree-level contribution to the 1*->n Amplitude grows
factorially with the particle multiplicity n of the final state.

« The n! growth of n-point perturbative Amplitudes persists also above the threshold =>
can integrate over n-particle phase space to obtain cross-sections

e This was studied in the 90s in scalar QFTs (Voloshin; Son; Libanov, Rubakov, Troitski; ...)

 But now realised that the characteristic energy scale for EW applications starts in the
50-100 TeV range. FCC would provide an exciting challenge to realise this in the context
of the multi- Higgs and Massive Vector bosons production in the SM.

« [Critical energy scale above which the production may be unsuppressed is ~50-100 TeV]
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Contrast asymptotic growth of higher-order corrections in
perturbation theory with the ~n! contributions to Gamma_n(s)

Not the same types of beasts
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Similar story also holds in the Gauge-Higgs theory for tree-level
amplitudes on multi-particle mass thresholds VVK 1404 4876

These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:

palzu®) = 20 i kff o) ()" (),
n (1w ® k
Lalzw?) = w ZZ”Q’“ (20) ((%)2) ,

n=0 k=0

where d(n,2k) and a(n, 2k) are determined from the iterative solution of EOM.
By repeatedly differentiating these with respect to z and w® for the Higgs
to n Higgses and m longitudinal Z bosons threshold amplitude we get,

Ah = nxh+mx Zr) = 20)' """ nlmld(n,m),

and for the longitudinal Z decaying into n Higgses and m + 1 vector bosons,

1
(2v)"F

A(Zp, > nxh+(m+1)x Zp) = n!(m+ 1)a(n,m).

Factorial growth reemains (in n and in m) !
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Tree-level Amplitudes above mass thresholds are determined by
recursive solutions to classical equations — now include the
Kinematic dependence

— ("0 + M) p = 3vp® + Ap?

This classical equation for ¢(x) = h(x) — v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P2~ M) Au(pr-..pn) = 30y 08 0 S A (01, ) A, (017 (D)
P

ni,n2

A3 B S A o) A H2) A 07 )
P

ni,n2,n3

Away from the multi-particle threshold, the external particles 3-momenta p; are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to EX® (Galilean Symmetry),

An(p1-°~pn) = A, + MnETIL{in = A, + ./\/lnne,

1 . 1 1 <
_ Ekm _ —>.2.
- th " n 2M}% ;pz

In the non-relativistic limit we have ¢ < 1.
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Above the n-particle thresholds: L pwn _ 11 S5
. . . n 2
solution of the recursion relations n My, n 2Mj —

l 7 1 n
— ] 1—n D . 2
An(p1-..pn) = nl(2v) (1 e 6n_15+(9(5 ))

An important observation is that by exponentiating the order-ne contribution,
one obtains the expression for the amplitude which solves the original recursion
relation to all orders in (ne)™ in the large-n non-relativistic limit,

7
An(pl...pn):n!(2v)1_”exp[—6n€], n—oo, €—0, ne=fixed.

Simple corrections of order e, with coeflicients that are not-enhanced by n are
expected, but the expression is correct to all orders ne in the double scaling
large-n limit. The exponential factor can be absorbed into the z variable so
that

523 n(2eF) . VWK 1411.2925

remains a solution to the classical equation and the original recursion relations.

Can now integrate over the phase-space
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Phase-space integration

n Higgs bosons & m vector bosons,
take m=0 below:

1 2
Onm = [ dPpm —— |An*Snxhtmxz. |
I

n!m)!

The n-particle Lorentz-invariant phase space volume element

_ 4c(4)(p | Pj
]:1 j:1 J
in the large-n non-relativistic limit with nej fixed becomes,

1 [/ M2\" 3n £ ne

Repeating the same steps now including vector boson emissions,

A\ 2
Onom ~ €XP [2 logd(n,m) + n (log In — 1) + m (log <93_;n> — 1)

3n Eh 3m EV 25 5 5
" (log 21 T (1og Y e, — 31
+ 5 (log . + 1) + ; (log - + 1) 75 eh 3.15mey + O(nej, + msv)]

e VVK 1411.2925
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In general: Methods based on classical solutions result in the
exponential form for the n-particle cross-section: exp[F_holy_grail]

e Libanov, Rubakov, Son, Troitsky; Voloshin; Son: 1994-1995

In the non-rel. limit for perturbative Higgs bosons only production we obtained:

bare cross-section AN 3n € 25
[ignoring the width O, X €xXp [n (log — — 1) + — (log — + 1) — — n5]
effect for now] 4 2 3T 12

