Background analysis window

First results on the neutrinoless double beta decay from GERDA

Laura Baudis (for the GERDA collaboration) University of Zurich

Invisibles workshop Durham, July 17, 2013

0_{ν}

The physics

- Detect the neutrinoless double beta decay in ⁷⁶Ge:
 - lepton number violation
 - information on the nature of neutrinos and on the effective Majorana neutrino mass

Laura Baudis, University of Zurich Invisibles 2013, Lumley Castle, Durham

Experimental requirements

 \bullet Experiments measure the half life of the decay, $T_{1/2}$

$$T_{1/2}^{0\nu} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

$$\langle m_{\beta\beta} \rangle \propto \frac{1}{\sqrt{T_{1/2}^{0\nu}}}$$

. . .

Minimal requirements:

large detector masses (M) enriched materials (a) ultra-low background noise (B) excellent energy resolution (ΔE) high detection efficiency

Additional tools to distinguish signal from background:

angular distribution identification of daughter nucleus pulse shape information

The GERDA experiment at LNGS

Eur. Phys. J. C (2013) 73:2330

- Ge detectors directly submersed in LAr
- ➡ LAr as cooling medium and shielding (U/Th in LAr < 7x10⁻⁴ µBq/kg)
- ➡ a minimal amount of surrounding materials
- Phase I
- ➡ ~18 kg HdM and IGEX detectors
- Phase II
- additional 20 kg BEGe detectors

The GERDA collaboration

Collaboration meeting in Dubna, June 2013

GERDA detectors

• Phase I: p-type semi-coaxial

arXiv:1307.2610v1

- Phase II: p-type, BEGe (broad energy germanium)
- n⁺ conductive Li layer, separated by a groove from the boron implanted p⁺ contact
- Signal structure allows to distinguish between *single site* events (SSE) = signal-like and multiple site events (MSE) = background-like

60-80 mm

GERDA detectors

- From HdM and IGEX experiments: total mass = 17.7 kg
 - ➡ HdM: ANG1, ANG2, ANG3, ANG4, ANG5; IGEX: RG1, RG2, RG3
 - ➡ Isotopically enriched in ⁷⁶Ge: 86%
- Two ⁷⁶Ge detectors turned off because of high leakage cur
- In addition, natural Ge detectors from Genius-TF
- And 5 phase II, enriched BEGe detectors add An July 2012

Laura Baudis, University of Zurich

Invisibles 2013, Lumley Castle, Durham

Laura Baudis, University of Zurich Invisibles 2013, Lumley Castle, Durham

Half life of the 2-neutrino decay mode

Laura Baudis, University of Zurich Invisibles 2013, Lumley Castle, Durham

IOP PUBLISHING

1

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110 (13pp)

doi:10.1088/0954-3899/40/3/035110

Measurement of the half-life of the two-neutrino double beta decay of ⁷⁶Ge with the GERDA experiment

$$T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08}) \times 10^{21} \,\mathrm{yr}$$

Item	Uncert	(%) tainty on $T_{1/2}^{2\nu}$
Non-identified background components Energy spectra from 42 K, 40 K and 214 Bi Shape of the $2\nu\beta\beta$ decay spectrum	$+5.3 \pm 2.1 \pm 1$	
Subtotal fit model		+5.8 -2.3
Precision of the Monte Carlo geometry model Accuracy of the Monte Carlo tracking	± 1 ± 2	
Subtotal Monte Carlo		±2.2
Data acquisition and selection		±0.5
Grand total		+6.2 -3.3

GERDA Calibration

- Determine energy resolution and stability in time
- Energy resolution: ~ 4.5 5.1 keV (FWHM) at 2.6 MeV
- Mean energy resolution at Q=2039 keV: 4.8 keV and 3.2 keV for coaxial and BEGe (FWHM)

Calibration stability

• Mean energy resolution at Q=2039 keV: 4.8 keV and 3.2 keV for coaxial and BEGe (FWHM)

