Electroweak baryogenesis and scalar dark matter

Jim Cline (McGill U.) in (*v*) isibles *13* Workshop, Durham IPPP, 19 July 2013

Alternative to Vanilla Cosmology?

Unfortunately vanilla cosmology does not tell us the origin of the the baryon asymmetry of the universe:

$$\frac{n_b}{n_{\gamma}} = \frac{n_p + n_n - n_{\bar{p}} - n_{\bar{n}}}{n_{\gamma}} \equiv \eta_{10} \times 10^{-10}$$

 $5.1 < \eta_{10} < 6.5 (95\% \text{ CL})$

- For many years, big bang nucleosynthesis (BBN) provided main constraint on the baryon asymmetry
- Cosmic microwave background (CMB) now provides best measurement, consistent with BBN

BBN / WMAP determination of η_{10}

From PDG review http://pdg.lbl.gov/2012/reviews/ rpp2012-rev-bbangnucleosynthesis.pdf

BBN / Planck determination of η_{10}

Incorporating ω_b from arXiv:1303.5076 (Planck 2013 Cosmological Parameters)

History of baryogenesis papers

Electroweak baryogenesis (EWBG) is interesting because of its testability

EWBG in a nutshell

- At critical temperature $T_c \sim 100$ GeV, bubbles of true vacuum $(\langle H \rangle \neq 0)$ form and start expanding.
- Particles interact with wall in a CP violating way.
- Baryon asymmetry forms inside the bubble.

Needs new physics

• Strongly 1st order EWPT, not present in SM; needs new fields coupling to Higgs

• New source of CP violation near bubble wall, from complex, spatially varying fermion mass

Only baryon violation by sphalerons is already present in SM

EWBG in MSSM has been tested

Need $m_h < 127 \text{ GeV}, m_{\tilde{t}_R} \leq 120 \text{ GeV}, m_{\tilde{t}_L} > 10 \text{ TeV},$

JC, Moore hep-ph/9806354; Carena, Quiros, Wagner 0809.3760 nearly maximal \mathcal{CP} in μm_2 , light ~ degenerate χ^{\pm}, χ^0

EWBG in MSSM has been tested

Carena, Quiros, Wagner hep-ph/0208043 are more optimistic:

Disagreement with us about correct form of *CP* source in transport equations

LHC boosts interest in EWBG

But no signs of SUSY yet. Two Higgs doublet models have been scrutinized – have several new CP-violating couplings:

$$V = \lambda \left(H^{\dagger i} H_{i} - \frac{1}{2} v^{2} \right)^{2} + m_{1}^{2} \left(S^{\dagger i} S_{i} \right) + \left(\frac{m_{2}^{2}}{2} H^{\dagger i} S_{i} + \text{h.c.} \right) + \lambda_{1} \left(H^{\dagger i} H_{i} \right) \left(S^{\dagger j} S_{j} \right) + \lambda_{2} \left(H^{\dagger i} H_{j} \right) \left(S^{\dagger j} S_{i} \right) + \left[\frac{\lambda_{3}}{3} H^{\dagger i} H^{\dagger j} S_{i} S_{j} + \text{h.c.} \right] + \left[\frac{\lambda_{4}}{4} H^{\dagger i} S^{\dagger j} S_{i} S_{j} + \frac{\lambda_{5}}{5} S^{\dagger i} H^{\dagger j} H_{i} H_{j} + \text{h.c.} \right] + \lambda_{6} (S^{\dagger i} S_{i})^{2} + y_{t} \bar{t}_{L} \left(H^{0*} \delta_{ti} + (\eta_{U} \delta_{ti} + \eta'_{U} V_{tb}^{*} V_{bi}) S^{0*} \right) q_{R}^{i}$$

(assuming minimal flavor violation (MFV) for new Yukawa couplings, JC, K. Kainulainen, M. Trott, arXiv:1107.3559)

EWBG in MFV 2HDMs

Distribution of $\eta_B/\eta_{B,obs}$ from Monte Carlo:

JC, K. Kainulainen, M. Trott, arXiv:1107.3559

Only a few out of 10^4 models have large enough value!

J.Cline, McGill U. – p. 11

Baryogenesis and dark matter

There is significant recent interest in linking baryogenesis to dark matter.

Much activity on simultaneous production of DM and baryon asymmetry (cogenesis), but I won't cover this

I will discuss how scalar dark matter can make EWBG more robust

Work in collaboration with K. Kainulainen (also D. Borah, P. Scott and C. Weniger)

Inert Higgs Doublet Model

A special case of 2HDMs, where the extra doublet S has Z_2 symmetry—does not couple to quarks or leptons.

