LHC News & Highlights

Invisibles13 Workshop Durham, UK

July 15, 2013

Joe Incandela Santa Barbara/CERN

June 2013 - photo by Michael.Hoch@CERN.ch

Major challenges on 5 different fronts

- Between now and first physics results ca. 2015
 - 1. Harvesting full 2011-12 dataset for physics
 - 2. Lessons learned and Run 2 preparations
 - 3. LS1 consolidation, early upgrades
 - 4. Phase 1 Upgrades 2016-19
 - 5. Phase 2 Upgrades 2022?

July 15, 2013

A bit of history...

E.Rutherford ~110 years ago

Well, maybe not quite this far back...

- Small excesses at 125 GeV
- Could not celebrate yet...
 - Not unprecedented to have coincidences at low significance
 - γγ channel the main contributor
- Critically important steps taken for the 2012 hunt
 - Luminosity increased and collision energy increased (3.5 TeV to 4 TeV)
 - Sensitivity to 110 GeV
 - Extended run by ~2.5 months
 - To characterize it if we found it...

May 2012

'Blinding' of 2012 data

March 2012

July 15, 2013

Reconstruction Speed/Memory Improvements Valid Primary Vertices (HighPileUpHPF)

CMS

Losing control: pileup studies Feb 2012

CMS

EWK and Top cross sections >4 orders

UCSB/CERI

Incandela

Durham, UK

rkshop

Differential cross sections, precision measurements

The Economist

JULY 7TH-13TH 2012

In praise of charter schools Britain's banking scandal spreads Volkswagen overtakes the rest A power struggle at the Vatican When Lonesome George met Nora

A giant leap for science

Economist.com

Finding the Higgs boson

BREAKTHROUGH of the YEAR The HIGGS BOSON

DHUA

AAAS

Clenc

CMS $H \rightarrow ZZ^* \rightarrow 4$ lepton candidate

• •

e

e

J. Incandela

Durham, UK

3 Workshop

nvisibles13

lv 15. 2013

15

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

 $H \rightarrow \gamma \gamma$ candidate: Vector Boson Fusion (VBF) category (2 jets in forward-backward regions)

 $\textbf{e-}\mu, \textbf{e-}\tau_h, \mu \textbf{-}\tau_h, \tau_h \textbf{-}\tau_h$

100

CMS HIG-13-004

μτ_h, ετ_h, εμ, τ_hτ_h, μμ

20

- Data - Background

100

Bkg. Uncertainty

SM Higgs (125 GeV)

150

m_{TT} [GeV]

SM Higgs (125 GeV)_

300

Observed

electroweak

Ζ→ττ

QCD

tŦ

200

 $m_{\tau\tau}$ [GeV]

200

0

0

Results on the search for $H \rightarrow \tau \tau$ decays

- Discovery sensitivity for a signal not yet reached
- → 95% C.L. limits on cross section (normalized to SM cross sections)

m_H = 125 GeV:

Fitted signal strength (all sub-channels):

 $\mu = 0.7 \pm 0.7$

Updated analysis, including the full data sample, expected soon

K. Jakobs, Lepton-Photon, 24 June 2013

July 15, 2013

UCSB/CERN

Incandela

5

Durham, UK

Workshop

July 15, 2013

More

CMS: 3.4 σ Evidence for H \rightarrow ff

All tests favor 0⁺⁺

- Both ATLAS and CMS strongly prefer J^{PC} = 0⁺⁺ over the alternatives
 - Pseudoscalar 0⁻⁺ and tensor 2⁺⁺ hypotheses have been excluded at >3σ level by each experiment

