

Werner-Heisenberg-Institut

Dx Aprich

Precision targets for luminometry at the LHC from theoretical perspective

V.A. Khoze (IPPP, Durham)

(Manchester, St. Petersburg, Helsinki & Rockefeller)

LHC Lumi Days

chaired by Helmut Burkhardt (CERN) , Massimiliano Ferro-Luzzi (CERN) , Michelangelo Mangano (CERN)

from Thursda<mark>y</mark> 13 January 2011 at **08:00** to Friday 14 January 2011 at **18:00** (Europe/Zurich) at <u>CERN (503-1-001 - Council Chamber</u>)

Description The aim of this workshop will be to review the results of the first luminosity calibration measurements at the LHC and to stimulate a discussion on future measurements. A total accuracy of around 5% seems achievable with the current instrumentation, on relatively short term. The need for and the challenges associated with a more precise determination will be debated. The importance of knowing the cross section scale to a given precision will be reviewed. Direct luminosity calibration methods will be compared to indirect methods, including recent experience at other cyclical colliders. Physics motivations, systematic uncertainties, proposals for optimal running conditions for future luminosity calibration experiments, etc., will be openly discussed.

Thursday 1	13 Jani	Jary 2011						
09:00 - 12:55	Physic *Woot/ *Woot/ *Releva *Compa	s aspects vectsion should the experiments aim at? s the benefit for physics? noce of lum measurements at different energies vison between the reach of direct and indirect ium determinatio	2011 ~ 3.4% (A ~ 4% (C	TLAS) MS)		11%→5%→1-2% ?		
	Conven	er: Michelangelo Mangano (CERN)		14:00 - 18:30	First r	esults of direct luminosity calibration and future prospects		
C	09:00 Welcome and introduction 05 Socaixer: Massimilano Ferro-Luzzi (CERN) 09:05 Motivations and precision targets for luminosity 27 Speaker: Michelangeto Mangano (CERN) Motivation: Second 24				 review results of 2000-20 10 luminosity calibration experiments comparison to machine parameters (p⁺, emittances,) ATLAS/CMS cross comparison review systematic uncertainties : current itst and future prospects propose optimal conditions for future luminosity calibration experiments requirements for a possible intermediate b⁺ unit 10 2017 			
	09:30	20 Indirect luminosity measurements: theoretical assessment 37			Conver	Convener: Massimiilano Ferro-Luzzi (CERN)		
L		Speaker: Valery Khoze (Science Laboratories) Matemai: Siides 년 전	oratories)		14:00	BCTs and BPTX analysis results 15 Speaker: Thile Pouly (CERN) Material: Slides : ::::::::::::::::::::::::::::::::::		
	10:05	TOTEM: prospects for total cross section measureme	ents 20		14:20	ALICE 2010 luminosity determination 30'		
		Material: Slides 🗐 💆				Speaker: Ken Oyama (University of Heidelberg) Material: Siides 🗐 🔁		
	10:30	LHCb: indirect luminosity measurement 20'			15:00	LHCb 2010 luminosity determination 30'		
		Material: Slides 2				Speaker: Vladislav Balagura (ITEP Institute for Theoretical and Experimental Physics (ITEP)-U Material: Sides 1		
	10:55	Coffee break 15	break 15		15:40	LHCb beam-gas imaging results 15		
	11:10	Speaker: Kariheinz Hiller (Deutsches Elektronen Synchrot Material:	ron (DESY)-Uniknown-Uniknown)			Speakers: Plamen Hopchev, Plamen Hristov Hopchev (LAPP-Laboratoire d'Annecy-le-Vieux de Physique des Particules (L)		
						Material: Slides 🔁		
	11:30	ATLAS: W and Z boson cross sections and prospects measurements 20	for other precision cross section		16:00	Coffee/tea break 20'		
		Speaker: Matthias Schott (CERN)			16:20	CMS 2010 luminosity determination 30		
		Material: Slides 💽 🔁				Speaker: Marco Zanetti (MIT) Material: Slides 📵 📆		
	11:55	CMS: W and Z boson cross sections and prospects fo measurements 20	r other precision cross section		17:00	ATLAS 2010 luminosity determination 30		
		Speakers: Jeremy Werner (Princeton University) , Jeremy Material: Slides 1	Werner (Princeton University)			Speaker: Mika Huhtinen (CERN) Material: Slides 1		
	12:20	CMS forward detectors for indirect luminosity measu Speakers: Stephen Schnetzer (CERN), Steve Schnetzer (Material: States 17)	rements 18 Rutgers University)		17:40	ATLAS/CMS comparison 18 Soeaker: Beate Heinemann (LBNL and UC Berkelev)		

- Introduction (10 years on).
- Optical theorem: forward elastic +to Adl-ibelastic rates.
 Towards Full Acceptance Detector at the LHC.
 Other maailith A

 - **Related** subjects Other ma (light shining through the hole)
 - **Overall** conclusions 6

Main aims

- to identify the issues which may require further theoretical efforts -to estimate the size of theoretical uncertainties in the 'low Q²' approaches.

