Spontaneous B-L Breaking as the Origin of the Hot Early Universe

Valerie Domcke DESY, Hamburg, Germany

in collaboration with W. Buchmüller, K. Schmitz, K. Kamada

arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392

Spontaneous B-L Breaking as the Origin of the Hot Early Universe

Valerie Domcke DESY, Hamburg, Germany

in collaboration with W. Buchmüller, K. Schmitz, K. Kamada

arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392

Spontaneous B-L Breaking as the Origin of the Hot Early Universe

Valerie Domcke DESY, Hamburg, Germany

in collaboration with W. Buchmüller, K. Schmitz, K. Kamada

arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392

Vanilla Cosmology?

Inflation

3

[Planck '13]

- exponential expansion driven by slowly rolling scalar field
- 'stretched' quantum fluctuations → inhomogeneities of the cosmic microwave background
- more a paradigm than a model

Expanding, cooling universe: Hot thermal plasma as initial state

Reheating:

- generation of the thermal bath through decay of heavy particles
- perturbative process

Preheating:

- rapid, nonperturbative process
- tachyonic preheating: triggered by tachyonic instability, exponential growth of low momentum modes [Felder et al. '01]

• large abundance of non-relativistic Higgs bosons, small abundances of particles coupled to it [Garcia-Bellido et al. '02]

35

Matter-Antimatter asymmetry

• small, but very significant B-L asymmetry:

$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.19 \pm 0.15) \cdot 10^{-10} \qquad \text{[Komatsu et al '10]}$$

- leptogenesis: generate matter asymmetry dynamically in lepton sector, typically via decay of heavy Majorana neutrino
- transfer to baryon sector via SM processes ($B + \mathcal{I}$ Sphalerons)

Dark matter

- ... see earlier talks
- here: gravitino or neutralino dark matter

Adding $U(1)_{B-L}$ to the SM gauge group

- top-down approach: $U(1)_{B-L}$ as part of GUT group
- $\bullet\,$ bottom-up approach: 'accidental' global symmetry of the SM $\rightarrow\,$ gauge symmetry
- possible after introduction of right-handed neutrinos for anomaly cancellation
- spontaneously broken at GUT scale

Outline

- Towards a Consistent Cosmological Picture: Spontaneous B-L Breaking
 - qualitative picture: linking inflation, leptogenesis and dark matter
 - quantitative description: the reheating process in terms of Boltzmann equations
- Phenomenology
- Conclusion

$$W = \frac{\sqrt{\lambda}}{2} \Phi \left(v_{B-L}^2 - 2 S_1 S_2 \right) + \frac{1}{\sqrt{2}} h_i^n n_i^c n_i^c S_1 + h_{ij}^{\nu} n_i^c \mathbf{5}_j^* H_u + W_{MSSM}$$

Before

hybrid inflation

[Dvali et al. '94]

- Phase transition
 - tachyonic preheating
 - cosmic strings

After

- reheating
- Ieptogenesis
- dark matter

ø dark matter

$$W = \frac{\sqrt{\lambda}}{2} \Phi \left(v_{B-L}^2 - 2S_1 S_2 \right) + \frac{1}{\sqrt{2}} h_i^n n_i^c n_i^c S_1 + h_{ij}^{\nu} n_i^c \mathbf{5}_j^* H_u + W_{MSSM}$$

SSB of B-L links inflation, (p)reheating, leptogenesis and DM

• evolution of the phase space density $f_X(t,p)$:

$$\hat{\mathcal{L}}f_X(t,p) = \left(\frac{\partial}{\partial t} - \frac{\dot{a}}{a}p\frac{\partial}{\partial p}\right)f_X(t,p) = \sum C_X$$

• collision operator: $C_X(Xab.. \leftrightarrow ij..) =$

$$\begin{split} &\frac{1}{2g_X E_X} \int d\Pi(X|a,b,..;i,j,..)(2\pi)^4 \delta^{(4)}(P_{\mathsf{out}}-P_{\mathsf{in}}) \\ &\times [f_i f_j..|\mathcal{M}(ij..\to Xab..)|^2 - f_X f_a f_b..|\mathcal{M}(Xab..\to ij..)|^2] \end{split}$$

• Friedmann equation: $3M_P^2 \left(\frac{\dot{a}}{a}\right)^2 = \rho_{\text{tot}}$

• evolution of the phase space density $f_X(t,p)$:

$$\hat{\mathcal{L}}f_X(t,p) = \left(\frac{\partial}{\partial t} - \frac{\dot{a}}{a}p\frac{\partial}{\partial p}\right)f_X(t,p) = \sum C_X$$

• collision operator: $C_X(Xab.. \leftrightarrow ij..) =$

$$\frac{1}{2g_X E_X} \int d\Pi(X|a,b,..;i,j,..)(2\pi)^4 \delta^{(4)}(P_{\mathsf{out}} - P_{\mathsf{in}}) \\ \times [f_i f_j ..|\mathcal{M}(ij.. \to Xab..)|^2 - f_X f_a f_b ..|\mathcal{M}(Xab.. \to ij..)|^2]$$

• Friedmann equation: $3M_P^2 \left(\frac{\dot{a}}{a}\right)^2 = \rho_{\text{tot}}$