Seoul

2013,

Stability of the universe in the Standard Model

Higgs mass M_h in GeV

178 Instability 176 Gev Pole top mass M_t in 174 1,2,3 σ Meta-stabilit 172 170 Stability 168 120 122 124128 130 126

Higgs pole mass M_h in GeV

A. Strumia, Moriond EWK 2013

Other searches

<u>CMS-PAS-EXO-12-048</u>

Extra dimensions

[Events/GeV Using monojets and mono-photons Look for evidence of KK Gravitons dN/dE_T^{miss} 10 ADD Extra Dimensions $M_{Pl}^2 \sim M_D^{2+n} R^n$ Incandela 10⁻¹ ∈ [pb] 95%CL Observed limit 95%CL Expected limit ($\pm 1 \pm 2 \sigma_{exp}$) BG X ///// ADD n = 2 $\overset{\mathsf{A}}{\times}\mathsf{A}$ Durham, UK **H ADD** n = 6 300 400 500 ь $\sqrt{s} = 8 \text{ TeV}, \ L = 10.5 \text{ fb}^{-1}$ ATLAS Preliminary 10⁻¹ M_D (TeV/c²) 10^{-2} 1.5 2.5 З 4.5 2 3.5 5 M_n [TeV] ATLAS-CONF-2012-147