Lightest component of S is dark matter candidate

Chowdhury, *et al.*, arXiv:1110.5334, noted that it can lead to strong electroweak phase transition, a necessary condition for EWBG

D. Borah, JC, arXiv:1204.4722 revisited EWPT in IDM using full effective potential and particle physics constraints

IDM+EWPT is fine tuned

Need $m_{DM} \sim m_h/2$ and $\lambda_{DM} \equiv \lambda_1 + \lambda_2 + 2\lambda_3 \ll \lambda_i$

Much of parameter space with $m_{DM} < m_h/2$ is ruled out by XENON100 and by Higgs invisible width constraint: $BR(h \rightarrow SS) < 19\%$

Bélanger *et al.*, arXiv:1306.2941

Fine tuning of λ_{DM} **in IDM**

Distributions of favorable parameter values:

D. Borah, JC, arXiv:1204.4722

 λ_i like to be large to help give strong EWPT. Combination $\lambda_{DM} \equiv \lambda_1 + \lambda_2 + 2\lambda_3$ is tuned at the 2% level or worse

Solution to tuning: subdominant DM

JC, K. Kainulainen, arXiv:1302.2614 Larger values of λ_{DM} give smaller relic density

 $n \sim 1/\sigma_{\rm ann} \sim \lambda_{DM}^{-2}$

But direct detection signal scales as

 $n\lambda_{DM}^2 \sim \lambda_{DM}^0$

→ can still have sizeable signal even if IDM dark matter is small fraction of total DM!

Naturally large λ_{DM} in IDM

Distributions of favorable parameter values:

JC, K. Kainulainen, arXiv:1302.2614

Combination $\lambda_{DM} \equiv \lambda_1 + \lambda_2 + 2\lambda_3$ is no longer tuned to be small

Subdominant DM is more likely

Fraction $f_{\rm rel}$ of full relic density versus m_{DM} :

JC, K. Kainulainen, arXiv:1302.2614

 $f_{
m rel}$ may be as small as $\sim 10^{-3}$, rarely ${\cal O}(1)^{-3}$

Subdominant DM is still discoverable

Effective cross section on nuclei $\sigma_{\text{eff}} = \sigma_{SI} \times f_{\text{rel}}$ versus m_{DM} : $\left(\sigma_{SI} = \frac{\lambda_{DM}^2 f^2 \mu^2 m_n^2}{4\pi m_h^4 m_{DM}^2}\right)$

JC, K. Kainulainen, arXiv:1302.2614

Full parameter space will be ruled out by LUX or XENON1T

J.Cline, McGill U. – p. 19

Maybe also discoverable at LHC New Higgs bosons A^0 and H^{\pm} must be relatively light:

 H^{\pm} loop decreases $BR(h \rightarrow 2\gamma)$ by $\sim 10\%$ (probably need ILC to detect it)

JC, K. Kainulainen, arXiv:1302.2614

Shortcomings of IDM + EWBG

- Still relatively hard to get strong EWPT
- We only explain EWPT, not mechanism of EWBG

Singlet (S) dark matter can do better:

- λ_{hs} |H|²S² interaction gives potential barrier at tree-level → strong phase transition
 Espinosa, Konstandin, Riva, arXiv:1107.5441
 (S can initially have VEV, unlike in IDM)
- $(S/\Lambda)^2 \bar{t}_L H t_R$ coupling can be new source of CP violation in top quark mass, allowing for EWBG

Potential barrier with singlet DM

If λ_{hs} coupling is large enough, there is barrier between H = 0 and S = 0vacua at T = 0.

Large λ_{hs} leads again to subdominant DM.

Small finite-T effects need only lift degeneracy of vacua. Strength of phase transition determined by tree-level potential.

Analytic treatment of finite- $T V_{eff}$ is possible.

Subdominant singlet DM

Scatter plot of models with strong EWPT:

JC, K. Kainulainen, arXiv:1210.4196

Relic density fraction is no more than 3%, yet direct detection already constrains parameter space

Direct detection with singlet DM

Part of EWBG-favored parameter space is already excluded by XENON100:

JC, K. Kainulainen, arXiv:1210.4196 But much of the rest will be probed in the next 2 years!

J.Cline, McGill U. – p. 24

Future detection of singlet DM

Singlet DM will be probed to $m_S \gtrsim 10$ TeV by LUX, XENON1T in the near future

JC, K. Kainulainen, P. Scott, C. Weniger, arXiv:1306.4710

EWPT vs. direct detection XENON1T will exclude entire region shown here.

JC, K. Kainulainen, P. Scott, C. Weniger, arXiv:1306.4710

Resonant annihilation region

. . except for small sliver near $m_S = m_h/2$:

JC, K. Kainulainen, P. Scott, C. Weniger, arXiv:1306.4710

Baryon asymmetry with singlet DM

Dimension-6 operator $(S/\Lambda)^2 \overline{t}_L H t_R$ with complex coefficient gives new source of CP violation for baryogenesis:

We get large enough baryon asymmetry much more frequently than in 2HDM.

JC, K. Kainulainen, arXiv:1210.4196

Summary

- Electroweak baryogenesis continues to be highly constrained/testable
- Scalar dark matter coupling to Higgs can boost strength of EWPT and baryon production
- Scalar can be either doublet or singlet of $SU(2)_L$
- Large couplings to Higgs makes it a subdominant component of the total DM
- Most of the parameter space will be probed within 2 years by upcoming XENON-like experiments