Any deviations in the **rates** from the SM expectations

Ten Years Back

Eur. Phys. J. C 19, 313–322 (2001) Digital Object Identifier (DOI) 10.1007/s100520100616 THE EUROPEAN PHYSICAL JOURNAL C © Società Italiana di Fisica Springer-Verlag 2001

Luminosity measuring processes at the LHC

V.A. Khoze¹, A.D. Martin¹, R. Orava², M.G. Ryskin^{1,3}

¹ Department of Physics and Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE, UK

² Department of Physics, University of Helsinki, and Helsinki Institute of Physics, Finland

³ Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, 188300, Russia

Received: 18 October 2000 / Revised version: 9 February 2001 / Published online: 15 March 2001 – © Springer-Verlag 2001

Abstract. We study the theoretical accuracy of various methods that have been proposed to measure the luminosity of the LHC pp collider, as well as for Run II of the Tevatron $p\bar{p}$ collider. In particular we consider methods based on (i) the total and forward elastic data, (ii) lepton-pair production and (iii) W and Z production.

Forward Physics and Luminosity Determination at LHC 2000

Editors

Katri Huitu Valery Khoze Risto Orava Stefan Tapprogge

Absolute and relative luminosity measurements

1. Measure the absolute luminosity with a theoretically reliable accurate method at the most optimal conditions.

2. Calibrate luminosity monitor(s) with this measurement, which then can be used at different conditions.

Luminosity monitoring- relative measurements

Use dedicated luminosity monitors either provided by the experiment or by the machine

Target: to illustrate how well calculable could be standard 'low-Q^{2'} processes proposed for luminosity calibration (in the real world environment).

The 2 ways of luminosity measurement

Direct from machine parameters

Indirect from rates via $L = N/\sigma$

$$L = \frac{(N_{sig} - N_{bg})}{(\varepsilon \cdot acc \cdot \sigma)}$$

Input:

- cross sections e.g. W/Z from PDFs,

- or σ_{tot} via optical theorem (lepton pairs)
- efficiency, acceptance and backgrounds

ALFA concept to determine the luminosity from small angle proton scattering:

- total + elastic rates + optical theorem limited due to ATLAS η range
- elastic rate + σ_{tot}, e.g. TOTEM
- elastic rate in the Coulomb-Nuclear Interference region

Machine parameters

 \odot

Determination of the overlap integral (pioneered by Van der Meer @ISR)

- Default *L* comes from LUCID event counting
 - Several other methods
 - Stability of measurement over 2010 better than 0.5%
- Systematic uncertainty of 3.4%
 - Dominated by uncertainty on bunch charge (beam current) knowledge (3.1%)

Event rate = Cross section (σ) × Luminosity (L)

'HIGH-Q² ' -probe

 $\sigma = f_{a/A} \otimes f_{b/B} \otimes \hat{\sigma}_{ab}$

Phenomenology Theory Cross sections Experiment

- Theoretical calculations: Feynman diagrams have initial quarks and gluons.
- **Problem:** the LHC collides protons. Need to know density of quarks and gluons (partons) inside the proton.

No predictions for signal or background cross sections without knowledge of PDFs!

QCD = Quantum ChromoDynamics (describes interactions between quarks and gluons)

• $f_{a/A}(x, Q^2)$ gives number density of partons a in hadron A with momentum fraction x at a hard scale $Q^2 \gg \Lambda_{\text{QCD}}^2$.

(personal doubts)

 σ

$$AB = \sum_{a,b=q,g} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \ f_{a/A}(x_a, Q^2) \ f_{b/B}(x_b, Q^2) \ \hat{\sigma}_{ab}$$

Perturbative expansion: $\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{LO} + \alpha_S \hat{\sigma}_{ab}^{NLO} + \alpha_S^2 \hat{\sigma}_{ab}^{NNLO} + \dots$

PDF evolution:
(DGLAP equation)
$$\frac{\partial f_{a/A}}{\partial \ln Q^2} = \frac{\alpha_S}{2\pi} \sum_{a'=q,g} \left[P_{aa'}^{\text{LO}} + \alpha_S P_{aa'}^{\text{NLO}} + \dots \right] \otimes f_{a'/A} \quad \begin{array}{l} \text{NLO is standard.} \\ \text{NNLO} \\ \\ \text{NNLO} \\ \\ \frac{\partial \alpha_S}{\partial \ln Q^2} = -\beta^{\text{LO}} \alpha_S^2 - \beta^{\text{NLO}} \alpha_S^3 - \dots \\ \end{array}$$

• Need to extract input values $f_{a/A}(x, Q_0^2)$ and $\alpha_S(M_Z^2)$ from data.

well developed machinery

Lattice

OCD?

Consolidate two cross section measurements (and their ratio).

Know correlation of both data and theory (from eigenvector PDFs).

 Luminosity uncertainty 3–4%, comparable with PDF spread.

'LOW-Q² ' -APPROACHES

•Current theoretical models for soft hadron interactions are still incomplete, and their parameters are not fixed, in particular, due to lack of HE data on Low-Mass Diffraction.