• evolution of the phase space density $f_X(t,p)$:

$$\hat{\mathcal{L}}f_X(t,p) = \left(\frac{\partial}{\partial t} - \frac{\dot{a}}{a}p\frac{\partial}{\partial p}\right)f_X(t,p) = \sum C_X$$

$$\begin{split} & \text{p collision operator: } C_X(Xab..\leftrightarrow ij..) = \\ & \frac{1}{2g_X E_X} \int d\Pi(X|a,b,..;i,j,..)(2\pi)^4 \delta^{(4)}(P_{\mathsf{out}}-P_{\mathsf{in}}) \\ & \times [f_i f_j..|\mathcal{M}(ij..\rightarrow Xab..)|^2 - f_X f_a f_b..|\mathcal{M}(Xab..\rightarrow ij..)|^2] \end{split}$$

• Friedmann equation: $3M_P^2 \left(\frac{\dot{a}}{a}\right)^2 = \rho_{\text{tot}}$

• evolution of the phase space density $f_X(t,p)$:

$$\hat{\mathcal{L}}f_X(t,p) = \left(\frac{\partial}{\partial t} - \frac{\dot{a}}{a}p\frac{\partial}{\partial p}\right)f_X(t,p) = \sum C_X$$

• collision operator: $C_X(Xab.. \leftrightarrow ij..) =$

$$\frac{1}{2g_X E_X} \int d\Pi(X|a,b,..;i,j,..)(2\pi)^4 \delta^{(4)}(P_{\mathsf{out}} - P_{\mathsf{in}}) \\ \times [f_i f_j ..|\mathcal{M}(ij.. \to Xab..)|^2 - f_X f_a f_b ..|\mathcal{M}(Xab.. \to ij..)|^2]$$

• Friedmann equation:
$$3M_P^2 \left(rac{\dot{a}}{a}
ight)^2 =
ho_{\mathsf{tot}}$$

Solving the Boltzmann Equations

 $\begin{array}{l} {\sf Spontaneous} \ B-L \\ {\sf Breaking} \end{array}$

Tracking the evolution of the number densities of all species

Outline

- Motivation
- Towards a Consistent Cosmological Picture: Spontaneous *B*-*L* Breaking

Phenomenology

- investigating the parameter space
- gravitational waves
- Conclusion

Model Parameters

$$W = \frac{\sqrt{\lambda}}{2} \Phi \left(v_{B-L}^2 - 2 S_1 S_2 \right) + \frac{1}{\sqrt{2}} h_i^n n_i^c n_i^c S_1 + h_{ij}^{\nu} n_i^c \mathbf{5}_j^* H_u + W_{MSSM}$$

- parameters of the superpotential: λ, h_{ij}, v_{B-L}
- re-parametrize assuming hierarchical right-handed neutrinos

$$\Rightarrow v_{B-L}, M_1, \widetilde{m}_1$$

with $v_{B-L}=5\times 10^{15}~{\rm GeV}$ fixed by hybrid inflation + cosmic strings

• plus sparticle masses $m_{\tilde{g}} \equiv 1$ TeV, $m_{\tilde{G}}$

Model parameters: $v_{B-L}, M_1, \tilde{m}_1, m_{\tilde{G}}$

Baryon Asymmetry and \widetilde{G} Dark Matter

Consistency of inflation, $\widetilde{G}\text{-}\mathsf{DM}$ and leptogenesis for $m_{\widetilde{G}}\gtrsim 10~\mathrm{GeV}$

Sources for Gravitational Waves

- > tensor perturbations of homogeneous background metric
- > sourced by strong gravitational fields

Inflation

[Rubakov et al. '82, Turner et al. '93]

- quantum tensor perturbations become classical during inflation
- governed by evolution of scale-factor after horizon re-entry

Preheating

[Garcia-Bellido et al. '07, Dufaux et al. '09, Dufaux et al. '10]

- from bubble-collisions during phase transition
- at high frequencies, governed by small length-scales at preheating

Cosmic strings

[Vilenkin '81, Hindmarsh et al. '12]

- high energy density along cosmic strings
- huge range of scales \rightarrow large theoretical uncertainty (AH vs NG)

Consistent picture at hand \rightarrow calculate complete spectrum

Observational Prospects

Observational Prospects

(1) msPT, (2) EPTA, (3) LIGO, (4) KAGRA, (5) ET, (6) adv. LIGO, (7) eLISA, (8) BBO/DECIGO, (9) SKA

Observational Prospects

 $U(1)_{B-L}$ phase transition within reach of upcoming experiments

Conclusion

→ relations between superparticle and neutrino mass spectrum

 \rightarrow predictions for GW spectrum

backup slides

Outlook: Superconformal D-term inflation

Motivation: F-term hybrid inflation in supergravity requires fine-tuning \rightarrow search for viable alternatives.

Symmetry-inspired approach: mildly broken superconformal symmetry [Ferrara et al. '11] + D-term hybrid inflation

• Jordan frame: theory closely resembles global supersymmetry

$$\frac{\mathcal{L}_J}{\sqrt{-g_J}} = \underbrace{\frac{1}{2} M_P^2 \left(R(g_J) + 6\mathcal{A}_{\mu}^2 \right)}_{\text{pure constraints}} - \underbrace{\frac{1}{6} R(g_J) |z|^2 - \delta_{\alpha\bar{\beta}} g_J^{\mu\nu} \left(\tilde{\nabla}_{\mu} z^{\alpha} \right) (\tilde{\nabla}_{\nu} \bar{z}^{\bar{\beta}}) - V_J}_{\text{supressing}}$$

pure supergravity

superconformal matte

• Einstein frame: symmetry well hidden

$$W = \lambda \phi S_+ S_- , \quad K = -3M_P^2 \ln\left(\frac{-\Phi(z,\bar{z})}{3M_P^2}\right), \quad \Phi(z,\bar{z}) = -3M_P^2 + |z|^2$$

 $\Rightarrow n_s \sim 0.96$ possible, but tension with cosmic string bound.