More generally, in the large-n limit with A\n = fixed and ¢ = fixed, one expects

1
Opn X €XP [X Fh,g,()\n,s)] le.g. Libanov, Rubakov, Troitsky review 1997|

known function

where the holy grail function Fy, ¢ is of the form,
/ at tree level

1 AN
< Fhg O,6) = S (folAn) + £(c)
~
In our higgs model, i.e. the scalar theory with SSB, ™~ known at eps<<1
A
fo(An) = log In — 1 at tree level

3 € 29
fle) — 2(10g3 —|—1) 125 ore K
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Can also include loop corrections to amplitudes on thresholds:

The 1-loop corrected threshold amplitude for the pure n Higgs production:

$* with SSB:  AlreeHIooP 1 (9y)1-n (1 tn(n — 1)\/§A>

1—n 87T

There are strong indications, based on the analysis of leading singularities of the
multi-loop expansion around singular generating functions in scalar field theory,

that the 1-loop correction exponentiates,
Libanov, Rubakov, Son, Troitsky 199/

Ain = AT, x exp [BAn® + O(An)]

in the limit A\ — 0, n — oo with An fixed. Here B is determined from the
1-loop calculation (as above) — Smith; Voloshin 1992): B_ L V3

47
fo(dn) = log& —1 +Xn zl/—g +0O(An)?
T
3 £ 25
f(g) — 5 (lOg 3—7_‘_ ].) — Eg fOI'€ <K 1
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Semi-classical approach for computing the rate R(1->n,E)
e DT Son1995

Multi-particle decay rates I';,, can also be computed using an alternative semi-
classical method. This is an intrinsically non-perturbative approach, with no
reference in its outset made to perturbation theory.

The path integral is computed in the steepest descent method, controlled by
two large parameters, 1/\ — oo and n — oo.

A—0, n—oo, with M =fixed, ¢ = fixed.

The semi-classical computation in the regime where,
A =fhxed <1, e=fixed<1,

reproduces the tree-level perturbative results for non-relativistic final states.

Remarkably, this semi-classical calculation also reproduces the leading-order
quantum corrections arising from resumming one-loop effects.
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Semi-classical approach for computing the rate R(1->n,E)

The semiclassical approach is equally applicable and more relevant to the real-
isation of the non-perturbative Higgsplosion case where,

An=fxed >1, e=fixedK1.

This calculation was carried out for the spontaneously broken theory with the

result given by, VVK 1705.04365

AT AN 1 3 £ 25
W(im,e) = exp [ S5 (log 5F + 085V + o + Slog— — ¢ |
Rn(A;in,e) exp[)\ (og4 + 0.85 )\n+2+20g37T 125)]

Higher order corrections are suppressed by O(1/v An) and powers of ¢.
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The main idea of the semi-classical set-up:
e DT Son1995

R, (FE) is the probability rate for a local operator O(0) to create n particles of
total energy E from the vacuum,

1
Ro(E) — / i, (00" 5" Peln){n| P SO0

Pg is the projection operator on states with fixed energy F.
O = MO

and the limit 7 — 0 is taken in the computation of the probability rates,

1 . .
Ro(E) = lim | —d®, (0?7 st Poin)in| Py S el h® |0) .

7—0 n!

Note: non-dynamical (non-propagating) initial state O|0).
The semi-classical (steepest descent) limit:

A—0, n—oo, with A =fixed, e = fixed.

Evaluate the path integral in this double-scaling limit.
n enters via the coherent state formalism.



Semi-classical approach for computing the rate R(1->n,E)
e DT Son1995

1. Solve the classical equation without the source-term,

6.5
dh(x)

by finding a complex-valued solution h(x) with a point-like singularity at
the origin x# = 0 and regular everywhere else in Minkowski space.

2. Impose the initial and final-time boundary conditions,

lim h(z) +/ Tk et
11m X = v Ak € H
t——o0 (27‘(‘)3/2 v 2wy k
d°k 1 . .
. . wxT—0 _—ik,x" * ik, xt
Jm h(z) = v+ / (2732 o (e + be)
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Semi-classical approach for computing the rate R(1->n,E)
e DT Son1995

3. Compute the energy and the particle number using the t — 400 asymp-
totics of h(x),

E = /d3k wie b by ek =0y = /d3k by by e¥< 1Y

At t — —oo the energy and the particle number are vanishing. The energy
is conserved by regular solutions and changes discontinuously from 0 to F
at the singularity at t = 0.