- Recent (RFT-based) models allow reasonable description of the data in the ISR-Tevatron range: KMR-09-11,GLMM-09-11, KP-10,11, Ostapchenko-10-11.
- The differences between the results of other existing models wildly fluctuate.

Reggeon Field Theory, Gribov- 1986

2. Exclusive QED Lepton Pair Production

- First proposed for luminometry by. V. Budnev et al, Nucl. Phys. B63 (1973) 519.
- **First studies of feasibility for the dimuons at the LHC:** A.Shamov and V.Telnov-1998 (ATLAS TDR-99).
- Strong-interaction effects- KMOR, Eur.Phys.J.C19:313-322,2001
- First observation of exclusive l^+l^- by CDF: Phys.Rev.Lett.98:112001,2007
- Ongoing studies of exclusive dimuons: CMS and LHCb (ATLAS in the pipeline)

ρ Μγ

- **Pure QED process** -thus, theoretically well understood (higher-order QED effects- reliably calculable).
- Strong interaction effects (we collide protons after all).

• **Backgrounds**: mis-ID, various contributions due to the incomplete exclusivity (lack of full detector coverage), pileup...

However, in the case of $pp \rightarrow p + \ell^+ \ell^- + p$ absorption effects could be very small.

In particular, for low $p_t(\mu\mu) \sim 10-50 \text{ MeV}$ absorpt. correction $1-S^2 = 2\delta < 0.3\%$. Will be additionally suppressed by the muon acoplanarity cuts.

$$\delta \approx \frac{\sigma_{\text{inel}}}{8\pi} p_t^2 C$$
 with C~0.1, KMOR, Eur.Phys.J.C19:313 (2001).

 $(\ell^+\ell^-$ -pair production : K. Pietrzkowsi et al., A. Shamov and V. Telnov, M. Krasny et al...)

Proton dissociation. accompanied by diphoton fusion

 $P_{t}(\mu\mu)$ distribution is much wider (slope ~ 0.5-1.5 GeV²) Usually generated with LPAIR (ZEUS version).

For $P_{\dagger} >> P_{\dagger}(\mu\mu)$ the strong interaction effects are less than 1%.

Dimuons from Double Pomeron Exchange (DPE)

Usually evaluated using POMWIG (or DPEMC) MC.

Caveat $\overset{\text{\tiny{ees}}}{=}$ survival factor S_{PP}^2 (should be calculated theoretically).

Without proton dissociation $S_{PP}^2 \simeq 0.1$, but, in reality, some particles accompanying dimuons could go undetected, thus some increase of the effective survival factor. Strong dependence on experimental conditions.

- K/pion mis-ID, muons from b,c-pair decays (the experts say these are manageable). $J/\psi,\psi'$ - decays could be removed by proper mass cuts.
- CMS: inel. bgds could be further suppressed by veto on HF,ZDC,Castor, (T1/T2) and FSC.
 Even in the presence of (moderate) pileup. (M.Albrow et al)

(dielectrons@Alice with FSC -looks promising)

μμ

Tight cuts on $P_{t}(\mu\mu)$, muon acoplanarity $\Delta\phi$ and fitting of the distributions.

•Efficient suppression of proton dissociation and DPE background. Reduction of the absorptive correction.

• With good vertex fit Suppression of hadron decays and pileup.

• However a price to pay- event rate !

• An addition of Forward Shower Counters will allow to reduce inelastic backgrounds.

 $\sigma_{OED}(pp \rightarrow p + \mu\mu + p) \simeq 8 pb * 2\Delta M / M (6 GeV / M)^2$

with $P_{\dagger} > 6 \text{ GeV}$ (e.g. ATLAS to maintain trigger eff.) the x-section is on the 1 pb level.

Pile-up: Running at 10³⁴/cm²/sec ⇒ "vertex cut" and "no other charged track cut" will eliminate many good events (Per Grafstrom).

D.Moran, DIS-2010

Advantages of LHCb: lower muon P_{t} (studies for $P_{t} > 1$ GeV and $P_{t}(\mu\mu) < 50$ MeV) and low-pile-up data

SUMMARY I

- Exclusive dimuon cross section is very reliably calculable, and this approach is potentially very promising.
- However there should be well optimized tradeoff between the experimental cuts and event rates.
 (Alice+ FSC potential for ee)
- LHCb has good potential to provide a precise luminosity calibration.

Goal- (1-2%)

Which precision do we want? Benchmark with EW processes

Luminosity measurements with exclusive dimuons from photon fusion

- Cross-sections predicted with < 1% uncertainty
- 250 candidate events selected in 17.5 pb⁻¹
- Purities seem high (more work needed)
- Work on understanding efficiencies has only just begun
- Exclusive JPsi, Psi' and ChiC events have also been isolated and compared to MC

- Ideal case: look for events having 2 muons and "nothing else" in calorimeters or tracker
- Candidates for γγ→μμ, γp→J/ψp, γp→Yp observed in early low-luminosity CMS data
- CMS-DP-2010-035
 In reality: ideal case is spoiled by extra "pileup" interactions in the same bunch crossing
 In 2011 data, pileup of 7-10

 Reduce sensitivity to pileup with selection based only on tracking/vertexing and muon kinematics

