

Dark Operators

Jernej F. Kamenik

^{Univerza v Ljubljani} Fakulteta za matematiko in fiziko in Disibles 13 neutrinos, dark matter & dark energy physics

19/07/2013, Lumley Castle

Are there only SM particles at low-energy?

• Experimentally:

- Even very light states could be missed if very weakly interacting,
- There is dark matter in the Universe; it could be relatively light.
- Theoretically: Plenty of models predict new light particles
 - Pseudo-Goldstone scalars (axion, familon,...),
 - U(1) vectors (string, ED,...),
 - Hidden sectors & messengers (SUSY, mirror worlds,...)
 - Many others: millicharged fermions, dilaton, majoron, neutralino, sterile neutrino, gravitino,...

taken from C. Smith @ LPC - Clermont-Ferrand, 4/2012

 Heavy NP can be projected onto effective gaugeinvariant operators built in terms of SM fields.

Buchmuller & Wyler, Nucl.Phys. B268 (1986) 621 Grzadkowski et al., arXiv:1008.4884

$$\mathcal{L}_{SM} + \frac{c_v}{\Lambda} (HL)^2 + \frac{c_i}{\Lambda^2} Q_i + \dots$$

X = dark sector state connected to the SM, or a light messenger.

taken from C. Smith @ LPC - Clermont-Ferrand, 4/2012

• Take X as neutral, but include all possible interactions as SM gauge-invariant effective operators. J. F. K. & C. Smith, 111.6402

$$\mathcal{L}_{SM} + \frac{c_{\nu}}{\Lambda} (HL)^2 + \frac{c_i}{\Lambda^2} Q_i + \dots + \sum_{d \ge 3} \frac{c_i}{\tilde{\Lambda}^{d-4}} Q'_i + \dots$$

- Assumptions about the dark state X :
 - Not stable \Rightarrow No DM constraints!
 - Long-lived \Rightarrow Escapes as missing energy.
 - Weakly coupled ⇒ Does not affect SM processes.
- → Main impact is then to open new decay channels.

		(decay probes)	(SM width suppression)
100		Higgs boson	loop, helicity, phase-space
10		Quarkonium	Zweig rule
1	jeV]	K & B FCNCs	CKM
	mx[C	LFV	neutrino mass
0.1		Light mesons	loop, helicity
0.001		Orthopositronium	phase-space

→ Main impact is then to open new decay channels.

		(decay probes)	(SM width suppression)
100		Higgs boson	loop, helicity, phase-space
10		Quarkonium	Zweig rule
1	JeV	K & B FCNCs	CKM
	nx[(LFV	neutrino mass
0.1	N	Light mesons	loop, helicity
0.001		Orthopositronium	phase-space

→ Main impact is then to open new decay channels.

Flavor probes of the invisible

Flavor probes of the invisible

• FCNC meson decays with E_{miss} CKM suppressed in SM

$${}^{I} \rightarrow d^{J}X : \qquad \qquad \frac{g^{2}}{M_{W}^{2}} \frac{g^{2}}{16\pi^{2}} |V_{tI}^{*}V_{tJ}| ,$$
$$\mathcal{B}(K \rightarrow \pi E_{miss}) \sim 10^{-11}$$
$$\mathcal{B}(B \rightarrow K^{(*)}E_{miss}) \sim 10^{-6}$$

d

Flavor probes of the invisible

• FCNC meson decays with E_{miss} CKM suppressed in SM

$$d^{I} \to d^{J}X : c^{IJ} \frac{m_{I}^{n-6}}{\Lambda^{n-4}} \approx \frac{g^{2}}{M_{W}^{2}} \frac{g^{2}}{16\pi^{2}} |V_{tI}^{*}V_{tJ}| ,$$

(n-dim X-NP \approx SM)

 $c^{I \neq J} \sim \mathcal{O}(1)$

• Potentially very high X-operator scales probed:

	n = 5	n = 6	n = 7
$s \to d$	$3.3 \cdot 10^7 \text{ TeV}$	$130 { m TeV}$	$2.0 { m TeV}$
$b \rightarrow d$	$1.3 \cdot 10^5 \text{ TeV}$	$26 { m TeV}$	$1.5 { m TeV}$
$b \rightarrow s$	$2.7 \cdot 10^4 \text{ TeV}$	$12 { m TeV}$	$0.9 { m TeV}$

$$\mathcal{H}_{eff}(q^I \to q^J X) = \frac{c^{IJ}}{\Lambda^n} \bar{q}^I q^J \times X$$