Laura Baudis, University of Zurich Invisibles 2013, Lumley Castle, Durham

⁴²K background line

Backgrounds

arXiv:1306.5084v1 [physics.ins-det] 21 Jun 2013

main sources considered in the background model

source	location
²¹⁰ Po ²²⁶ Ra chain ²²² Rn chain	p ⁺ surface p ⁺ surface LAr in bore hole
²¹⁴ Bi and ²¹⁴ Pb	n ⁺ surface mini-shroud detector assembly p ⁺ surface radon shroud LAr close to p ⁺ surface
208 Tl and 212 Bi	detector assembly radon shroud heat exchanger
²²⁸ Ac	detector assembly radon shroud
⁴² K	homogeneous in LAr n ⁺ surface p ⁺ surface
⁶⁰ Co	detectors detector assembly
2 uetaeta	detectors
40 K	detector assembly

Three data sets

• The BEGe set; the coaxial data, which is split into gold and silver

The background model

Fig. 12 Background decomposition according to the best fit minimum model of the GOLD-coax data set. The lower panel in the plots shows the ratio between the data and the prediction of the best fit model together with the smallest intervals of 68 % (green band), 95 % (yellow band) and 99.9 % (red band) probability for the ratio assuming the best fit parameters.

Background in the ROI for the double beta decay

Consistent with a flat background in the energy region: 1930 keV - 2190 keV

Laura Baudis, University of Zurich Invisibles 2013, Lumley Castle, Durham

The background level interpolated into the region of interest, before PSD, is:

Coaxial:

$$(1.75^{+0.26}_{-0.24}) \cdot 10^{-2} \text{ events}/(\text{keV kg yr})$$

BEGe

$$(3.6^{+1.3}_{-1.0}) \cdot 10^{-2} \, \text{events}/(\text{keV kg yr})$$

Linear fit with flat background in 1930 keV - 2190 keV, excluding peaks at 2104 keV and 2119 keV

Pulse shape discrimination

- BEGes: simple A/E-parameter cut (A= max of current pulse; E = energy)
 - rejects 80% of background events
 - ➡ keeps 92% of signal-like events
- Coaxial Ge: neural network analysis (cross-checked by two additional methods)
 - ➡ rejects 45% of background events
 - ➡ keeps 90% of signal-like events

After unblinding

GERDA lower limit from PL fit of the 3 data sets, with constant term for background (3 parameters for the 3 data sets) and Gaussian term for signal: best fit is $N_{signal} = 0$

 $T_{1/2}^{0\nu} > 2.1 \times 10^{25} \,\mathrm{yr} \,(90\% \,\mathrm{C.L.})$

- the limit on the half life corresponds to $N_{\mbox{signal}} < 3.5$ counts

Laura Baudis, University of Zurich Invisibles 2013, Lumley Castle, Durham

• Observed and predicted number of background events in the energy region $Q_{BB} \pm 5 \text{ keV}$

	Observed	Predicted background
No PSD	7	5.1
PSD	3	2.5

• 5.9 ± 1.4 events are expected for "claim", and 2.0±0.3 signal events

Claim of evidence for 0vbb-decay: signal: 28.8 ± 6.9 events BG level: 0.11 counts/(keV kg yr)

HVKK et al., PLB 586 (2004) 198-212

After unblinding

 $\overline{}^{\dagger}$) in units of 10^{-3} cts/(keV·kg·yr).

Bayesian analysis with flat prior on $1/T_{1/2}$:

$T_{1/2}^{0\nu} > 1.9 \times 10^{25} \,\mathrm{yr} \,(90\% \,\mathrm{credible\,interval})$

Bayes factor = P(H1)/P(H0) = 0.024 disfavors signal claim H(1): model that includes background + claimed signal; H(0): model with background only

Combination with previous ⁷⁶Ge results (from HdM and IGEX)