Dimuon mass distribution

- Dimuon invariant mass, normalized to best-fit value
 - Consistent with prediction of LPAIR signal + protondissociation
 - Highest-mass event at ~77GeV

 Establishes *γγ→μμ* as a reference channel for other exclusive measurements with pileup in CMS, possibly interesting as a future luminosity measurement

Model

• $\frac{\mathrm{d}\sigma_{el}}{\mathrm{d}t} = \frac{\pi}{\mathrm{so}^2} |F_{el}(t)|^2$

- optical theorem: $\sigma_{tot} = \frac{4\pi}{\rho_{v}/s} \operatorname{Im} F_{el}(s, t=0)$
- $L\sigma_{tot} = N_{el} + N_{inel}$
- Need to separate the Coulomb and hadron scattering

$$\sigma_{tot} = \frac{16\pi}{1+\rho^2} \frac{\frac{dN_{el}}{dt}\Big|_{t=0}}{N_{el}+N_{inel}}; \qquad L = \frac{1+\rho^2}{16\pi} \frac{(N_{el}+N_{inel})^2}{\frac{dN_{el}}{dt}\Big|_{t=0}}$$

To be measured

- Elastic rate N_{el}
- Differential elastic rate $\frac{dN_{el}}{dt}$ for small -t
 - Inelastic rate Ninel

A well established and potentially powerful method for Luminosity Calibration

MPI@LHC 2010 - Dec. 2, 2010 G. Latino - Preliminary Results from TOTEM

TOTEM-2011

TOTEM detector setup completed !!
 First data with T1 very promising
 Eagerly waiting higher β* to make σ_{tot}

$$\sigma_{tot} = \frac{16\pi}{1+\rho^2} \frac{\frac{dN_{el}}{dt}\Big|_{t=0}}{N_{el}+N_{inel}}; \qquad L = \frac{1+\rho^2}{16\pi} \frac{(N_{el}+N_{inel})^2}{\frac{dN_{el}}{dt}\Big|_{t=0}}$$

		β^*	90 m	1535 m]
$\frac{dN_{el}}{dt}$	Extrapolation of elastic cross-section to $t = 0$		±4%	±0.2%	
1t=0	(Smearing effect due to beam divergence, statistical errors, uncertai	nty of			
(str. interaction)	effective length L _{eff} , RP alignment, model dependent deviation)				
N _{el}	Total elastic rate		±2%	±0.1%	1
	(strongly correlated with extrapolation)	_			
Ninel	Total inelastic rate		±1%	±0.8%	h
	(error dominated by single diffractive losses)				
ρ	Error contribution from $(1 + \rho^2)$		E E	1.2%	1
	(using full COMPETE error band $\frac{\delta \rho}{\rho} = 33\%$)				
	Total uncertainty in	σ_{tot}	±5%	$\pm 1 - 2\%$	P
	Total uncertainty	in L	±7%	±2%	

t-dependence of elastic cross section is under control, including pion loop effects, safe extrapolation to the low - t region (KMOR-2000). Recent Multi-Pom studies + compilation by Totem.

Total pp cross section at TOTEM

small beam divergence \rightarrow high β^* (parallel to point focusing)

ILLUSTRATION I: INELASTIC EVENT RATE Ninel

THEORETICAL UNCERTAINTIES in the T1+T2 RUNNING SCENARIO T1+T2=T, $3.1 < |\eta| < 6.5$.

Maximally (+T OR –T), expected signal $\sigma_{signal} \sim 0.85-0.95$ of σ_{inel} (depending on the MP- model)

$$\sigma_{\rm inel} = \sigma_{\rm tot} - \sigma_{\rm el}.$$

Achilles' Heel of 'inelastic' measurements : low mass SD,DD

Un-instrumented regions: Totem-CMS $M_X \le 2.5 - 3.5 GeV$

Atlas: $M_X \leq 7 GeV$

 $y_p = \ln(\sqrt{s} / m_p), \Delta \eta \simeq (2.4 - 3.1)$

 $\eta = -\ln \tan \frac{\vartheta}{2}$

Optical theorem

Optical theorem

To illustrate the size of uncertainties we compare two models.

$\sqrt{s} = 14$ TeV.	$\sigma_{\rm tot}$	$\sigma_{\rm inel}$	+ T	(+T or –T)	(+T & –T)
SO-2010	108	78.5	69.1	72.0	66.0
KMR-2009	91.5	70.0	50.7	59.0	42.4

V. A. Khoze, A. D. Martin and M. G. Ryskin, Phys. Lett. B 679, 56 (2009). Eur. Phys. J. C60, 249 (2009)

S. Ostapchenko : arXiv:1010.1869 [hep-ph] SO-2010

Model expectations for total inelastic cross-section

- Strong dependence of the longitudinal development of air showers on $\sigma_{\rm inel}$
- Various MC generators are used by the CR community (some with full resummation of multi-Pomeron graphs)

Figure 1: Model predictions for total, elastic, and inelastic proton-proton cross sections: QGSJET-II-4 - solid, QGSJET-II-3 - dashed, and SIBYLL - dot-dashed. The compilation of data is from Ref. [17].