B-L breaking

Unitary gauge:

$$S_{1,2} = \frac{1}{\sqrt{2}} S' \exp(\pm iT), \qquad V = Z + \frac{i}{2gq_S} (T - T^*).$$

- Supermultiplet T drops out of W and K ('eaten up')
- Gauge supermultiplet becomes massive

Time dependent mass spectrum:

$$\begin{split} m_{\sigma}^2 &= \frac{1}{2}\lambda(3v^2(t) - v_{B-L}^2) \,, \qquad m_{\tau}^2 = \frac{1}{2}\lambda(v_{B-L}^2 + v^2(t)) \,, \\ m_{\phi}^2 &= \lambda v^2(t) \,, \qquad m_{\psi}^2 = \lambda v^2(t) \,, \\ m_Z^2 &= 8g^2 v^2(t) \,, \\ M_i^2 &= (h_i^n)^2 v^2(t) \,. \end{split}$$

Model parameters

$$W = \frac{\sqrt{\lambda}}{2} \Phi \left(v_{B-L}^2 - 2 S_1 S_2 \right) + \frac{1}{\sqrt{2}} h_i^n n_i^c n_i^c S_1 + h_{ij}^{\nu} n_i^c L_j H_u + W_{MSSM}$$

• Parameters of the superpotential: λ , h_{ij} , v_{B-L}

• Froggatt-Nielsen parametrization:

[Froggatt, Nielsen '79]

$$Y_{ijk} \sim \eta^{Q_i + Q_j + Q_k} \,, \quad \eta \simeq 1/\sqrt{300} \label{eq:Yijk}$$

+ SM mass hierarchies, hierarchical right-handed neutrinos \Rightarrow Froggatt - Nielsen charge assignments.

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \psi_i & \mathbf{10}_3 & \mathbf{10}_2 & \mathbf{10}_1 & \mathbf{5}_3^* & \mathbf{5}_2^* & \mathbf{5}_1^* & n_3^c & n_2^c & n_1^c & \Phi \\ \hline Q_i & \mathsf{0} & \mathsf{1} & \mathsf{2} & a & a & a+1 & d-1 & d-1 & d & 2(d-1) \end{array}$$

Model parameters

$$W = \frac{\sqrt{\lambda}}{2} \Phi \left(v_{B-L}^2 - 2 S_1 S_2 \right) + \frac{1}{\sqrt{2}} h_i^n n_i^c n_i^c S_1 + h_{ij}^{\nu} n_i^c L_j H_u + W_{MSSM}$$

- Parameters of the superpotential: λ , h_{ij} , v_{B-L}
- Froggatt-Nielsen parametrization: [Froggatt, Nielsen '79] $Y_{ijk} \sim \eta^{Q_i+Q_j+Q_k} \;, \quad \eta \simeq 1/\sqrt{300}$
- + SM mass hierarchies, hierarchical right-handed neutrinos
 Physical parameters:

$$v_{B-L} \sim \eta^{2a} \frac{v_{EW}^2}{\overline{m}_{\nu}}, \quad M_1 \sim \eta^{2d} v_{B-L}, \quad \widetilde{m}_1 \equiv \frac{(m_D^{\dagger} m_D)_{11}}{M_1} \sim \eta^{2a} \frac{v_{EW}^2}{v_{B-L}}$$

• ... with $v_{B-L} \simeq 5 \times 10^{15} {\rm ~GeV}$ from inflation & cosmic strings

Model parameters

$$W = \frac{\sqrt{\lambda}}{2} \Phi \left(v_{B-L}^2 - 2 S_1 S_2 \right) + \frac{1}{\sqrt{2}} h_i^n n_i^c n_i^c S_1 + h_{ij}^{\nu} n_i^c L_j H_u + W_{MSSM}$$

- Parameters of the superpotential: λ , h_{ij} , v_{B-L}
- Froggatt-Nielsen parametrization: [Froggatt, Nielsen '79] $Y_{ijk} \sim \eta^{Q_i + Q_j + Q_k}$, $\eta \simeq 1/\sqrt{300}$ + SM mass hierarchies, hierarchical right-handed neutrinos
- Physical parameters:

$$v_{B-L} \sim \eta^{2a} \frac{v_{EW}^2}{\overline{m}_{\nu}}, \quad M_1 \sim \eta^{2d} v_{B-L}, \quad \widetilde{m}_1 \equiv \frac{(m_D^{\dagger} m_D)_{11}}{M_1} \sim \eta^{2a} \frac{v_{EW}^2}{v_{B-L}}$$

• plus sparticle masses $m_{\tilde{g}} \equiv 1$ TeV, $m_{\tilde{G}}$

Model parameters: $v_{B-L}, M_1, \tilde{m}_1, m_{\tilde{G}}$

Hybrid inflation

Bounds from successful supersymmetric hybrid inflation and cosmic string production:

Tachyonic preheating

Higgs boson

- ${\rm \bullet}\,$ acquires tachyonic mass term $-m^2<0$
- long wavelength modes grow exponentially [Felder et al. '01]

$$\langle \delta \sigma^2 \rangle = \frac{1}{4\pi^2} \int_0^m dk \, k \, e^{2t(\sqrt{m^2 - k^2})}$$

• can be treated as classical background field

Particles coupled to the Higgs boson

• particle production due to dynamical background field:

$$\begin{split} n_B(\alpha) &\simeq 1 \times 10^{-3} g_s m_S^3 f(\alpha, 1.3) / \alpha \\ n_F(\alpha) &\simeq 3.6 \times 10^{-4} g_s m_S^3 f(\alpha, 0.8) / \alpha \\ \text{with } f(\alpha, \gamma) &= \sqrt{\alpha^2 + \gamma^2} - \gamma \end{split}$$

[Garcia-Bellido, Morales '02]

• Boltzmann equation:

$$\hat{\mathcal{L}}f_{\sigma} = -C_{\sigma}(\sigma \to N_1 N_1) - C_{\sigma}(\sigma \to \tilde{N}_1 \tilde{N}_1)$$

+ initial conditions: tachyonic preheating

solution:

$$f_{\sigma}(t,p) = \frac{2\pi^2}{g_{\sigma}} N_{\sigma}(t_{\mathsf{PH}}) \frac{\delta(ap)}{(ap)^2} \exp[-\Gamma_{\sigma}^0 \left(t - t_{\mathsf{PH}}\right)]$$

$$\Rightarrow N_{\sigma} = \left(\frac{a(t)}{\text{GeV}}\right)^3 g_{\sigma} \int \frac{d^3p}{(2\pi)^3} f_{\sigma}(t,p) \,, \quad \rho_{\sigma} = g_{\sigma} \int \frac{d^3p}{(2\pi)^3} E_{\sigma}(p) f_{\sigma}(t,p)$$

+ require self-consistency of Friedmann equation

Boltzmann equation for σ solved analytically

Thermal gravitino production

$$\gamma_{\tilde{G}}(T) = \left(1 + \frac{m_{\tilde{g}}^2(T)}{3m_{\tilde{G}}^2}\right) \frac{54\,\zeta(3)\,g_s^2(T)}{\pi^2 M_P^2} T^6 \left[\ln\left(\frac{T^2}{m_g^2(T)}\right) + 0.8846\right]$$

[Bolz, Brandenburg, Buchmüller '01]

A representative parameter point

Input parameters:

$$M_1 = 5.4 \times 10^{10} \,\text{GeV}\,, \qquad \qquad \widetilde{m}_1 = 4.0 \times 10^{-2} \,\text{eV}\,, \\ m_{\widetilde{G}} = 100 \,\text{GeV}\,, \qquad \qquad \qquad m_{\widetilde{g}} = 1 \,\text{TeV}\,, \\ (\alpha = 10^{-12}) \,. \end{cases}$$

Resulting parameter values:

$$\begin{split} m_S &= 1.6 \times 10^{13} \, {\rm GeV} \,, \qquad M_{2,3} = 1.6 \times 10^{13} \, {\rm GeV} \,, \\ \Gamma^0_S &= 1.9 \times 10 \, {\rm GeV} \,, \qquad \Gamma^0_{N_{2,3}} = 2.1 \times 10^{10} \, {\rm GeV} \,, \quad \Gamma^0_{N_1} = 3.0 \times 10^5 \, {\rm GeV} \,, \\ \lambda &= 1.0 \times 10^{-5} \,, \qquad \epsilon_{2,3} = -1.6 \times 10^{-3} \,, \qquad \epsilon_1 = 5.3 \times 10^{-6} \,, \\ G\mu &= 2 \times 10^{-7} \,. \end{split}$$

Spontaneous B-LBreaking

• Boltzmann equation:

 $\hat{\mathcal{L}} f_{N_1} = 2 C_{N_1}(\phi_s \to N_1 N_1) + C_{N_1}(\psi_s \to \tilde{N}_1^* N_1) + C_{N_1}(N_1 \leftrightarrow \mathsf{MSSM})$ + initial conditions: tachyonic preheating, B-L gauge boson decay

• solution: comoving number density of nonthermal neutrinos

$$\begin{split} N_{N_{1}}^{\text{nt}}(t) &= N_{N_{1}}^{\text{PH}}(t) + N_{N_{1}}^{G}(t) + N_{N_{1}}^{S}(t) \\ &= N_{N_{1}}^{\text{PH}}(t_{\text{PH}}) \, e^{-\Gamma_{N_{1}}^{0}(t-t_{\text{PH}})} + \, N_{N_{1}}^{G}(t_{G}) \, \exp\left[-\int_{t_{G}}^{t} dt' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{G}/2; t_{G}, t')}\right] \\ &+ \int_{t_{\text{PH}}}^{t} dt' \, a^{3}(t') \, \gamma_{S,N_{1}}(t') \, \exp\left[-\int_{t'}^{t} dt'' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{S}/2; t', t'')}\right] \end{split}$$

$$\begin{split} \gamma_{S,N_1}(t) &:= 2 \, \frac{N_{\phi_S}(t)}{a(t)^3} \, \Gamma^0_{\phi_S \to N_1 N_1} + \frac{N_{\psi_S}(t)}{a(t)^3} \, \Gamma^0_{\psi_S} \\ \mathcal{E}_{N_1}(E_0;t',t) &:= E_0 \, \frac{a(t')}{a(t)} \left\{ 1 + \left[\left(\frac{a(t)}{a(t')} \right)^2 - 1 \right] \left(\frac{M_1}{E_0} \right)^2 \right\}^{1/2} \end{split}$$