GERDA

HdM: Eur. Phys. J A 12, 147 (2001) IGEX: Phys. Rev. D 65, 092007 (2002) and Phys. Rev. D 70, 078302 (2004)

$$T_{1/2}^{0\nu} > 3 \times 10^{25} \,\mathrm{yr} \,(90\% \,\mathrm{C.L.})$$

Bayes factor = $P(H1)/P(H0) = 2x10^{-4}$ strongly disfavors signal claim

H(1): model that includes background + claimed signal; H(0): model with background only

Profile likelihood, all Ge data

T

Comparison is independent of nuclear matrix elements and mechanism which generates the neutrinoless double beta decay

Summary and outlook

- No indication for a peak at Q = 2039 keV in GERDA phase I data
- GERDA provides a model-independent test of the signal claim
- Combined with HdM and IGEX:

 $T_{1/2}^{0\nu} > 3 \times 10^{25} \,\mathrm{yr} \,(90\% \,\mathrm{C.L.})$

• This yields an upper limit on the effective Majorana neutrino mass in the range:

 $m_{\beta\beta} < 0.2 - 0.4 \,\mathrm{eV}$

• GERDA phase II will start later in 2013

arXiv:1307.4720 [nucl-ex]

End

Ge detectors: isotopic composition

Table 2 The relative number of nuclei for the different isotopes is shown for the different detector batches. The isotopic composition of the depleted material is the average of measurements by the collaboration and ECP; that for natural germanium is given for comparison

detector batch	Ref.	germanium isotope						
		70	72	73	74	76		
natural	[64]	0.204(2)	0.273(3)	0.078(1)	0.367(2)	0.078(1)		
HDM-ANG 1	[73]	0.0031(2)	0.0046(19)	0.0025(8)	0.131(24)	0.859(29)		
IGEX	[63]	0.0044(1)	0.0060(1)	0.0016(1)	0.1329(1)	0.8551(10)		
GERDA depleted		0.223(8)	0.300(4)	0.083(2)	0.388(6)	0.006(2)		
GERDA Phase II *	[66]	0.0002(1)	0.0007(3)	0.0016(2)	0.124(4)	0.874(5)		
Majorana	[74]	0.00006	0.00011	0.0003	0.0865	0.914		

detector name	serial nr. ORTEC	diam. (mm)	length (mm)	total mass (g)	operat. bias (V)	abundance f ₇₆
ANG 1	*	58.5	68	958	3200	0.859 (13)
ANG 2	P40239A	80	107	2833	3500	0.866 (25)
ANG 3	P40270A	78	93	2391	3200	0.883 (26)
ANG 4	P40368A	75	100	2372	3200	0.863 (13)
ANG 5	P40496A	78.5	105	2746	1800	0.856 (13)
RG 1^{\dagger}	28005-S	77.5	84	2110	4600	0.8551 (10)
RG 2^{\dagger}	28006-S	77.5	84	2166	4500	0.8551 (10)
RG 3^{\dagger}	28007-S	79	81	2087	3300	0.8551 (10)
GTF 32	P41032A	89	71	2321	3500	0.078 (1)
GTF 42	P41042A	85	82.5	2467	3000	0.078 (1)
GTF 44	P41044A	84	84	2465	3500	0.078 (1)
GTF 45	P41045A	87	75	2312	4000	0.078 (1)
GTF 110	P41110A	84	105	3046	3000	0.078 (1)
GTF 112	P41112A	85	100	2965	3000	0.078 (1)

Two-neutrino double beta decay

• The 2nbb half life derived when using the full background model:

model	$\mathcal{E} \; [\mathrm{kg} \cdot \mathrm{yr}]$	$T_{1/2}^{2\nu} \cdot 10^{21} \mathrm{yr}$
GOLD-coax minimum	15.40	$1.92^{+0.02}_{-0.04}$
GOLD-coax maximum	15.40	$1.92^{+0.04}_{-0.03}$
GOLD-nat minimum	3.13	$1.74_{-0.24}^{+0.48}$
SUM- $BEGe$	1.80	$1.96^{+0.13}_{-0.05}$
Analysis in Ref. [18]	5.04	$1.84^{+0.09}_{-0.08 \ fit \ -0.10 \ syst}$

Background prediction in the ROI

Table 10 The total background index and individual contributions in 10 keV (8 keV for BEGes) energy window around $Q_{\beta\beta}$ for different models and data sets. Given are the values due to the global mode together with the uncertainty intervals [upper,lower limit] obtained as the smallest 68 % interval (90 %/10 % quantile for limit setting) of the marginalized distributions.

