Electroweak baryogenesis
and scalar dark matter

Jim Cline (McGill U.)
in(visibles / 3 Workshop, Durham IPPP, 19 July 2013

J.Cline, McGill U. —p. 1



Alternative to Vanilla Cosmology?

Unfortunately vanilla cosmology does not tell us the
origin of the the baryon asymmetry of the universe:
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e For many years, big bang nucleosynthesis (BBIN)
provided main constraint on the baryon asymmetry

e Cosmic microwave background (CMB) now provides
best measurement, consistent with BBN
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BBN / WMAP determination of 7
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From PDG review

http://pdg.lbl.gov/2012/reviews/
rpp2012-rev-bbang-
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BBN / Planck determination of 7);,
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History of baryogenesis papers
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Electroweak baryogenesis (EWBG) 1s interesting
because of its testability
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EWBG in a nutshell

e At critical temperature 7., ~ 100 GeV, bubbles of true vacuum
((H) # 0) form and start expanding.

e Particles interact with wall in a CP violating way.

e Baryon asymmetry forms inside the bubble.
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Needs new physics

e Strongly 1st order EWPT, not present in SM;
needs new fields coupling to Higgs

2nd Order

decreasing

femperature

Higgs Field, H

e New source of CP violation near bubble wall,
from complex, spatially varying fermion mass

Only baryon violation by sphalerons 1s already present
in SM

J.Cline, McGill U. — p. 7



EWBG in MSSM has been tested

Need my, < 127 GeV, myg,, < 120 GeV, m;, > 10TeV,

JC, Moore hep-ph/9806354; Carena, Quiros, Wagner 0809.3760
nearly maximal CF in pms, light ~ degenerate y=, y"
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JC, M. Joyce, K. Kainulainen, hep—ph/0110031
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EWBG in MSSM has been tested

Carena, Quiros, Wagner hep-ph/0208043 are more optimistic:

m,= 100 GeV ]
m,= 150 GeV
m,= 200 GeV
-~ m,= 300 GeV
- m,=400 GeV
m,= 500 GeV

Disagreement with us about correct form of €F source in
transport equations
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LLHC boosts interest in EWBG

But no signs of SUSY yet. Two Higgs doublet models have been
scrutinized — have several new CP-violating couplings:

V

A (H"H,; — %112)2 +m? (ST S;)
+ (m3 H"S;+h.c)+ A (H'"H;) (ST75;)

+ N (H"H;)(SVS)+ [N H"HY S, S; + h.c.]

+ [ M H"SV S, S+ N\ SYHY H; H; 4 h.c.] + As(STS;)?
+ ytr (HO*5tz' + (Mu o + anng)SO*) IR

(assuming minimal flavor violation (MFV) for new Yukawa
couplings, JC, K. Kainulainen, M. Trott, arXiv:1107.3559)
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EWBG in MFV 2HDMs

Distribution of 15 /15 obs from Monte Carlo:

full constraints:
R — ['(Z—bb)
b I'(Z—hadrons)
EWPO, b—sy,
neutron EDM,

Landau pole

JC, K. Kainulainen, M. Trott, arXiv:1107.3559

Only a few out of 10* models have large enough value!
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Baryogenesis and dark matter

There 1s significant recent interest in linking
baryogenesis to dark matter.

Much activity on simultaneous production of DM and
baryon asymmetry (cogenesis), but I won’t cover this

I will discuss how scalar dark matter can make EWBG
more robust

Work 1n collaboration with K. Kainulainen
(also D. Borah, P. Scott and C. Weniger)
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Inert Higgs Doublet Model

A special case of 2HDMs, where the extra doublet S
has Zs symmetry—does not couple to quarks or
leptons.

Lightest component of S is dark matter candidate

Chowdhury, et al., arXiv:1110.5334, noted that it can
lead to strong electroweak phase transition, a necessary
condition for EWBG

D. Borah, JC, arX1v:1204.4722 revisited EWPT 1n
IDM using full effective potential and particle physics
constraints
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IDM-+-EWPT is fine tuned

Need Mpn mh/2 and )\DM — )\1 + )\2 + 2)\3 <K )\z
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Much of parameter space with mp,; < my,/2 is ruled
out by XENON100 and by Higgs invisible width

constraint:
BR(h — SS) < 19%

Bélanger et al., arXiv:1306.294 1

J.Cline, McGill U. — p. 14



Fine tuning of \p;; in IDM

Distributions of favorable parameter values:

D. Borah, JC, arXiv:1204.4722

A; like to be large to help give strong EWPT.
Combination Apys = A + Ay + 23 18 tuned
at the 2% level or worse
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Solution to tuning: subdominant DM

JC, K. Kainulainen, arXiv:1302.2614
Larger values of Apj; give smaller relic density

—2
T, ~ 1/0-ann N )\DM
But direct detection signal scales as
2 0
NADyM ~ ADum

— can still have sizeable signal even 1if IDM
dark matter 1s small fraction of total DM!
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Naturally large \p;; in IDM

Distributions of favorable parameter values:

JC, K. Kainulainen, arXiv:1302.2614

Combination Apy; = A + A9 + 23 1s no longer tuned
to be small
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Subdominant DM is more likely

Fraction f, of full relic density versus mp;:

100 150 200

JC, K. Kainulainen, arXiv:1302.2614

frel may be as small as ~ 1077, rarely O(1)
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Subdominant DM is still discoverable

Effective cross section on nuclei g.g = 051 X frel

)\2 2,2
versus mpay: (O'S] — b/ “2m”)
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| | density
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JC, K. Kainulainen, arXiv:1302.2614

Full parameter space will be ruled out by LUX or XENONIT
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Maybe also discoverable at LHC
New nggs bosons AO and H~ must be relatlvely light:

| = B m, <400 GeV |
el —— g PR . oMy e oo
200 250 300 350 400 U [00 150 200 250 300
m, (GeV) m.... (GeV)

H= loop decreases
BR(h — 27) by ~ 10%

(probably need ILC to
detect 1t)

JC, K. Kainulainen, arXiv:1302.2614

ABR{h— %)
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Shortcomings of IDM + EWBG

e Still relatively hard to get strong EWPT
e We only explain EWPT, not mechanism of EWBG

Singlet (5) dark matter can do better:

o \;s|H|*S? interaction gives potential barrier at
tree-level — strong phase transition
Espinosa, Konstandin, Riva, arXiv:1107.5441
(S can initially have VEV, unlike in IDM)

o (S/A)?t;Htg coupling can be new source of CP
violation in top quark mass, allowing for EWBG
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Potential barrier with singlet DM

If A\js coupling 1s large
enough, there 1s barrier

between H =0 and S = 0
vacua at /' = 0.

Large Ay, leads again to
subdominant DM.

Small finite-1" effects need only lift degeneracy of
vacua. Strength of phase transition determined by

tree-level potential.

Analytic treatment of finite-1" V.g 1s possible.

J.Cline, McGill U. — p. 22



Subdominant singlet DM

Scatter plot of models with strong EWPT:
v. /T >1

Allowed (A < 1)

(halo uncertainty)

Excluded by XENON100

JC, K. Kainulainen, arXiv:1210.4196
Relic density fraction 1s no more than 3%, yet direct
detection already constrains parameter space

J.Cline, McGill U. — p. 23



Direct detection with singlet DM

Part of EWBG-favored parameter space 1s already
excluded by XENON100:
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JC, K. Kainulainen, arXiv:1210.4196
But much of the rest will be probed in the next 2 years!
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Future detection of singlet DM

Singlet DM will be probed to mg = 10 TeV by
LUX, XENONIT i1n the near future

JC, K. Kainulainen,
P. Scott, C. Weniger,
arX1v:1306.4710

3.0
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EWPT vs. direct detection

XENONIT will exclude entire region shown here. . .
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JC, K. Kainulainen, P. Scott, C. Weniger, arXiv:1306.4710
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Resonant annihilation region

. except for small sliver near mg = my, /2:

allowed

"~ Relic
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JC, K. Kainulainen, P. Scott, C. Weniger, arXiv:1306.4710
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Baryon asymmetry with singlet DM

Dimension-6 operator (S/A)*t; Ht g with complex
coetficient gives new source of CP violation for
baryogenesis:

Mg/ Mpops @ A=1TeV
or

(A/1TeV) @ Mg =g . We get large enough

baryon asymmetry
much more frequently

than in 2ZHDM.
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JC, K. Kainulainen, arXiv:1210.4196
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Summary

e Electroweak baryogenesis continues to be highly
constrained/testable

e Scalar dark matter coupling to Higgs can boost
strength of EWPT and baryon production

e Scalar can be either doublet or singlet of SU(2);,

e Large couplings to Higgs makes it a subdominant
component of the total DM

e Most of the parameter space will be probed within
2 years by upcoming XENON-like experiments
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