y th ulti S.Os	e CR commun -Pomeron grag tapchenko, ArXiv:140	ity ohs)	$\sqrt{s} = 7 \text{ T}$	eV
:	(in mb) 📢	$\sigma_{\rm inel}$	$\sigma_{\rm SD}^{\rm LM} + \sigma_{\rm DD}^{\rm LM}$	
\mathcal{C}	QOSINY H-04	4 69.7	7.1	I
	QCSJET II-03	3 77.5	3.3	
	SIBYLL	79.6	0	
	PYTHIA	71.5	0	
U	KMR-11	65 2/67	$1 \frac{6}{74}$	

The cross-sections are (normally) large, and we do not need high luminosity. Special (high β^*) optics is required.

Pile-up at high instantaneous luminosity.

Can we accurately measure diffractive characteristics with the current forward instrumentation ?

Hope

CMS + TOTEM ⇒ largest acceptance detector ever built at a hadron collider

BUT

•CMS is currently blind between =6.4(CASTOR) and beam rapidity y_p except ZDC (neutrals).

•T1+T2 detectors do not cover low-mass diffraction.

Even with common DAQ, we miss a few mb in inelastic cross section.

IS THERE A WAY OUT ?

Yes, an addition of Forward Shower Counters around beam pipes at CMS!

(8 FSC per side see showers from particles with $|\eta| = 7-9$)

A Full Acceptance Detector for the SSC (J.D. Bjorken, SLAC-PUB-5692, 1991)

- In addition the physics at the very lowest mass scales, the log-s physics, has suffered from lack of attention at energies higher than attained at the CERN ISR.
- The physics of diffractive processes (Pomeron physics). i.e. physics of event structure containing "rapidity gaps" (regions of rapidity into which no particles are produced), must not be compromised.

FELIX proposal for LHC- 1997 (J.Phys.G(28:R117-R215,2002). (A Full Acceptance Detector at the LHC (FELIX).)

Proposal to Extend ATLAS for Luminosity Measurement and Forward Physics

- H. Ahola¹, M. Battaglia², O. Bouianov^{3,4}, M. Bouianov^{2,3}, G. Forconi⁴, E. Heijne⁵,
- J. Heino⁴, V. Khoze⁶, A. Kiiskinen^{4,7}, K. Kurvinen⁴, L. Lahtinen⁴, J.W. Lamsa⁸.
- E. Lippmaa⁹, T. Meinander¹, V. Nomokonov⁴, A. Numminen⁴, R. Orava^{2,4},
- K. Piotrzkowski¹⁰, M. White⁴, M. Ryynänen¹, L. Salmi^{4,7}, J. Subbi⁹, K. Tammi,⁴,
- S. Tapprogge⁴. T. Taylor⁵

lote

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerla

July 19, 2010

Physics and Beam Monitoring with Forward Shower Counters (FSC) in CMS

Alan J. Bell, David d'Enterria, Richard Hall-Wilton a), Gabor Veres

CERN, Geneva, Switzerland

Valery Khoze

Institute for Particle Physics Phenomenologu, Durham University, U.K.

Michael Albrow a), Nikolai Mokhov, Igor Rakhno

Fermi National Accelerator Laboratory, USA

Erik Brücken, Jerry Lamsa b), Rauno Lauhakangas, Risto Orava

Dept.of Physical Sciences, University of Helsinki and Helsinki Institute of Physics, Finland

Paul Debbins, Edwin Norbeck, Yasar Onel, Ionos Schmidt

University of Iowa, USA

Oleg Grachov, Michael Murray

Kansas University, USA

Jeff Gronberg

Lawrence Livermore National Laboratory, USA

Jonathan Hollar

U.C.Louvain, Belgium

Greg Snow

University of Nebraska, USA

Andrei Sobol, Vladimir Samoylenko

IHEP, Protvino, Russia

Aldo Penzo

CMS NOTE-2010/015

Approved by CMS MB for Jan-Feb 2011 installation.

"Limited approval" : Go ahead without detracting from necessary shutdown work.

Most value is 2011 running & when $\langle n/x \rangle < \sim 5$ (Do not expect to use > 2012)

Station 3 (114m) Installed on both sides.
 March Technical Stop (28-31.03.11).
 Stations 1&2- to be installed in May (next Techn. Stop)

Mike Albrow, Fermilab

Forward Shower Counters for CMS

Manchester Dec 2010

Physics, especially diffractive in no-PileUp interactions

(a) As veto in Level 1 diff. triggers to reduce useless pile-up events.
(b) To detect rapidity gaps in diffractive events (p or no-p).
(c) Measure low mass diffraction and double pomeron exchange.
(d) Measure σ_{INEL} (if luminosity known, e.g. by Van der Meer)
(e) Help establish exclusivity in central exclusive channels

Beam monitoring etc, parallel uses:

(f) To monitor beam halo on incoming and outgoing beams.(g) To test forward flux simulations (MARS etc.)(h) Additional Luminosity monitor.

