Recent LHC results

ATLAS $\sigma_{inel}(\xi > m_p^2/s) = 69.4 \pm 2.4(\text{exp.}) \pm 6.9(\text{extr.}) \text{ mb}$

 $66.8 \le \sigma_t^{inel} \le 74.8 \text{ mb.}$

LICE
$$\sigma_{\text{Inel}} (\forall s = 7 \text{ TeV}) = 72.7 \pm 1.1 (\text{model}) \pm 5.1 (\text{lum}) \text{ mb}$$

 $|\eta| < 2$. $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$.

Gostman et al., arXiv:1010.5323, EPJ. C74, 1553 (2011) Kaidalov et al., arXiv:0909.5156, EPJ. C67, 397 (2010) Ostapchenko, arXiv:1010.1869, PR D83 114018 (2011) Khoze et al., EPJ. C60 249 (2009), C71 1617 (2011)

M.Poghosyan Quark Matter 2011

Achilles' Heel of 'inelastic' measurements : low mass SD,DD

Uninstrumented regions: Totem-CMS : $M_X \le 2.5 - 3.5 GeV$ (at least)

Atlas: $M_X \leq 7 GeV$ (<15.7 GeV)

(Castor)

$$y_p = \ln(\sqrt{s} / m_p), \Delta \eta \simeq (2.4 - 3.1)$$

 $\eta = -\ln \tan \frac{\vartheta}{2}$

Can we extrapolate from HM SD?

Theoretically unjustified • assuming $l\sigma/dM^2 \propto 1/M^2$ Pythia Generator 1 1 8.0 K/5 GeV Na 1.4 simulated Currently **NO** theoretically solid . Acceptance extrapolated way to extrapolate HM to LM 1 Loss at low 0.6 detected single diffraction 0.8 single diffraction diffractive 0.6 0.4 masses M 0.4 0.2 0.2 100 0.02 0.04 0.08 1/M4, CeV4 M, CeV (UA4-experience ***** factor of 2 for M<4 GeV)

Optical theorem

Model expectations for total inelastic cross-section

- Strong dependence of the longitudinal development of air showers on $\sigma_{\rm inel}$
- Various MC generators are used by the CR community (some with full resummation of multi-Pomeron graphs)

Figure 1: Model predictions for total, elastic, and inelastic proton-proton cross sections: QGSJET-II-4 - solid, QGSJET-II-3 - dashed, and SIBYLL - dot-dashed. The compilation of data is from Ref. [17].

y th alti	ie CR communi i-Pomeron grap	ity ohs)	oses only	>
S.Os	stapchenko, ArXiv:110	3084)	$\sqrt{s} = 7 \text{ Te}$	eV
	(in mb) x ³	$\sigma_{\rm inel} \sigma_{\rm S}^{\rm I}$	$s_{\rm D}^{\rm M} + \sigma_{\rm DD}^{\rm LM}$	
C	QCSJNY H-04	69.7	7.1	
	QCSJET II-03	77.5	3.3	
	SIBYLL	79.6	0	
	PYTHIA	71.5	0	
C	KMR-11	65.2/67.1	6 /7.4	
	Dino-11	71 ± 6		
	MPS-11	73.4		
	KP-10	71.6		

What about current theoretical uncertainties ? $\sqrt{8} = 14$ TeV.											
	σ^{tot}	σ^{el}	σ^{SD}	σ^{DD}	σ_{LM}^{SD}	HM HM	$\sigma_{\rm LM}^{\rm DD}$	$\sigma_{\rm HM}^{\rm DD}$			
Set (A)	128	37.5	12.1	4.61	8.48	302(3.54)	1.15	2.06			
Set (B)	126	37.3	12.4	5.18	8 22	4.24 (4.14)	1.08	2.50			
Set (C)	114	33.0	11.0	4.83	508	5.22(5.12)	0.47	3.15			
KMR-08	91.7	21.5	19.0		49	14.1					
GLMM-08	92.1	20.9	11.8	6.03	10.5	1.28					
КР-10	108	29.5	14.8	50/-							
		(A,B,C) S. Ostapchenko, Phys.Rev.D81:114028,2010. KMR-08: KMR, EPJ C54,199(2008); ibid C60,249 (2009).									
			or !	GLMM-08: GLMM,EPJ C57,689 (2008). KP-10 A.B. Kaidalov, M.Poghosyan							

5. A flavour of diffraction in the first LHC runs.

First measurement of σ_{inel} at 7 TeV.

(arXiv:1104.0326 [hep-ex] , 2 Apr. 2011)

$$\xi = M_X^2/s > 5 \times 10^{-6}$$

 $M_X > 15.7 \text{ GeV for } \sqrt{s} = 7 \text{ TeV}$

 $\sigma(\xi > 5 \times 10^{-6})$ [mb] ATLAS Data 2010 $60.33 \pm 2.10(\exp.)$ Schuler and Sjöstrand 66.4Phojet 74.2Ryskin et al. 51.8 / 56.2 $\sigma(\xi > m_p^2/s)$ [mb] ATLAS Data 2010 $69.4 \pm 2.4(\text{exp.}) \pm 6.9(\text{extr.})$ Schuler and Sjöstrand 71.5Phojet 77.3Block and Halzen 6965.2 / 67.1 Ryskin et al. Gotsman *et al.* 68Achilli et al. 60 - 75

(model dependence in the definition of ξ)

$$\Delta \eta \simeq \ln 1/\zeta + \ln < p_\perp > /m_p$$

Diffraction is any process caused by Pomeron exchange.

(Old convention was any event with LRG of size $\delta\eta$ >3, since Pomeron exchange gives the major contribution)

However LRG in the distribution of secondaries can also arise from

- (a) Reggeon exchange
- (b) fluctuations during the hadronization process

Indeed, at LHC energies LRG of size $\delta\eta$ >3 do not unambiguously select diffractive events.

Prob. of finding gap larger than $\Delta \eta$ in inclusive event at 7 TeV due to fluctuations in hadronization

either to select much larger gaps

or to study the ∆y dependence of the data, fitting so as to subtract the part caused by Reggeon and/or fluctuations.