Spontaneous B-LBreaking

• Boltzmann equation:

 $\hat{\mathcal{L}} f_{N_1} = 2 C_{N_1}(\phi_s \to N_1 N_1) + C_{N_1}(\psi_s \to \tilde{N}_1^* N_1) + C_{N_1}(N_1 \leftrightarrow \mathsf{MSSM})$ + initial conditions: tachyonic preheating, B-L gauge boson decay

• solution: comoving number density of nonthermal neutrinos

$$\begin{split} N_{N_{1}}^{n\mathsf{t}}(t) &= N_{N_{1}}^{\mathsf{PH}}(t) + N_{N_{1}}^{G}(t) + N_{N_{1}}^{S}(t) \\ &= N_{N_{1}}^{\mathsf{PH}}(t_{\mathsf{PH}}) \, e^{-\Gamma_{N_{1}}^{0}(t-t_{\mathsf{PH}})} + \, N_{N_{1}}^{G}(t_{G}) \, \exp\left[-\int_{t_{G}}^{t} dt' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{G}/2; t_{G}, t')}\right] \\ &+ \int_{t_{\mathsf{PH}}}^{t} dt' \, a^{3}(t') \, \gamma_{S,N_{1}}(t') \, \exp\left[-\int_{t'}^{t} dt'' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{S}/2; t', t'')}\right] \end{split}$$

$$\begin{split} \gamma_{S,N_1}(t) &:= 2 \, \frac{N_{\phi_S}(t)}{a(t)^3} \, \Gamma^0_{\phi_S \to N_1 N_1} + \frac{N_{\psi_S}(t)}{a(t)^3} \, \Gamma^0_{\psi_S} \\ \mathcal{E}_{N_1}(E_0;t',t) &:= E_0 \, \frac{a(t')}{a(t)} \left\{ 1 + \left[\left(\frac{a(t)}{a(t')} \right)^2 - 1 \right] \left(\frac{M_1}{E_0} \right)^2 \right\}^{1/2} \end{split}$$

Spontaneous B-LBreaking

• Boltzmann equation:

 $\hat{\mathcal{L}} f_{N_1} = 2 C_{N_1}(\phi_s \to N_1 N_1) + C_{N_1}(\psi_s \to \tilde{N}_1^* N_1) + C_{N_1}(N_1 \leftrightarrow \mathsf{MSSM})$ + initial conditions: tachyonic preheating, B-L gauge boson decay

• solution: comoving number density of nonthermal neutrinos

$$\begin{split} N_{N_{1}}^{\text{nt}}(t) &= N_{N_{1}}^{\text{PH}}(t) + N_{N_{1}}^{G}(t) + N_{N_{1}}^{S}(t) \\ &= N_{N_{1}}^{\text{PH}}(t_{\text{PH}}) \, e^{-\Gamma_{N_{1}}^{0}(t-t_{\text{PH}})} + N_{N_{1}}^{G}(t_{G}) \, \exp\left[-\int_{t_{G}}^{t} dt' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{G}/2; t_{G}, t')}\right] \\ &+ \int_{t_{\text{PH}}}^{t} dt' \, a^{3}(t') \, \gamma_{S,N_{1}}(t') \, \exp\left[-\int_{t'}^{t} dt'' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{S}/2; t', t'')}\right] \end{split}$$

$$\begin{split} \gamma_{S,N_1}(t) &:= 2 \, \frac{N_{\phi_S}(t)}{a(t)^3} \, \Gamma^0_{\phi_S \to N_1 N_1} + \frac{N_{\psi_S}(t)}{a(t)^3} \, \Gamma^0_{\psi_S} \\ \mathcal{E}_{N_1}(E_0;t',t) &:= E_0 \, \frac{a(t')}{a(t)} \left\{ 1 + \left[\left(\frac{a(t)}{a(t')} \right)^2 - 1 \right] \left(\frac{M_1}{E_0} \right)^2 \right\}^{1/2} \end{split}$$

Spontaneous B-LBreaking

• Boltzmann equation:

 $\hat{\mathcal{L}} f_{N_1} = 2 C_{N_1}(\phi_s \to N_1 N_1) + C_{N_1}(\psi_s \to \tilde{N}_1^* N_1) + C_{N_1}(N_1 \leftrightarrow \mathsf{MSSM})$ + initial conditions: tachyonic preheating, B-L gauge boson decay