(i) Info on radiation environment for future (?) proton spectrometers

MORE PHYSICS LOW COST *Subject to support approval by LHC ZERO RISK*

Mike's priority now - gap+X+gap triggers. SD measurement requires all counters + low lumi run $\mathcal{D}\mathcal{A}$

What about total inelastic cross section σ_{INEL} ? And total σ_{TOT} if you know σ_{EL} ?

Can measure rate of totally empty events, $P(0) = exp(-\langle n_{inel} \rangle)$ But this misses all the low mass diffraction that give hits only with $|\eta| \geq 6$, or M <~ 5 GeV/c² This is many mb!

Nobody can measure σ_{INEL} directly, only σ_{TOT} - σ_{EL} ?

With FSC, P(0) only faked by events with all particles in cracks (can study with fake cracks) or inefficient regions (small); and inefficient because of noise (can study with data).

We measure the inelastic pp cross section using pile-up (PU) events:

$$P(n_{pileup}) = \frac{(L \cdot \sigma)^{n_{pileup}}}{n_{pileup}!} \cdot e^{-(L \cdot \sigma)}$$

But still LM- diffraction

Mike Albrow, Fermilab

Forward Shower Counters for CMS

Manchester Dec 2010

12

The FSCs- these are for real !

- The installation and commissioning phase of FSC during the March Technical Stop.
- Main concern- lumi per bunch crossing might be too high.

What about precise measurement of SD?

Don't hold your breath, Valery. This certainly needs all the counters and some low lumi runs (Mike Albrow)

There are known unknowns.

- When the common TOTEM-CMS data taking will happen?
- When the dedicated runs with special optics (high β^*) will take place?
- When the FSC will be fully operational ?

But there may be also unknown unknowns.

ZDC+HF+Castor +FSC could be sufficient What the experts think

- In the ideal world we would need full coverage detectors to make precise measurement.
- T1+T2 detectors could allow to detect about 0.8-0.9 of inelastic events.
- Because of un-instrumented region of low-mass diffraction we miss about 5-11 mb in σ_{inel} We cannot relay on current MC models when attempting to achieve precise extrapolation to the uncovered regions.
- With beam energy increasing the un-instrumented region rises, and, thus, the uncertainties.
- Running scenarios with Roman Pot triggers might be beneficial, but this requires comprehensive studies.

' 🥹

- Common data taking by CMS and TOTEM + FSC (especially T1/T2 + ZDC+FCS) will allow to measure (first time after the ISR) the low-mass SD, and thus, hopefully, to reduce the uncertainties in the inelastic rate to 1% level.
- FSC could serve as an additional luminosity monitor.

 $\sigma_{
m tot}$, $\sigma_{
m inel}$, $\sigma^{
m SD}$ \cdots $rac{}$ very important physics quantities. Let's measure them at the LHC ~

CR physics, the LHC is above the 'knee'.

ALFA = Absolute Luminosity For ATLAS

Elastic scattering at very small angles

- Measure elastic scattering at such small t-values that the cross section becomes sensitive to the Coulomb amplitude
- Effectively a normalization of the luminosity to the exactly calculable Coulomb amplitude
- No total rate measurement and thus no additional detectors near IP necessary
- UA4 used this method to determine the luminosity to 2-3 %

Concept of the ALFA measurement

Elastic scattering in the Coulomb-Nuclear interference region:

Measurement program:

- start from a well-known theoretical rate dependence
- 2) measure unbiased elastic rate
- fit luminosity and 3 other free parameters to dN / dt

Main conditions to reach the Coulomb region $|t| < 10^{-3} \text{ GeV}^2$

- → Detector positions far from IP
- → Special beam settings
- → Detectors close to beam

LHC Lumi Days, January, 2011

For the Future: ALFA

• Principle: use elastic $c_{\text{scattering (||t||^2)}}^{\text{Coulomb}}$ scattering in Coulomb interference region to measure for σ_{tot} and \mathcal{L} $\frac{d\sigma}{dt}$

- Use measured *L* value to calibrate luminosity detectors to 2-3%
 - Complementary to beamseparation scans with uncorrelated systematic uncertainties

- Technically challenging:
 - need to measure at 3.5 μrad (10σ) from LHC beam:
 - Will require special LHC runs at high

β* and low *L*_{inst}: 90m (2011), 2km (2013+)

DIS 2011 Lauren Tompkins

Soft photon radiation accompanying elastic pp- scattering.

Detection advantages, but rate low.

 Bremsstrahlung photons close to 0 degrees – can be used for alignment (RP's, ZDC), luminosity monitoring.

Experience at ee colliders (VEP-I, VEPP-II, ACO, ADONE) and at HERA

ROAD MAP

- Use luminosity from the W/Z standard candle measurements or from the beam scan (Van der Meer) \Rightarrow model-independent way to measure $(\sigma_{el}/\sigma_{tot})^2$
- The ZeroDegreeCalorimeter (ZDC) for detecting the bremsstrahlung gammas - the Forward Shower Counters (FSC) to veto backgrounds.
- The set-up of the proposed measurement with k=50-500 GeV and for 3.5 x 3.5 TeV and/or 5 x 5 TeV.