Flavor - based classification of dark operators

Flavor-violating $(c^{I\neq J}\neq 0)$

- Bounds directly derived from $d_I \rightarrow d_J X$ processes.
- When MFV holds, $c^{IJ} \sim \lambda^{IJ}$ times appropriate chirality flip factors $(m_{I,J}/v)$.

$$\lambda^{IJ} = \mathbf{Y}_{u}^{\dagger} \mathbf{Y}_{u} \approx V_{tI}^{*} V_{tJ} \rightarrow \begin{cases} \lambda^{sd} \approx (-3.1 + i1.3) \times 10^{-4} ,\\ \lambda^{bd} \approx (7.8 - i3.1) \times 10^{-3} ,\\ \lambda^{bs} \approx (-4.0 - i0.07) \times 10^{-2} \end{cases}$$

Flavor - based classification of dark operators

Flavor-violating $(c^{I\neq J}\neq 0)$

Flavor-conserving $(c^{I\neq J}=0)$ Heavy quark: q=(c), t

• Same local operator basis, but with the coefficients rescaled as $c^{IJ} \sim c^{tt} k^{IJ}$ times appropriate chirality flip factors $(m_{I,J}/v)$.

$$k^{IJ} = \frac{g^2}{16\pi^2} \lambda^{IJ} \rightarrow \begin{cases} k^{sd} \approx (-0.8 + i0.4) \times 10^{-6} \\ k^{bd} \approx (2.1 - i0.8) \times 10^{-5} \\ k^{bs} \approx (-1.1 - i0.02) \times 10^{-4} \end{cases}$$

Flavor - based classification of dark operators

Flavor-violating $(c^{I\neq J}\neq 0)$

Heavy quark: q = (c), t

Flavor-conserving $(c^{I \neq J} = 0)$

- Due to small V_{ub} , B decays not competitive.
- For K decays, q = u contributions are dominant but non local, and require controlling long-distance hadronic effects.

Beyond the scaling argument: Kinematics

- Experimentally, rare decays with E_{miss} do not allow for complete kinematical reconstruction.
- Require aggressive background suppressions.
- SM differential rates implicitly assumed in most exp. analyses.

Beyond the scaling argument: Kinematics

Example: Very light neutralinos in $K^+ \rightarrow \pi^+ E_{miss}$

• Effective operators:

flavor violation controlled by squark mixing

 δ_{12}^D

 χ_1^0

 χ_1^0

Beyond the scaling argument: Kinematics

Example: Very light neutralinos in $K^+ \rightarrow \pi^+ E_{miss}$

Beyond the scaling argument: Dark gauge invariance

- FCNCs are not conserved in general.
- For spin 1 and 3/2 dark particles $[1/m_X]^2$ terms of polarization (spin) sums not projected out in physical observables.
- Regularization strongly depends on assumed dark sector dynamics (dark gauge invariance breaking).

Beyond the scaling argument: Dark gauge invariance Example: Weakly coupled dark photon (A')

- $m_A = 0$ regular by coupling to conserved current $\mathcal{H}_{A'}^{\text{int}} = e' A'_{\mu} J^{\mu}_{\text{e.m.}}$
- In B sector t loop dominates

 $\mathcal{B}(b \to sA') = |e'/e|^2 \mathcal{B}(b \to s\gamma)^{\mathrm{SM}} \qquad \mathcal{B}(b \to s\gamma)^{\mathrm{SM}} = (3.15 \pm 0.23) \cdot 10^{-4}$

Not competitive with flavor blind searches: $|e'/e|^2 < 10^{-3}$

c.f. J. Jaeckel and A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405

Beyond the scaling argument: Dark gauge invariance Example: Weakly coupled dark photon (A')

• $m_A = 0$ regular by coupling to conserved current $\mathcal{H}_{A'}^{\text{int}} = e' A'_{\mu} J^{\mu}_{\text{e.m.}}$

• In K decays naive estimate

 $|e'/e|^2 \lesssim \frac{\mathcal{B}(K \to n\pi + m\gamma + V)_{exp}}{\mathcal{B}(K \to n\pi + (m+1)\gamma)_{SM}} \approx \frac{10^{-12}}{\mathcal{B}(K \to n\pi + (m+1)\gamma)_{SM}}$

• LD dynamics strongly suppresses the rate below 2π

Beyond the scaling argument: Dark gauge invariance Example: Weakly coupled dark photon

- $m_A = 0$ regular by coupling to conserved current $\mathcal{H}_{A'}^{\text{int}} = e' A'_{\mu} J^{\mu}_{\text{e.m.}}$
- In K decays naive estimate