• solution: comoving number density of nonthermal neutrinos

$$\begin{split} N_{N_{1}}^{\text{nt}}(t) &= N_{N_{1}}^{\text{PH}}(t) + N_{N_{1}}^{G}(t) + N_{N_{1}}^{S}(t) \\ &= N_{N_{1}}^{\text{PH}}(t_{\text{PH}}) \, e^{-\Gamma_{N_{1}}^{0}(t-t_{\text{PH}})} + N_{N_{1}}^{G}(t_{G}) \, \exp\left[-\int_{t_{G}}^{t} dt' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{G}/2; t_{G}, t')}\right] \\ &+ \int_{t_{\text{PH}}}^{t} dt' \, a^{3}(t') \, \gamma_{S,N_{1}}(t') \, \exp\left[-\int_{t'}^{t} dt'' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{S}/2; t', t'')}\right] \end{split}$$

$$\begin{split} \gamma_{S,N_1}(t) &:= 2 \, \frac{N_{\phi_S}(t)}{a(t)^3} \, \Gamma^0_{\phi_S \to N_1 N_1} + \frac{N_{\psi_S}(t)}{a(t)^3} \, \Gamma^0_{\psi_S} \\ \mathcal{E}_{N_1}(E_0;t',t) &:= E_0 \, \frac{a(t')}{a(t)} \left\{ 1 + \left[\left(\frac{a(t)}{a(t')} \right)^2 - 1 \right] \left(\frac{M_1}{E_0} \right)^2 \right\}^{1/2} \end{split}$$

• Boltzmann equation:

 $\hat{\mathcal{L}}f_{N_1} = 2 C_{N_1}(\phi_S \to N_1 N_1) + C_{N_1}(\psi_S \to \tilde{N}_1^* N_1) + C_{N_1}(N_1 \leftrightarrow \mathsf{MSSM})$

- + initial conditions: tachyonic preheating, $B\!-\!L$ gauge boson decay
- solution: comoving number density of nonthermal neutrinos

$$\begin{split} N_{N_{1}}^{\mathrm{nt}}(t) &= N_{N_{1}}^{\mathrm{PH}}(t) + N_{N_{1}}^{G}(t) + N_{N_{1}}^{S}(t) \\ &= N_{N_{1}}^{\mathrm{PH}}(t_{\mathrm{PH}}) \, e^{-\Gamma_{N_{1}}^{0}(t-t_{\mathrm{PH}})} + \, N_{N_{1}}^{G}(t_{G}) \, \exp\left[-\int_{t_{G}}^{t} dt' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{G}/2; t_{G}, t')}\right] \\ &+ \int_{t_{\mathrm{PH}}}^{t} dt' \, a^{3}(t') \, \gamma_{S,N_{1}}(t') \, \exp\left[-\int_{t'}^{t} dt'' \frac{M_{1} \, \Gamma_{N_{1}}^{0}}{\mathcal{E}_{N_{1}}(m_{S}/2; t', t'')}\right] \end{split}$$

Boltzmann equation for N_1 solved semi-analytically

Evolution of the reheating temperature

Thermal and nonthermal B-L asymmetry

First generation (s)neutrino population

Reheating Temperature

$T_{\rm RH}$ plays a key role for both DM production and leptogenesis

Scan of the parameter space: lepton asymmetry

Scan of the parameter space: neutrino mass

 M_1 [GeV] such that $\Omega_{\tilde{G}} h^2 = 0.11$

Semi-analytical formulas - temperature

$$\begin{split} T_{\mathsf{RH}} &= \alpha^{-1} \beta^{-1/2} \gamma^{-1/2} \left(\frac{90}{8\pi^3 g_*}\right)^{1/4} \sqrt{\Gamma_{N_1}^0 M_P} \\ &= 1.3 \times 10^{10} \,\, \mathrm{GeV} \left(\frac{\widetilde{m}_1}{0.04 \,\, \mathrm{eV}}\right)^{1/4} \left(\frac{M_1}{10^{11} \,\, \mathrm{GeV}}\right)^{5/4} \end{split}$$

- γ : relativistic time-dilatiation
- β : numerical imprecision when solving the Friedmann equation
- $\alpha = \rho_{\rm tot}(a_{\rm RH}) / \rho_R(a_{\rm RH})$, function of \widetilde{m}_1 and M_1

Semi-analytica formulas - lepton asymmetry

 ${\ensuremath{\, \bullet }}$ weak wash-out regime, instantaneous N_1 decay

$$\eta_B \simeq \eta_B^{\rm nt} \simeq 6.7 \times 10^{-9} \left(\frac{M_1}{10^{11} {\rm ~GeV}}\right)^{3/2}$$

• thermal regime, wash-out important

$$\eta_B \simeq \eta_B^{\rm th} \simeq 7.0 \times 10^{-1} \left(\frac{0.1 \text{ eV}}{\widetilde{m}_1}\right)^{1.1} \left(\frac{M_1}{10^{12} \text{ GeV}}\right)$$

Semi-analytical formulas - dark matter

Thermal abundance controlled by $T_{\rm RH}$

$$\Omega_{\widetilde{G}}h^2 = \varepsilon \, C_1 \left(\frac{T_{\mathsf{RH}}}{10^{10} \; \mathsf{GeV}}\right) \left[C_2 \left(\frac{m_{\widetilde{G}}}{100 \; \mathsf{GeV}}\right) + \left(\frac{100 \; \mathsf{GeV}}{m_{\widetilde{G}}}\right) \left(\frac{m_{\widetilde{g}}}{1 \; \mathsf{TeV}}\right)^2\right]$$