$Z' \rightarrow ll$: ca. Moriond 2012

$Z' \rightarrow ll$: ca. Moriond 2013

July 15, 2013

ATLAS EXOTICA

UCSB/CERN

J. Incandela

Durham, UK

Invisibles13 Workshop

July 15, 2013

	ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)
Large ED (ADD) : monoje	+ $E_{T,miss}$ L=4.7 fb ⁻¹ , 7 TeV [1210.449 ¹] 4.37 TeV $M_D(\delta=2)$
Large ED (ADD) : monophotor	$L = 4.6 \text{ fb}^{-1}, 7 \text{ TeV}$ [1209.4625] 1.93 TeV M_D ($\delta = 2$)
Large ED (ADD) : diphoton & dilept	on, <i>m</i> _{γγ/} <i>L</i> =4.7 fb ⁻¹ , 7 τeV [1211.1150] 4.18 τeV <i>M</i> _S (HLZ δ=3, NLO) AILAS
Q UED : diphotor	+ <i>E</i> _{<i>T</i>,miss} <i>L</i> =4.8 fb ⁻¹ , 7 TeV [1209.0753] 1.40 TeV Compact. scale R ⁻¹ Preliminary
S^{1}/Z_{2} ED : dile	epton, <i>m</i> ₁ <i>L</i> =5.0 fb ⁻¹ , 7 TeV [1209.2535] 4.71 TeV M _{KK} ~ R ⁻¹
RS1 : dil	epton, m_{\parallel}^{*} L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017] 2.47 TeV Graviton mass $(k/M_{\rm Pl} = 0.1)$
RS1 : WW resonand	Ce, $m_{T,Niv}$ L=4.7 fb ⁻¹ , 7 TeV [1208.2880] 1.23 TeV Graviton mass $(k/M_{\rm Pl} = 0.1)$
Bulk RS : ZZ reson	ance, m_{lij} <u>L=7.2 fb⁻¹, 8 TeV [ATLAS-CONF-2012-150]</u> 850 GeV Graviton mass $(k/M_{\text{Pl}} = 1.0)$ $Ldt = (1 - 20) \text{ fb}^{-1}$
ξ RS $g_{\kappa\kappa} \rightarrow t\bar{t}$ (BR=0.925) : $t\bar{t} \rightarrow$	+jets, m _t <u>L=4.7 fb⁻¹, 7 TeV [1305.2756]</u> 2.07 TeV g _{KK} mass
$\square \qquad ADD BH'(M_{TH} / M_p = 3) : SS dimuon$	$n, N_{ch. part.} = \frac{1}{L=1.3 \text{ fb}^{-1}, 7 \text{ TeV} [1111.0080]}$ 1.25 TeV $M_D (\delta = 6)$ 15 - 7, 8 TeV
ADD BH $(M_{TH}/M_{D}=3)$: leptons +	jets, $\Sigma \rho_T$ <u>L=1.0 fb⁻¹, 7 TeV [1204.4646]</u> 1.5 TeV M_D (δ =6)
Quantum black hole : dije	$t_{\rm L} = (m_{\rm H})$ L=4.7 fb ⁻¹ , 7 TeV [1210.1718] 4.11 TeV M_D (δ =6)
qqqq contact interaction	Π : χ̃(m _j) <u>L=4.8 fb⁻¹, 7 TeV [1210.1718]</u> 7.6 TeV Λ
3 qqll CI : ee	& μμ, m [*] <u>L=5.0 fb⁻¹, 7 TeV [1211.1150]</u> 13.9 TeV Λ (constructive int.)
uutt CI : SS dilepton + jets	+ E _{T,miss} L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051] 3.3 TeV Λ (C=1)
Z' (SSM	I) : <i>m</i> _{ee/µµ} <u><i>L</i>=20 fb⁻¹, 8 TeV [ATLAS-CONF-2013-017] 2.86 TeV Z' mass</u>
Z' (S	SM) : m _{rt} L=4.7 tb ⁻¹ , 7 TeV [1210.6604] 1.4 TeV Z' mass
Z' (leptophobic topcolor) : tt →	+jets, m, L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052] 1.8 TeV Z' mass
W' (SSI	Λ) : m _{T,e/μ} <u>L=4.7 fb⁻¹, 7 TeV [1209.4446]</u> 2.55 TeV W' mass
W' (→ tq, g	_==1) : m _{tq} <u>L=4.7 fb⁻¹, 7 TeV [1209.6593]</u> 430 GeV W' mass
W' _R (→ tb, LR	SM) : m L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050] 1.84 TeV W' mass
Scalar LQ pair (β =1) : kin. vars. in	eejj, evjj <u>L=1.0 fb⁻¹, 7 Tev [1112.4828] 660 Gev</u> 1 st gen. LQ mass
Scalar LQ pair (β =1) : kin. vars. in	μμjj, μνjj _L=1.0 fb⁻¹, 7 TeV [1203.3172] 685 GeV 2 nd gen. LQ mass
Scalar LQ pair (β=1) : kin. vars. i	າ ແມ່ງ, ແມ່ງ <u>L=4.7 fb⁻¹, 7 TeV [1303.0526] 534 GeV</u> 3 rd gen. LQ mass
o , , , , , , , , , , , , , , , , , , ,	→ WbWb L=4.7 fb ⁻¹ , 7 TeV [1210.5468] 656 GeV t ¹ mass
4th generation : b'b' \rightarrow SS dilepton + jets	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051] 720 GeV b' mass
Vector-like quark : T	T→ Ht+X L=14.3 fb ⁻¹ , 8 Tev [ATLAS-CONF-2013-018] 790 GeV T mass (isospin doublet)
Vector-like quark :	$\frac{CC}{M_{NQ}} = \frac{L=4.6 \text{ fb}^{-1}, 7 \text{ TeV [ATLAS-CONF-2012-137]}}{1.12 \text{ TeV}} \text{ VLQ mass (charge -1/3, coupling } \kappa_{qQ} = v/m_Q)$
Excited quarks :γ-jet resonal	nce, m
Excited quarks : dijet reson	ance, <i>m</i> _{jj} <u>L=13.0 fb⁻¹, 8 TeV [ATLAS-CONF-2012-148]</u> 3.84 TeV q* mass
Excited b quark : W-t resona	ance, m _{wt} <u>L=4.7 fb⁻¹, 7 TeV [1301.1583]</u> 870 GeV b* mass (left-handed coupling)
Excited leptons : I-γ reson	ance, $m_{L=13.0 \text{ fb}^3, 8 \text{ Tev}}$ [ATLAS-CONF-2012-146] 2.2 TeV [* mass ($\Lambda = m(*)$)
Techni-hadrons (LSTC) : dilept	Dn, $m_{ee/\mu\mu}$ <u><i>L</i>=5.0 fb⁻¹, 7 TeV [1209.2535]</u> 850 GeV ρ_{T}/ω_{T} mass $(m(\rho_{T}/\omega_{T}) - m(\pi_{T}) = M_{W})$
Techni-hadrons (LSTC) : WZ resonance	(k'II), $m_{\rm WZ}$ $L=13.0 {\rm fb}^3, 8 {\rm Tev} [{\rm ATLAS-CONF-2013-015}]$ 920 GeV $\rho_{\rm T} {\rm mass} (m(\rho_{\rm T}) = m(\pi_{\rm T}) + m_{\rm W}, m({\rm a}_{\rm T}) = 1.1 m(\rho_{\rm T}))$
Major. neutr. (LRSM, no mixing) : 2-	lep + jets $L=2.1 \text{ fb}^{-1}, 7 \text{ TeV} [1203.5420]$ 1.5 TeV N mass $(m(W_B) = 2 \text{ TeV})$
Heavy lepton N [±] (type III seesaw) : Z-I reson	ance, $m_{z_1} = 5.8 \text{ fb}^{-1}$, 8 TeV [ATLAS-CONF-20 ² /3 ⁵ /8 ¹ /9 ^V } N [±] mass (IV _e I = 0.055, IV _µ I = 0.063, IV _x I = 0)
H [±] (DY prod., BR(H [±] →II)=1) : SS ee	$e (\mu\mu), m_{\rm L}$ L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 409 GeV H ^{±±} _L mass (limit at 398 GeV for $\mu\mu$)
Color octet scalar : dijet reson	ance, m _{jj} L=4.8 fb ⁻¹ , 7 TeV [1210.1718] 1.86 TeV Scalar resonance mass
Multi-charged particles (DY prod.) : highly ionizi	ng tracks L=4.4 fb ⁻¹ , 7 TeV [1301.5272] 490 GeV mass (lql = 4e)
Magnetic monopoles (DY prod.) : highly ionizi	ng tracks [7 TeV [1207.6414] 862 GeV mass
	10 ⁻¹ 1 10 10
	Mass scale [TeV]