- In SM BR(h→inv) ~ 0.1%
- Testing invisible Higgs decays is notoriously difficult
- Assuming SM ZH production rate: BR(h→inv) < 0.65

- Total width of SM Higgs unmeasurable at LHC $(\Gamma(h)_{\rm SM} \sim 4 \ge 10^{-3} \, {\rm GeV})$
- Under assumptions of narrow width, absolute Γ(h→gg) can be extracted
- Indirect constraint on BR(h→inv) < 0.2 - 0.6

• A light Higgs is very narrow in the SM:

 $\frac{\Gamma_h^{SM}}{M_h} \approx 3 \times 10^{-5}$ (comparable to $\Gamma_{J/\psi}/M_{J/\psi}$)

• A light Higgs is very narrow in the SM:

 $\frac{1}{5} \times \frac{\Gamma_h^{SM}}{M_h} \gtrsim \frac{\Gamma_h^{dark}}{M_h} \sim \frac{1}{8\pi} \left(\frac{M_h^2}{\Lambda_d^2}\right)^{d-4} \Rightarrow \Lambda_5 \gtrsim 10 \text{ TeV} , \Lambda_6 \gtrsim 1.1 \text{ TeV}$

possible to probe relatively high NP scales

- A light Higgs is very narrow in the SM
- Lorentz scalar can couple to most operator structures

 $H^{\dagger}H \rightarrow \frac{1}{2}(\mathbf{v}^{2} + 2\mathbf{v}h + h^{2})$ $H^{\dagger}\vec{\mathcal{D}}^{\mu}H \rightarrow \frac{ig}{2c_{W}}(\mathbf{v} + h)^{2}Z^{\mu}$ $HL \rightarrow \frac{1}{\sqrt{2}}(\mathbf{v} + h)\mathbf{v}_{\ell}$

when
$$H \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \mathbf{v} + h \end{pmatrix}$$

- A light Higgs is very narrow in the SM
- Lorentz scalar can couple to most operator structures
- Most promising channels?
 - Invisible: $h \rightarrow \mathbb{E}$
 - Gauge : $h \rightarrow \mathbb{E} + (\gamma, Z)$
 - Fermionic: $h \rightarrow \mathbb{E}$ + (fermions)

- Simplest operators are constructed using H[†]H: H⁰_{eff} = λ'H[†]H×φ[†]φ H^{1/2}_{eff} = 1/Λ H[†]H×ψ(1, γ₅)ψ (Higgs portals)
 Induce both mass correction and invisible decay: H[†]H → 1/2 (v² + 2vh + h²) δm Γ(h → E)
- Without fine-tuning dark and electroweak mass terms: $m_{\phi}^2 \approx \bar{m}_{\phi}^2 + \delta m_{\phi}^2 \gtrsim |\delta m_{\phi}^2|$

 $m_{\psi} \approx \overline{m}_{\psi} + \delta m_{\psi} \gtrsim \left| \delta m_{\psi} \right|$

• Simplest operators are constructed using $H^{\dagger}H$:

 $\mathcal{H}_{eff}^{0} = \lambda' H^{\dagger} H \times \phi^{\dagger} \phi$

$$\mathcal{H}_{eff}^{1/2} = \frac{1}{\tilde{\Lambda}} H^{\dagger} H \times \overline{\psi}(1, \gamma_5) \psi$$

If initially massless (or very light), these dark states must remain light.

- Other operators & decay channels?
 - Current operators:

$$\frac{1}{\tilde{\Lambda}^2} H^{\dagger} \vec{\mathcal{D}}^{\mu} H \times (\phi^{\dagger} \vec{\partial}_{\mu} \phi, \overline{\psi} \gamma_{\mu} \psi)$$

Subleading compared to SM at tree-level (same for fermionic operators).

- Other operators & decay channels?
 - Current operators
 - Neutrino portal operators (violating lepton number):
 - $H\overline{L}^{C} \times \psi$ induces neutrino mass

 $\frac{1}{\tilde{\Lambda}^{2}} B_{\mu\nu} H \overline{L}^{C} \sigma^{\mu\nu} \times \psi \quad - \text{ may be accessible for } \gamma$ $\mathcal{B}(h \to \gamma \nu \psi) \approx 2\% \text{ for } \tilde{\Lambda} \approx 0.5 TeV$ $\frac{1}{\tilde{\Lambda}^{3}} H \overline{L}^{C} L H \times \phi^{\dagger} \phi \quad - \text{ dim} = 7 \text{ and } 4\text{-body}$

Examples: Spin 3/2

- Massive spin 3/2 dark states? Need to specify dark gauge invariance breaking
 - Hard breaking: no simple way to regulate the divergences

Examples: Spin 3/2

• Massive spin 3/2 dark states?