4. Eliminate the T and 6 parameters in tavour of £ and n using the expres-
sions above. Finally, compute the function W (FE, n)

W(E,n) = ET — nf — 2ImS|h]

and thus determine the semiclassical rate R, (F) = exp |[W(E,n)]
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Semi-classical approach for computing the rate R(1->n,E)
e DT Son1995

In practice: Match the two branches of the solution hq(7,Z) and hs(t,Z) on a
complexified time surface 7 = 74(%).

hi(7, %) and ho(t, Z) are finite regular solutions with boundary conditions

lim hi(r, %) —v = 0
T—+00
k1 . |
: =\ _ wxT—0 —ik,xz" x ik, xt
dim ha(t,7) — v / o (bke e + bie ) .

The Euclidean action of the complete solution h(x) along our complex-time
contour is obtained by extremizing the integral

) To(f) 0 @)
Spuetlro(7)] = / P | — / dr Lrnat(hy) — / dr Lrna(hy) — i / dt £(hy)
0

—I—OO TO (f)

over all surfaces 7 = 79(¥) (containing the origin).
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Semi-classical approach for computing the rate R(1->n,E)

The matching surface N T
in Imaginary time The time-evolution
containing the singularity ! contour of h(t,x)
of h at the origin (t, x)=0 in complex time
> T 0 -
Y
O
- Too TO(CE)
T T

81

The matching surface ...the domain wall of thin-wall bubbles
as the domain wall of radius r> r_0 (critical radius)



Semi-classical approach for computing the rate R(1->n,E)

AN
N (fo(An) + f(e))

fo(An) = log (%) —1
5

F@leso = FEasympe = 5 (108 () +1)

T

W(E,n; A =

1 + e—Mh(T—TOO) _
= U (1 . 6—Mh(7'—'7'oo)> T 5h(77 x)

W(E,n;\) = W(E,n;\)"™° — 2nMp7ee — 2(Sguc|m0(x)] — SEuc|0])

The quantum correction to the tree-level result Wt is

1

ﬁg()\n) = —nMp7eo — Re(Stual|m0(2)] — SEua|0])

— th|7-oo| — Re(SEucl[TO(x)] — SEucl[O])
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Semi-classical approach for computing the rate R(1->n,E)

AN
N (fo(An) + f(e))

fon) = log (%”) 9

[@leso = fEyme = 5 (log (=) +1)

T

W(E,n; A =

1 + e—Mh(T—Too)
- v (1 — e~ Mp(t—7)

) + Oh(T, X)
W(E,n;\) = W(E,n;\)"™° — 2nMp7ee — 2(Sguc|m0(x)] — SEuc|0])
Using the thin-wall bubble solution in the An > 1 limit we get

! - = Loy 2 T6/M4)
L 9(n) = AW(En\) = + (n)* HETEA = 0.854 1V An

VVK1705.04365
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Thus we have computed the rate R in the large lambda n limit:

using the semi-classical approach and the thin-wall approximation

e VVK 1705.04365
R—exp[)\; <log)f—|—3.02 i—:—l—kg(logg%—l—
An > 1 small ¢
10 : | | | | | | I | | |
| E/M=205
10° ;
E/M=200
100 ¢ |
- E/M=195
0.01 .
) E/M=190
1071 * | * L& /\ | | A\
100 120 140 160 180

n n < Nmax = F/Mj,



Higgsploding the Hierarchy problem

X=heavy state

1u 1.9 2 AP 9,9 2 .— / X\\
CX:§(9 X@NX—iMXX —TX}L —/LXh _.‘a.-.—_ 5 \\ P

— — — —— — — -

d*p 1 E?
1674 p2 + M% + Xx(p?)

AM7 NAP/

Due tfo Higgsplosion the multi-particle contribution to the width of
X explode at p* = s, where /s, ~ O(25)TeV

——y It provides a sharp UV cut-off in the integral, possibly at s. < Mx

Hence, the contribution to the Higgs mass amounts to

S
For T(s,)~ My at s, <My = AM; x \p M’; s, < Ap M%

and thus mends the Hierarchy problem by (Mx
31



—ffects of Higgsplosion on Precision Observables

* VVK, J Reiness, M Spannowsky, P Waite 1709.08655
Here focus on a class of observables which have no tree-level contributions

g ol
' /
h h
g v/Z
Y W v
1%
h h
______________ p
/% g

At current energies effects of Higgsplosion are small (next slide).

