Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

G. MENTION

CEA Saclay Irfu / SPP

July 17th, 2013

Content

Is the standard 3 neutrino mixing picture correct?

- The peaceful realm of the 3 active v
- The disturbing anomalies
- Outlooks and prospects
- White paper and foreseen experiments to tackle these anamalies
- Conclusion

3 ν and that's all?

Large Electron-Positron collider data: exactly 3 active, light ν flavors

Neutrino oscillations

Neutrino oscillations

LSND

Channel: $\nu_{\mu} \rightarrow \nu_{e}$ Baseline: L ~ 541 m

Energy range: 475 MeV < E < 3 GeV

MiniBooNE ν

[arXiv,hep-ex:1303.2588]

 Δm^2 (eV²) Events/MeV 2.5 Neutrino Data (stat err.) v. from u 2.0 v. from K* from K^o 1.5 misid **ICARUS 90% CL** 10 $\Delta \rightarrow N_Y$ dirt 1.0 other Constr. Syst. Error 0.5 <u>^ ^</u> 1 Excess Events/MeV 0.8 Data - expected background sin²20=0.004, ∆m²=1.0eV² 0.6 sin²20=0.2, ∆m²=0.1eV² MiniBooNE 2v Best Fit 0.4 10⁻¹ **Neutrino** 0.2 **Neutrino** 0.0 -0.2 L 0.2 0.4 0.6 0.8 1.2 1.4 1.5 3.0 E_v^{QE}/GeV 10⁻² 1.0 10⁻³ 10⁻² 10⁻¹ $sin^2 2\theta$

But => Low-Energy Anomaly!

MiniBooNE anti-v

Channel: anti- ν_{μ} → anti- ν_{e} [arXiv,hep-ex: I 303.2588] Baseline: L ~ 541 m Energy range: 475 MeV < E < 3 GeV

Similar L/E but different L and E, different backgrounds, beam,...

The Gallium anomaly

Based on Giunti & Laveder, <u>PRD82, 053005</u> (2010)

Radiochemical experiments Gallex (left) & Sage (right)

GALLEX (GaCl₃) and SAGE (liquid Ga) were radiochemical experiments, counting the conversion rate of ⁷¹Ga to ⁷¹Ge by (solar) neutrino capture [cannot detect anti- v_e]

The Gallium anomaly

Effect reported in C. Giunti & M. Laveder in PRD82 053005 (2010) Significance reduced by additional correlations in our analysis No-oscillation hypothesis disfavored at 97.7% C.L.

Revised reactor neutrino spectra & VSBL reactor v anomaly

[T. Mueller et al., PRC83, 054615 (2011)]

anti-v_e production from reactors $\sum_{A,Z} \left\{ {}^{A}_{Z} X \longrightarrow {}^{A}_{Z+1} Y + e^{-} + \bar{\nu}_{e} \right\}$

- Triggered by evaluation for single Double Chooz far detector phase.
- Improved conversion from β to ν spectra
 - Anchored to experimental ILL BILL-spectra of fission products
 - Conversion of individual β branch level; residuals fitted as in original ILL conversion
 - Off-equilibrium effects included
- Improved (& increased) neutron life time measurement; also improved weak magnetism and radiative corrections inclusion

$$\sigma_f^{pred} = \int_0^\infty S_{tot}(E_\nu) \sigma_{\mathrm{V-A}}(E_\nu) dE_\nu = \sum_k f_k \sigma_{f,k}^{pred}$$

$\sigma^{pred}_{f,^{235}U} \ \sigma^{pred}_{f,^{239}Pu} \ \sigma^{pred}_{f,^{239}Pu}$	old [3] $6.39\pm1.9\%$ $4.19\pm2.4\%$ $9.21\pm10\%$	$\begin{array}{r} \text{new} \\ 6.61{\pm}2.11\% \\ 4.34{\pm}2.45\% \\ 10.10{\pm}8.15\% \end{array}$	+3.4% +3.6% +9.6%
$\sigma^{pred}_{f,238}{}_U \ \sigma^{pred}_{f,241}{}_{Pu}$	$9.21{\pm}10\%$ $5.73{\pm}2.1\%$	$\begin{array}{c} 10.10{\pm}8.15\%\\ 5.97{\pm}2.15\%\end{array}$	+ 9.6 % +4.2%

Independently confirmed by P. Huber: arXiv:1106.0687.