Triggers and Backgound

Slide from H. Gronquist- ISMD-2010

- Main background consists of photons emitted in ineastic diffractive events.
 Non-diffractive events constitute a secondary background.
- For the chosen energy range 50-500 GeV the backgound-to-signal ratio is estimated to be < 5%

• To reduce background further, Forward Shower Counters, FSCs, can be added closely surrounding the beam pipes, at $z \in (60, 120)$ m from the interaction point

Luminosity, if $\sigma_{
m el}$ and B are known

Results from simulations

 According to simulations the probability of detecting a single photon in the ZDC from radiative elastic scattering is :

Fundamental interest.

The LHC reaches, for the first time, sufficiently HE to distinguish between the different theoretical asymptotic scenarios for HE interactions.

(currently available data are still not decisive)

Practical interest.

Underlying events, triggers, calibration...

In HE pp collisions about 40% of σ_{tot} comes from diffractive processes, like elastic scatt., SD, DD. Need to study diffraction to understand the structure of σ_{tot} and the nature of the underlying events which accompany the sought-after rare hard subprocesses. (Note the LHC detectors do not have 4π geometry and do not cover the whole rapidity interval. So minimum-bias events account for only part of total $\sigma_{inelastic}$.)

Evaluation of the survival probabilities of LRG to soft rescattering. Recall 'diffractive Higgs' : $pp \rightarrow p+H+p$ and other goodies...

HE cosmic rays

Needed so as to understand the structure of HE cosmic ray phenomena (e.g. Auger experiment).

LHC energy - above the 'knee'. Diffraction is important for understanding of air-showers

Development of MC models.

A.Erlykin & A.Wolfendale-2010 (LHC data & the origin of the 'knee')

Finally, the hope is that a study of diffraction may allow the construction of a MC which merges "soft" and "hard" HE hadron interactions in a reliable and consistent way.

V. Overall conclusions

- We briefly discussed some most popular methods for 'indirect' luminosity determination, focussing on potential theoretical uncertainties and the ways how to reduce these.
- On the theory side there seems to be no showstoppers for the dimuon QED production.. Can be performed during the normal collision data taking. However the cross section is small, thus problems with keeping small stat. error on Lumi.
- Optical theorem approach is a potentially very powerful method for Luminosity Calibration. However, for a precise measurement of elastic rate we need special optics, while a very accurate determination of *N_{inel}* would require a combination of TOTEM with CMS (in particular, ZDC) +FSC. More studies needed.

- σ_{tot} , σ_{inel} , σ^{SD} are very important physics quantities. Should be measured at LHC! (TOTEM +CMS, ALFA)
- Further development of theoretical models for HE soft hadron interaction is an important goal as well as creation of "all purpose" Monte Carlo models, tuned to describe various features of elastic and diffractive processes and multi-particle production.

For first year of operation the LHC precision is surprisingly good. More results to come.

Machine parameters

What means special effort?

Calibration runs

i.e calibrate the relative beam monitors of the experiments during dedicated calibration runs.

- Calibration runs with simplified LHC conditions
 - Reduced intensity
 - Fewer bunches
 - No crossing angle
 - Larger beam size
 - **.**...

Simplified conditions that will optimize the condition for an accurate determination of both the beam sizes (overlap integral) and the bunch current.

23

Luminosity measurements at LHC

інсь гнср

Direct Measurements

- Direct measurement of beam parameters shape, current etc.
- Two methods employed
 - Van der Meer scan (ATLAS, CMS, ALICE)
 - Beam profiling via beam gas interactions

Indirect Measurements

- Measure the event rate of some theoretically well known process
- Precision determined by:
 - The uncertainty on the cross-section prediction
 - Experimental uncertainties (efficiencies etc.)
- Two processes identified at LHCb for this purpose
 - W & Z production (ATLAS, CMS)
 - Dimuon production via two photon fusion (CMS)

Machine parameters

Determination of the overlap integral (pioneered by Van der Meer @ISR)

Luminosity with
separation
$$\frac{\mathcal{L}}{\mathcal{L}_0} = \exp\left[-\left(\frac{\delta x}{2\sigma_x}\right)^2 - \left(\frac{\delta y}{2\sigma_y}\right)^2\right]$$

δx	δy	$\frac{\mathcal{L}}{\mathcal{L}_{0}}$
σ_x	σ_y	
0	0	1
1/2	0	0.9394
1/2	1/2	0.8825
1	0	0.7788
1	1	0.6065
2	0	0.3679
2	2	0.1353

2010- CMS,ATLAS,LHCb, ALICE ~11% accuracy , 3-4% in 2011

vdM-scans

Main uncertainty: currents in the LHC magnets

Machine parameters

Luminosity from Machine parameters

Luminosity depends exclusively on beam parameters:

$$\mathcal{L} = \frac{N^2 f_{\rm rev} n_b}{4\pi \sigma^{*2}}$$

Depends on f_{rev} revolution frequency n_b number of bunches N number of particles/bunch σ* beam size or rather overlap integral at IP

$$\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$$

The luminosity is reduced if there is a crossing angle ($300 \ \mu$ rad)

Luminosity accuracy limited by

- extrapolation of σ_x, σ_y (or ε, β_x*, β_y*) from measurements of beam profiles elsewhere to IP; knowledge of optics, ...
- Precision in the measurement of the the bunch current
- beam-beam effects at IP, effect of crossing angle at IP, ...