- $C_1(T_{\rm RH})\simeq 0.26$ analytically
- $C_2(T_{\rm RH}) \simeq 0.13$ analytically
- ε : entropy and gravitino production after $a_{\rm RH}$

$$\varepsilon \simeq 1.2 \left(\frac{10^{-3} \text{ eV}}{\widetilde{m}_1}\right)^c, \quad c = \begin{cases} -0.01 & \text{ for } \widetilde{m}_1 \lesssim 10^{-3} \text{ eV} \\ 0.21 & \text{ for } \widetilde{m}_1 \gtrsim 10^{-3} \text{ eV} \end{cases}$$

Rescaling the gluino mass

[Buchmüller, Schmitz, Vertongen '11]

Gravitational Waves: Overview

Described by linearised Einstein equation (Fourier space, TT gauge)

$$\tilde{h}_{ij}^{\prime\prime}(\mathbf{k},\tau) + \left(k^2 - \frac{a^{\prime\prime}}{a}\right) \underbrace{\tilde{h}_{ij}(\mathbf{k},\tau)}_{a \, h_{ij}} = 16\pi \, G \, a \underbrace{\prod_{ij}(\mathbf{k},\tau)}_{\substack{\text{FT of TT part of anisotropic stress tensor}}_{a \, \text{injotropic stress tensor}} \underbrace{\tilde{h}_{ij}(\mathbf{k},\tau)}_{a \, h_{ij}} = 16\pi \, G \, a \underbrace{\prod_{ij}(\mathbf{k},\tau)}_{\substack{\text{FT of TT part of anisotropic stress tensor}}}_{a \, \text{injotropic stress tensor}}$$

Solved by Greens function $\mathcal{G}=\sin(k(\tau-\tau'))/k$ for $k\tau\gg 1$

$$h_{ij}(\boldsymbol{k},\tau) = 16\pi G \frac{1}{a(\tau)} \int_{\tau_i}^{\tau} d\tau' a(\tau') \mathcal{G}(\boldsymbol{k},\tau,\tau') \Pi_{ij}(\boldsymbol{k},\tau)$$

Observed quantity:

$$\Omega_{\rm GW} = \frac{1}{\rho_{\rm c}} \frac{\partial \rho_{\rm GW}}{\partial \ln k} \,, \quad {\rm with} \,\, \rho_{\rm GW} = \frac{1}{32\pi G} \langle \dot{h}_{ij}(\boldsymbol{x},\tau) \, \dot{h}^{ij}(\boldsymbol{x},\tau) \rangle \label{eq:GW}$$

Goal: calculate spectrum $\Omega_{GW}(f)$

For Example: AH Cosmic Strings

- translational invariance and isotropy of the source
- scaling (self-similar) regime

$$\Rightarrow \langle \Pi_{ij}(\boldsymbol{k},\tau) \Pi^{ij}(\boldsymbol{k}',\tau') \rangle \approx (2\pi)^3 \frac{4v_{B-L}^2}{\sqrt{\tau\tau'}} \delta(\boldsymbol{k}+\boldsymbol{k}') \delta(x-x') \quad \underbrace{\widetilde{C}(x)}_{C(x)}$$

0

with $x=k\tau>1$ on sub-horizon scales.

• resulting spectrum:

$$\Rightarrow \Omega_{\rm GW} = \frac{k^2}{3\pi^2 H_0^2 a_0^2} \left(\frac{v_{B-L}}{M_P}\right) \underbrace{\int_{x_i}^{x_0} \frac{a^2(x/k)}{a_0^2 x}}_{\rightarrow \text{const., dominated by lower boundary } x_i = \mathcal{O}(1)}_{\vec{X}_i \in \text{ radiation dom.: } a \propto \tau \propto k^{-1} \rightarrow \Omega_{\rm GW} \propto k^0} \qquad \text{[Hindmarsh et al. '12]} x_i \in \text{ matter dom.: } a \propto \tau^2 \propto k^{-2} \rightarrow \Omega_{\rm GW} \propto k^{-2}$$

Plateau during radiation, k^{-2} during matter dom. and reheating

falls of rapidly

for $x \gg 1$

[Durrer et al. '99]

GWs from inflation

Shape of the spectrum governed by transfer function:

$$\Omega_{\rm GW}(k,\tau) = \frac{A_t}{12} \frac{k^2}{a_0^2 H_0^2} T_k^2(\tau) \,, \quad T_k(\tau) = \frac{a(\tau_k)}{a(\tau)} \text{ with } k = a(\tau_k) H(\tau_k)$$

Consider frequency intervalls $[k_0, k_{eq}), [k_{eq}, k_{RH}), [k_{RH}, k_{PH})$:

$$f_{\rm eq} = 1.57 \times 10^{-17} \,\mathrm{Hz}\left(\frac{\Omega_m h^2}{0.14}\right), \qquad f_{\rm RH} = 4.25 \times 10^{-1} \,\mathrm{Hz}\left(\frac{T_*}{10^7 \,\mathrm{GeV}}\right)$$
$$f_{\rm PH} = 1.93 \times 10^4 \,\mathrm{Hz}\left(\frac{\lambda}{10^{-4}}\right)^{1/6} \left(\frac{10^{-15} \, v_{B-L}}{5 \,\mathrm{GeV}}\right)^{2/3} \left(\frac{T_*}{10^7 \,\mathrm{GeV}}\right)^{1/3}$$

$$\Rightarrow T_k \simeq \Omega_r^{1/2} \left(\frac{g_*^k}{g_*^0}\right)^{1/2} \left(\frac{g_{*,s}^0}{g_{*,s}^k}\right)^{2/3} \frac{k_0}{k} \times \begin{cases} \frac{1}{\sqrt{2}} k_{\rm eq}/k \,, & k_0 \ll k \ll k_{\rm eq} \\ 1, & k_{\rm eq} \ll k \ll k_{\rm RH} \\ \sqrt{2} R^{1/2} C_{\rm RH}^3 k_{\rm RH}/k \,, & k_{\rm RH} \ll k \ll k_{\rm PH} \end{cases}$$