However O(1) effects can be achieved for these loop-induced
processes If the interactions are probed close to ~ 2E”*.
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—ffects of
1072}
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iggsplosion on Precision Observables
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Higgsplosion Scale , E, [TeV]
.\“\.,.A_%.: aZXp — azheory ~2.90-107" |

2 E— (&
J I
a*P = 11596521807.3(2.8) - 1073 |
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Higgsplosion Scale , E, [TeV]



Prospects of direct observation of

gluon fusion at high energies

iggslposion

Results: 20 to 150 Higgs bosons @ different collider energies

11+ 14TeV o 25 TeV x 35TeV
A 50 TeV m 100 TeV

10—20 L

10-40

Cross-section (pb)

10—80

10—100 L +

| | | | | | | + | | |

. Boxes, one-loop :

20 40 60 80 100

number of Higgs

34 ¢ Degrande-VVK-Mattelaer 1605.06372
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sSummary

The Higgsplosion / Higgspersion mechanism makes theory UV finite (all
loop momentum integrals are dynamically cut-off at scales above the
Higgsplosion energy).

UV-finiteness => all coupling constants slopes become flat above the
Higgsplosion scale => automatic asymptotic safety

[Below the Higgsplosion scale there is the usual logarithmic running]

1. Asymptotic Safety

2. No Landau poles for the U(1) and the Yukawa couplings

3. The Higgs self-coupling does not turn negative => stable EW vacuum

No new physics degrees of freedom required — very minimal solution
35
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The Propagator and Higgsplosion basics

In a generic QFT model with a massive scalar consider:
1. The Feynman propagator of ¢ is the 2-point function,

7
p% —m3 — X(p?) + ie’

Alp) = / d*z e (0T (¢(z) $(0)) [0) =

2. The self-energy 3 (p?) is the the sum of all 2-point (1PI) diagrams,

—i%(p?) = Y —(1PI) — .

In perturbation theory,

oo

. . . n
) ? ) )
— + —i2(p?) ) .
pz—m%—Z(pQ) pQ—m(Q) p2—m(2) Z( p2—m(2)

n=1

But the expression for the full quantum propagator on the left is valid
no-perturbatively.

3. The physical (or pole) mass m is defined as the pole of the quantum
propagator,

m? —mgi —X(m?) =0, or m* = mi + %(m?).
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The Propagator and Higgsplosion basics

4. The field renormalisation Z, is determined from the slope of 3(p?) at m?,

Using the definition of the pole mass and the renormalisation constant,

) iZ,
A(p) — p2 —_m2 — Z¢[Z(p2) _ E(mQ) _ Z/(m2)(p2 _ mQ)] :

5. The renormalised quantities Ar(p) and X g(p?) are,

Ar(p) = 2,V A®p),
Sr(p) = Zy (B — B(m?) — X' (m?)(p® — m?)) .

Hence, the result for the renormalised propagator in terms of all finite
quantities 1s,

(

A — :
R(P) p? —m? — YR(p?) + i€
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The Propagator and Higgsplosion basics

6. The optical theorem provides the physical interpretation of the Im -,
ImXg(p*) = —mT(p*),

with the decay width being determined by the partial widths of n-particle
decays at energies s > (nm)?,

=§;rn<s>, Lals) = 5 [

7. The origin of Higgsplosion is that I',,(s) grows factorially with n in the
large-n limit, —|M,,|? ~ nIA™ ~ e” log(An)  When n scales linearly with
the available energy, n ~ \/s/m, this translates into the exponential de-
pendence of the decay rate I'(s) on /s.

TIM(1 = n)|?.

8. Hence in a Higgsploding theory, the propagator,

1

A —
r(P) p? —m? — ReXgr(p?) + imI'(p?) + ie’

is effectively cut off at p* > E? by the exploding width T',,(p?).
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Gluon fusion multi-Higgs production at large n

For physical processes, such as gluon
fusion, two problems to address:

1-loop polygons with up to n-2 edges
iIncreasing technical complexity

1-> n x h tree-level (& loop-corrected)
Higgs jranchings grow as n!

These processes are
responsible for HIGGSPLOSION

lygons [
M g—snxh = E MP? . E || Mpx s, xh

polygons T nit...4+ng=n =1 T

Polygons are considered elsewhere: HIGGSPERSION
Degrande-VVK-Mattelaer 1605.06372 VWK & Spannowsky 1704.03447