When dark gauge invariance is broken, rates are huge!

Conclusions

If light and long-lived "dark" particles exists:

• FCNCs can impose competitive bounds on their interactions with SM

 $K \to n\pi + m\gamma + \mathbb{E}, \ B \to (0, \pi, \rho, K^{(*)}) + \mathbb{E}$

(also LFV, rare charm decays, (mono)tops)

• Small width of Higgs offers unique window also well beyond the portals.

 $h \to \mathbf{E}, h \to \mathbf{E} + (\gamma, Z), h \to \mathbf{E} + (fermions)$

Could such states form thermal relic dark matter?

 $\mathcal{H}_{eff}^{0} = \lambda' H^{\dagger} H \times \phi^{\dagger} \phi$

• Example: Higgs portal DM

Excluded or will be probed by next gen. experiments

Could such states form thermal relic dark matter?

• What about beyond Higgs portal?

/ excl.

Greljo, Julio, J.F.K., Smith & Zupan, in preparation

• Naive scaling of thermal x-section & constraints:

$$\langle \sigma v \rangle \propto \left(\frac{m_{DM}}{\Lambda}\right)^{2n}$$
 (controls relic abundance)
 $\mathcal{B}(h \to \text{invisible}) \sim 10^3 \left(\frac{m_h}{\Lambda}\right)^{2n}$
 $\frac{\langle \sigma \rangle}{\langle \sigma \rangle_{\text{real}}} \sim 10^2 \left(\frac{m_{DM}\beta}{\Lambda}\right)^{2n}$ (XENON100 bound)

Higgs constraint increases with n (for m_{DM}<m_h/2), direct detection sensitivity may decrease!

Greljo, Julio, J.F.K., Smith & Zupan, in preparation

- For light DM, circumvent Higgs bound by multi-body decay modes
- 1. couple to Higgs (& fermionic) currents:

 $H^{\dagger}\overleftrightarrow{D}^{\mu}H \equiv H^{\dagger}\overleftarrow{D}^{\mu}H - H^{\dagger}\overrightarrow{D}^{\mu}H \rightarrow \frac{ig}{2c_{W}}(v_{\rm EW}^{2} + 2v_{\rm EW}h + h^{2})Z^{\mu}$

 $\Gamma^{S} = H^{\dagger} \bar{D} Q, \quad H^{\dagger} \bar{E} L, \quad H^{*\dagger} \bar{U} Q, \quad \Gamma^{T}_{\mu\nu} = H^{\dagger} \bar{D} \sigma_{\mu\nu} Q, \quad H^{\dagger} \bar{E} \sigma_{\mu\nu} L, \quad H^{*\dagger} \bar{U} \sigma_{\mu\nu} Q$

Mostly excluded by (in)direct detection experiments

Greljo, Julio, J.F.K., Smith & Zupan, in preparation

- For light DM, circumvent Higgs bound by multi-body decay modes
- 2. LNV (neutrino) portal:

$$\mathcal{L}_{\text{eff}}^{d=8} = \frac{(i\bar{\psi}\gamma_5\psi)(L^iL^jH^kH^l\epsilon_{ik}\epsilon_{jl})}{\Lambda^4}$$

- Does not contribute to neutrino mass
- Requires low EFT cut-off Λ ~1TeV
- Explicit renormalizable UV model can be constructed

Greljo, Julio, J.F.K., Smith & Zupan, in preparation

• For light DM, circumvent Higgs bound by extending low energy particle content

Simplest examples with extended Higgs sectors:

• THDM + DM

He et al., 0811.0658 Bai et al., 1212.5604

• SM + scalar SM singlet + DM

Barger et al., 0811.0393 Arina et al., 1004.3953 Piazza & Pospelov, 1003.2313

(effectively decouple DM interactions generating correct relic abundance from 125GeV Higgs)

• Leading operators break a dark gauge invariance:

$$\mathcal{H}_{eff}^{1} = \varepsilon_{H} H^{\dagger} H \times V_{\mu} V^{\mu} + i \varepsilon_{H}^{\prime} H^{\dagger} \bar{\mathcal{D}}^{\mu} H \times V_{\mu}$$
$$\mathcal{H}_{eff}^{3/2} = \frac{c_{\Psi}}{\tilde{\Lambda}} H^{\dagger} H \times \bar{\Psi}^{\mu} (1, \gamma_{5}) \Psi_{\mu} + \frac{c_{\Psi}^{\prime}}{\tilde{\Lambda}} \mathcal{D}_{\mu} H \bar{L}^{C} \times \Psi^{\mu}$$