GWs from tachyonic preheating

- $f_{\rm PH}$: typical scale of reheating, redshifted
- $\Omega_{\rm GW}^{\rm (max)}$: redshift of $\Omega_{\rm GW}^{\rm PH}(k_{\rm PH})\simeq~c_{\rm PH}\,(d_{\rm PH}H_{\rm PH})^2$

$$\begin{split} f_{\rm PH}^{(s)} &\simeq 6.3 \times 10^{6} \ {\rm Hz} \ \left(\frac{M_{1}}{10^{11} \ {\rm GeV}}\right)^{1/3} \left(\frac{5 \times 10^{15} \ {\rm GeV}}{v_{B-L}}\right)^{2} \left(\frac{m_{S}}{3 \times 10^{13} \ {\rm GeV}}\right)^{7/6} \\ \Omega_{\rm GW}^{(s,\max)} h^{2} &\simeq 3.6 \times 10^{-16} \ \frac{c_{\rm PH}}{0.05} \left(\frac{M_{1}}{10^{11} \ {\rm GeV}}\right)^{\frac{4}{3}} \left(\frac{5 \times 10^{15} \ {\rm GeV}}{v_{B-L}}\right)^{-2} \left(\frac{m_{S}}{3 \times 10^{13} \ {\rm GeV}}\right)^{-\frac{4}{3}} \\ f_{\rm PH}^{(v)} &\simeq 7.5 \times 10^{10} \ {\rm Hz} \ g \left(\frac{M_{1}}{10^{11} \ {\rm GeV}}\right)^{1/3} \left(\frac{m_{S}}{3 \times 10^{13} \ {\rm GeV}}\right)^{-1/2} \\ \Omega_{\rm GW}^{(v,\max)} h^{2} &\simeq 2.6 \times 10^{-24} \ \frac{1}{g^{2}} \ \frac{c_{\rm PH}}{0.05} \left(\frac{M_{1}}{10^{11} \ {\rm GeV}}\right)^{\frac{4}{3}} \left(\frac{5 \times 10^{15} \ {\rm GeV}}{v_{B-L}}\right)^{2} \left(\frac{m_{S}}{3 \times 10^{13} \ {\rm GeV}}\right)^{2} \end{split}$$

GWs from NG cosmic strings

Integrate over all redshifts and loop sizes $(\rightarrow h)$

$$\Omega_{\rm GW}(f) = \frac{2\pi^2 f^3}{3H_0^2} \int_0^{h_*} dh \int_0^{z_{\rm PH}} dz \, h^2 \frac{d^2 R}{dz dh}$$

 \rightarrow resulting spectrum:

WIMP dark matter: neutralino production

Setup:

- $m_{\rm LSP} \ll m_{\rm squark, \ slepton} \ll m_{\tilde{G}}$
- LSP = 'pure' wino or higgsino

Thermal production ($m_{\mathsf{LSP}}\gtrsim 1$ TeV):

[Arkani-Hamed et al. '10]

$$\Omega_{\rm LSP}^{\rm th} h^2 = c_{\tilde{w}, \tilde{h}} \left(\frac{m_{\rm LSP}}{1 \text{ TeV}} \right)^2 \,, \quad c_{\tilde{w}} = 0.014, \, c_{\tilde{h}} = 0.10$$

Production from heavy gravitino decay:

$$\Omega_{\rm LSP}^{\widetilde{G}}h^2 = \frac{m_{\rm LSP}}{m_{\widetilde{G}}}\Omega_{\widetilde{G}}h^2 \simeq 2.7 \times 10^{-2} \left(\frac{m_{\rm LSP}}{100 \text{ GeV}}\right) \left(\frac{T_{\rm RH}(M_1, \widetilde{m}_1)}{10^{10} \text{ GeV}}\right)$$

Thermal and non-thermal neutralino production

Bounds on the reheating temperature

T_{RH} as a link between Leptogenesis, BBN and DM

Bounds on neutralino mass

$$\Omega_{\mathsf{LSP}}^{\mathsf{th}}h^2 + \Omega_{\mathsf{LSP}}^{\tilde{G}}h^2 \stackrel{!}{=} 0.11$$

Consistency between inflation, leptogenesis, BBN and DM for e.g. $m_1=0.05$ eV, $m_{\tilde{h}}<900$ GeV, $m_{\tilde{G}}>10$ TeV

Bounds on the reheating temperature

Successful leptogenesis: lower bounds on M_1 and T_{RH} , as function of effective neutrino mass \tilde{m}_1

Leptogenesis, BBN [Matsumoto et al. $_{^{(05)}}$ & observed DM abundance: bounds on T_{RH} as function of $m_{\tilde{G}}$

 T_{RH} as a link between Leptogenesis, BBN and DM $\,$