Implications for SBL reactor experiments: the reactor antineutrino anomaly

$$\chi^2 = \left(r - \overrightarrow{\mathbf{R}}\right)^T W^{-1} \left(r - \overrightarrow{\mathbf{R}}\right)$$

Weights: $W = \Sigma_{unc.}^2 + \Sigma_{cor.} C \Sigma_{cor.}$ with $\Sigma_{unc.}^2 = \Sigma_{tot.}^2 - \Sigma_{cor.}^2$

The synthesis of published experiments at reactordetector distances ≤ 100 m leads to a ratio R of observed event rate to predicted rate of

 μ = 0.976 ± 0.024 (**OLD flux**)

With **NEW flux** evaluation, this ratio shifts to

 $\mu = 0.943 \pm 0.023$, [2011 result]

leading to a deviation from unity at 98.6% C.L.

 $\chi^2_{\rm min} = 19.6/18$

Update in White Paper on sterile neturinos: [hep-ph:1204.5379]

 $\mu = 0.927 \pm 0.023$, [2012 result]

Update with km scale experiments

Update of 2011 reactor anomaly publication [PRD83, 073006] ongoing, to be submitted soon

- Includes a refined and detailed treatment of correlations between the different measurements and predictions
- includes all knwon nuclear corrections to β-ν spectra. [combining: T. Mueller et al., PRC83, 054615 & P. Huber, PRC 84, 024617]
- Corrected for a statistical bias in the previous method
- Includes the latest updated neutron lifetime $(\tau_n = 881.5 \text{ s}).$
- Includes km-scale baselines through correcting for θ₁₃ deficit from Daya Bay's measured value.

[2013 result to be submitted soon]

Preliminary updated result

 μ = **0.936 ± 0.024** χ^{2}_{min} / dof = 29.7 / 22 p-value = 13 %

Energy spectrum shape information

Combining all indications and exclusions The global picture

from J. Kopp et al. [arXiv:hep-ph 1303.3011]

NOMAD

 10^{-1}

Combined

The measured anomalies could curiously be explained by a 4^{th} (& 5^{th} ?) sterile neutrino with Δm^2 around the eV².

The picture in V_e to V_e sector is globally coherent

Some severe tension in μ to e appearance with respect to μ disappearance experiments

Another global picture

Reactor experiments from 30 feet to 110 miles

Anomalies overview

- Agreement between anomalies:
 - LSND and MiniBooNE anti- $v_{\mu} \rightarrow anti-v_{e}$
 - Gallium anomaly and Reactor antineutrino anomaly
- Two experimental tensions among the anomalies:
 - [LSND & MiniBooNE anti- ν_{μ} → anti- ν_{e}] vs. MiniBooNE ν_{μ} → ν_{e}
 - [LSND & MiniBooNE anti- ν_{μ} >> anti- ν_{e}] vs. anti- ν_{e} & anti- ν_{μ} disappearance limits
- [+ Furher info from Cosmology pointing toward sterile neutrino, not addressed here.]
- A white paper on this topic reviewing the current status about sterile neutrino oscillations:
- Despite tensions, there are a number of results and hints that suggest that there may be oscillations to sterile neutrinos with $\Delta m^2 \sim 1 \text{ eV}^2$
- Further running and new experiments are being planned to address this possibility

\Rightarrow Establishing the existence of sterile neutrinos would be a major result!

 \Rightarrow These are certainly exciting times for neutrino physics!

Near future

- Already scheduled experiments to work on non-proliferation
- They add up to their potentials the study of sterile neutrino at short baselines (high Δm^2): Nucifer, SCRAAM, DANSS, MARS=>Solid...
- New dedicated efforts specific for sterile neutrino searches: Stereo, CeLAND, SOX, ICARUS-NESSiE,...

Experimental projects

White paper on sterile neutrinos [hep-ph:1204.5379]

Experiment type	Appearance / Disppearance	Oscillation channel	Projects
Reactor	Disappearance	V_e bar to V_e bar	Nucifer, Stereo , Scraam, Neutrino-4, DANSS, Poseidon, Solid , CARR
Radioactive source	Disappearance	V _e bar to V _e bar V _e to V _e	CeLAND, SoX, Sage2, SNO+, LENS-S,
Cyclotron	Disappearance	V_e bar to V_e bar	IsoDAR
Pion/Kaon decay-at-rest	Appearance & Disappearance	$ u_{\mu}$ bar to $ u_{e}$ bar $ u_{e}$ to $ u_{e}$	OscSNS, CLEAR, DAEδALUS, KDAR
Pion decay in flight	Appearance & Disappearance	Vµ to Ve Vµ bar to Ve bar Ve to Ve Vµ to Vµ	MINOS+, MicroBooNE, Lar I kton +MicroBooNe, Icarus/Nessie @ CERN
Low-E neutrino factory	Appearance & Disappearance	V _e to V _μ V _e bar to V _μ bar V _μ to V _μ V _e bar to V _e bar	vSTORM @ Fermilab

Next slides are just a few of them: projects in bold = in Europe.