Van der Mer scan

$$L = \frac{n_b f_r I_1 I_2}{2\pi \Sigma_x \Sigma_y}$$

Source	Uncertainty on σ_{vis} (%)
Beam intensities	10
Lenght scale	2
Imperfect beam centering	2
Transverse emittance changes	3
mu dependence	2
Total	11

Algorithm	Scan number	$\sigma_{vis} \ (mb)$	$L_p \ (10^{29} cm^{-2} s^{-1})$
	1	12.15 ± 0.14	6.80 ± 0.08
LUCID event AND	2	12.55 ± 0.10	4.85 ± 0.03
	3	12.73 ± 0.10	4.88 ± 0.09
	1	39.63 ± 0.32	6.85 ± 0.06
LUCID event AND	2	40.70 ± 0.13	4.88 ± 0.01
	3	40.77 ± 0.14	4.92 ± 0.02

Summary

TOTEM is ready for a first σ_{tot} and luminosity measurement in 2011 with $\beta^* = 90m$ using the Optical Theorem. Expected precision: ~3% in σ_{tot} , ~4% in L

Wish: start soon with the development of the $\beta^* = 90m$ optics to have enough time for learning.

Desired running conditions: low beam intensity, small RP distance to the beam

Longer term:

Measurement at the 1% level with very-high- β^* optics (~1 km); might give access to the ρ parameter if the energy is still low ($\sqrt{s} \sim 8 \text{ TeV}$); needs optics development work.

- No backward tracks
- Precisely two forward muons. $m_{\mu\mu}$ >2.5 GeV
- No photons

pµµp: 67 +- 19 pb LPAIR (J. Vermaseren) 42 pb

Ronan McNulty, SM@LHC, Durham 11-14 April 2011

Sample and muon selection

- Use the full 7TeV 2010 sample collected by CMS (40pb⁻¹)
- Restrict to a region of phase-space with well-understood muon systematics, and above the exclusive γp→Yp→μμp region
 - p_T(μ) > 4 GeV, η(μ) < 2.1, m(μμ) > 11.5 GeV
- Trigger on two muons with p_T(μ) > 3 GeV, tight muon reconstruction and identification as used in CMS W/Z cross-section analyses
 - Trigger, muon ID, and tracking efficiencies corrected using control samples of muons from inclusive J/ψ→μμ and Z→μμ production
- Muon pair kinematics require muons be back-to-back in $\phi,$ balanced in p_{T}
 - Δp_T(μμ) < 1.0 GeV
 - $1 |\Delta \phi(\mu \mu)/\pi| \le 0.1$
 - Require an opening angle <0.95π to suppress cosmic ray muons

CMS PAS FWD-10-005

Rejection of Proton Dissociative Events

- Don't rely on simulation for cut efficiency and rejection factor
- Use FSC to discriminate between the three contributions: (el-el, el-inel and inel-inel)
- Select "no-pileup" events ("empty" detector except for $\mu\mu$)
- Classify events as FSC empty both sides, one side or neither
- Compare $\Delta \phi_{\mu\mu}$ and $p_{\tau}^{\mu\mu}$ distributions for three classes
- Measures relative fraction of el-el, el-inel and inel-inel and tests factorization
- Provides templates for $\Delta\phi_{\mu\mu}$ and $p_{\tau}^{\mu\mu}$ distributions

Without FSC, precision luminosity measurement limited by knowledge of cross section for proton dissociation and associated cut kinematics.

The ATLAS forward detectors

	Pseudorapidity	Position (from IP)
LUCID ZDC	5.6 < ΙηΙ < 5.9 ΙηΙ > 8.3	± 17 m ± 140 m
ALFA	$10.6 < \eta < 13.5$	± 240 m

б

Optical theorem

L from a fit to the t-spectrum

$$\begin{aligned} \frac{dN}{dt} &= L\pi \left|F_{c} + F_{N}\right|^{2} \\ &= L \left(\frac{4\pi\alpha^{2}(\hbar c)^{2}}{\left|t\right|^{2}} - \frac{\alpha\rho\sigma_{tot}e^{-B|t|/2}}{\left|t\right|} + \frac{\sigma_{tot}^{2}\left(1 + \rho^{2}\right)e^{-B|t|}}{16\pi(\hbar c)^{2}}\right) \end{aligned}$$

K.Hiller

Simulating 10 M events, running 100 hrs fit range 0.00055-0.055

	input	fit	crror	correlation
L	8.10 10°°	8.151 1024	1.77 %	
σ _{tot}	101.5 mb	101.14 mb	0.9%	-99%
B	18 Gev-2	17.93 Gev-2	0.3%	57%
P	0.15	0.143	4.3%	89%

large stat.correlation between L and other parameters

38

LHC Lumi Days, January, 2011

→ ΔL/L~3% seems to be possible

64