• Consequently, decay rates are singular in the massless limit

$$\sum_{pol} \varepsilon_k^{\mu} \varepsilon_k^{\nu} = -P_V^{\mu\nu} \qquad P_X^{\mu\nu} = g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{m_X^2}$$
$$\sum_{spin} u_k^{\mu} \overline{u}_k^{\nu} = -(k + m_{\Psi}) \left(P_{\Psi}^{\mu\nu} - \frac{1}{3} P_{\Psi}^{\mu\rho} P_{\Psi}^{\nu\sigma} \gamma_{\rho} \gamma_{\sigma} \right)$$

Need to specify dark gauge invariance breaking

Examples: Spin 1 and 3/2 • Hard breaking: (dark SSB or Stückelberg)

For instance, in the SM: $\Gamma(h \to WW) \sim g^4 v^2 P_W^{\mu\nu} P_{W,\mu\nu} \xrightarrow{M_W \to 0} \frac{g^4 v^2}{M_W^4} + \dots \xrightarrow{M_W \sim g\nu} \frac{1}{v^2} + \dots$

Thus impose: $m_V \sim \varepsilon_H v_{dark}$

• Hard breaking: (dark SSB or Stückelberg) The $H^{\dagger}H$ operator automatically regulates its massless limit: $\varepsilon_{H}H^{\dagger}H \times V_{\mu}V^{\mu}$

 $m_V^2 \approx \delta m_V^2$: $\Gamma(h \to VV) \gtrsim 80 \times \Gamma_h^{SM}$ (for $M_h \approx 125 \text{ GeV}$) - Dark decay must be forbidden: $\delta m_V > M_h / 2$ - A large dark mass must soften the singularity $m_V^2 = \overline{m}_V^2 + \delta m_V^2 = \varepsilon_H (v_{dark}^2 + v^2)$ with $v_{dark} > 1.1 \text{ TeV}$

• Hard breaking: (dark SSB or Stückelberg) The $H^{\dagger}D^{\mu}H$ operator fails at regulating its massless limit: $\varepsilon'_{H}H^{\dagger}D^{\mu}H \times V_{\mu}$

$$\delta m_V^2 = -\varepsilon_H'^2 v^2 < 0! \qquad \Gamma(h \to ZV) \sim g^2 \varepsilon_H'^2 \frac{v^2 M_h^3}{M_Z^2 m_V^2}$$

 $m_V^2 \approx -\delta m_V^2$: $\Gamma(h \to ZV) \gtrsim 15 \times \Gamma_h^{SM} \Rightarrow m_V > M_h - M_Z$ (for $M_h \approx 125 \ GeV$) Z-V mixing: $\delta \rho \Rightarrow m_V < 2.4 \ GeV$ EW mass window completely closed

- No breaking: (kinematic mixing or dark charge for the Higgs)
 - $\mathcal{L}_{kin} = \frac{\chi}{2} B_{\mu\nu} \times V^{\mu\nu}$ need to redefine V-B

• No breaking: (kinematic mixing or dark charge for the Higgs)

 $\mathcal{L}_{kin} = \mathcal{D}_{\mu}H^{\dagger}\mathcal{D}^{\mu}H - i\frac{\lambda}{2}H^{\dagger}\mathcal{D}^{\mu}H \times V_{\mu} + \frac{\lambda^{2}}{4}H^{\dagger}H \times V_{\mu}V^{\mu}$

After diagonalizing the mass: The dark vector is massless and entirely decoupled! Holdom, Phys.Lett. Bi66 (1986) 196

Dominant effects then come from higher dimensional operators:

Typically, $\Gamma(h \to VV, ZV, \gamma V, f f V) < 20\% \times \Gamma_h^{SM}$ requires $\tilde{\Lambda} \gtrsim 1 TeV$.

• **Soft breaking:** $\mathcal{L}_{kin} = \frac{\chi}{2} B_{\mu\nu} \times V^{\mu\nu} + \frac{\overline{m}_V^2}{2} V_{\mu} V^{\mu}$

vector mass changes the diagonalization, and upsets its elimination Holdom, Phys.Lett. B166 (1986) 196

 $B_{\mu\nu} \times V^{\mu\nu} \to c_W J^{em}_{\mu} \times V^{\mu} - s_W m_V^2 Z_{\mu} \times V^{\mu}$

All are very suppressed (δρ,...)