		GOLD-coax				G	OLD- nat	S	UM-bege
component	location	minimum model maximum model		minii	minimum model		minimum $+ n^+$		
					BI 10^{-3} ct	cs/(keV)	·kg·yr)		
Tetal			[176109]	91.0	[<u>]]</u>	20.6	[97 1 99 7]	901	
Total		18.0	[17.0,19.5]	21.9	[20.7,25.8]	29.0	[21.1, 32.1]	38.1	[37.3,38.7]
42 K	LAr homogeneous	3.0	[2.9, 3.1]	2.6	[2.0, 2.8]	2.9	[2.7, 3.2]	2.0	[1.8, 2.3]
$^{42}\mathrm{K}$	p^+ surface			4.6	[1.2, 7.4]				
$^{42}\mathrm{K}$	n^+ surface			0.2	[0.1, 0.4]			20.8	$[6.8,\!23.7]$
60 Co	det. assembly	1.4	[0.9, 2.1]	0.9	[0.3, 1.4]	1.1	[0.0, 2.5]		$<\!\!4.7$
60 Co	germanium	0.6	>0.1 [†])	0.6	>0.1 [†])	9.2	[4.5, 12.9]	1.0	[0.3, 1.0]
68 Ge	germanium		,		,				1.5 (< 6.7)
$^{214}\mathrm{Bi}$	det. assembly	5.2	[4.7, 5.9]	2.2	[0.5, 3.1]	4.9	[3.9, 6.1]	5.1	[3.1, 6.9]
$^{214}\mathrm{Bi}$	LAr close to p^+			3.1	<4.7				
$^{214}\mathrm{Bi}$	p ⁺ surface	1.4	[1.0, 1.8] [†])	1.3	[0.9, 1.8] [†])	3.7	[2.7, 4.8] [†])	0.7	[0.1, 1.3] [†])
214 Bi	radon shroud			0.7	< 3.5				
228 Th	det. assembly	4.5	[3.9, 5.4]	1.6	[0.4, 2.5]	4.0	[2.5, 6.3]	4.2	[1.8, 8.4]
228 Th	radon shroud			1.7	<2.9				
α model	p^+ surface	2.4	[2.4, 2.5]	2.4	[2.3, 2.5]	3.8	[3.5, 4.2]	1.5	[1.2, 1.8]

Background prediction in the ROI

Table 11 BI as predicted by the minimum and maximum models as well as by interpolation in 10 keV (8 keV for BEGe) energy window around $Q_{\beta\beta}$. Comparison of counts in the previously blinded window (width differs for different data sets) and model predictions is also given. Values in the parentheses show the uncertainty interval.

	GOLD- $coax$	GOLD- nat	SUM-bege
	BI in central reg	fion around $Q_{\beta\beta}$ (10) $10^{-3} \text{ cts}/(\text{k})$	keV for coaxial, 8 keV for BEGe) g keV yr)
interpolation	17.5 [15.1,20.1]	30.4 [23.7,38.4]	36.1 [26.4, 49.3]
minimum	18.5 $[17.6, 19.3]$	29.6 [27.1,32.7]	38.1 [$37.5, 38.7$]
maximum	$21.9\ [20.7, 23.8]$	37.1 [32.2, 39.2]	
	backgroun 30 keV	d counts in the prev 40 keV	iously blinded energy region 32 keV
data	13	5	2
minimum	8.6[8.2, 9.1]	3.5[3.2,3.8]	2.2 [2.1, 2.2]
maximum	10.3 [9.7, 11.1]	4.2[3.8, 4.6]	