Nucifer

$$p \rightarrow e^+ + n$$

 \downarrow
 $n + \text{Gd} \rightarrow 3\gamma \,(\text{8MeV})$

Initial goal: non-proliferation prototype detector.

Reactor core size: ~ $(60 \text{ cm})^3$ Detector size : 1.2x0.7m (850 L) baseline <L>=7.0 m δ L= 0.3 m => Δ m² ~ eV² oscillations are not washed out!

Detector ready and operational.

Currently: two reactor cycles of data (2x 20 days). Large γ bkg from reactor yet. Will improve shielding again. Reactor is off for maintenance and will start again before end of year.

Nucifer is not an optimized detector for such a measurement BUT can be the first at this so short baseline to bring information on this anomaly after ILL exp. in 1981.

Stay tuned!!!

Stereo

Homogeneous detector $2 \text{ m}^3 \text{LS+Gd}$ 6 cells

- Detect antineutrino via well known inverse beta decay reaction
- Detect neutron via Gadolinium capture ($<3\gamma$ >, E ~ 8 MeV)
- Short time coincidence (15 μ s, 0.2% Gd), localization of interaction in cells
- Good energy resolution (5%@1MeV)
- 480 v/day ; challenge S/B ~ 1.5 [ILL exp. (1981) ~ 1].
- short baseline ~ 10 m to probe $\Delta m^2 \sim 1 \text{ eV}^2$
- compact reactors: ILL (France) [core size < 40 cm]
- Shape only oscillation search, and rate+shape analysis
- Start data taking in 2015.

SoLið

core concrete

- Detect antineutrino via well known inverse beta decay reaction
- Detect neutron via reaction on Lithium-6 capture
- Time coincidence and 3D localisation of interaction
- short baseline < 10 m to probe $\Delta m^2 \sim 1 \text{ eV}^2$
- compact reactors: ILL (France), BR2 (Belgium) [small cores < 50 cm]
- use ratio of spectra at two distances from the reactor
- Start data taking in 2015.

CeLAND

Poster by V. Fischer

- A strong 75 kCi ¹⁴⁴Ce anti-ν_e source @ KamLAND
- Anti-v_e detection (20 to 40 kevts/yr)
- A good resolution in position (15 cm)
- Background free thanks to anti-Ve coincidences
- Lifetime ~ I yr (285 d)
- Compactness of the source (~ 5cm)
- W and Cu shield

Real oscillation pattern vs. both radius & energy

Phase II: 2016-2017 if feasible

[M. Cribier et al., PRL 107 (2011) 201801]

SOX

Detector: KamLAND (Borexino?)

CL-A (2015) 75 <u>kCi</u>¹⁴⁴Ce in the WT 6 months of data taking

CL-B (2016/2017) 50 kCi ¹⁴⁴Ce source in the center 1.5 y of data taking

Detector: Borexino

SOX-A (2015) 10MCi ⁵¹Cr in Icarus pit 8.25 m from the center 3 months of data taking

SOX-B (end 2015) 75 <u>kCi</u> ¹⁴⁴Ce source in W.T.. PPO everywhere to enhance sensitivity

SOX-C (2016/2017) 50 kCi ¹⁴⁴Ce source in the center. Only after the end of solar program

ICARUS-NESSIE

 ν_{μ} to ν_{e}

10⁻²

CCFR

MiniBooNE anti-v

BNL 776

10-1

LNSD (90%)

1

- Using CERN-SPS new v_{μ} beam ($E_v \sim 2 \text{ GeV}$)
- 2 LAr-TPC (from ICARUS): near: 150 t, far: 600 t
- +magnetic spectrometers for charge determination
- Should start (both beam and detector data taking by end of 2015).

Foreseen sensitivities to the Reactor anomaly

Conclusion

- These anomalies provide an exciting topic from the experimental and theoretical point of view.
- Not all the anomalies are consistent with each other. Ambiguous situation!
- These anomalies can be tested and either confirmed or refuted within near future (5-6 years time scale)
- A lot of experimental projects are foreseen to tackle this point.
- Most of the experiments focus on both L (baseline) and E (energy) information to provide a clear L/E unambiguous oscillation pattern if any.
- Establishing the existence of sterile neutrinos would be a major result!
- These are certainly exciting times for neutrino physics!