EXPER

MSUGRA/CMSSM

- MSUGRA/CMSSM
 - Exclude squarks and gluinos > 1 TeV and > 1.8 TeV respectively

MSUGRA/CMSSM

- MSUGRA/CMSSM
 - Exclude squarks and gluinos > 1 TeV and > 1.8 TeV respectively
- But, only really probing a tiny part of a very large parameter SUSY space

UCSB/CERN

J. Incandela

Durham, UK

Onto more general SUSY searches

Gluinos decaying to stop or sbottom decaying to top or bottom + neutralino

Eliminating essentially all of the regions we can probe:

39

Invisibles13

Direct 3rd generation production

July 15, 2013

Direct 3rd generation production

2013

July

ATLAS SUSY Searches* - 95% CL Lower Limits

pertial data

full data

full data

ATLAS Preliminary

Status: LP 2013

(£ dt = (4.4 - 22.9) fb⁻¹ √s = 7, 8 TeV

	Model	e,μ,τ,γ	Jets	E ^{miss}	∫£ dt[fb	¹] Mass limit	Reference
Inclusive Searches		$\begin{array}{c} 1 *, \mu \\ 0 \\ 0 \\ 1 *, \mu \\ 2 *, \mu (SB) \\ 2 *, \mu \\ 1 \cdot 2 \tau \\ 2 \gamma \\ 1 *, \mu + \gamma \\ 2 *, \mu (Z) \\ 0 \end{array}$	3-6 jets 7-10 jets 2-6 jets 3-6 jets 3 jets 0-2 jets 0 1 <i>b</i> 0-3 jets meno-jet	Yas Yas Yas Yas Yas Yas Yas Yas	20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	8 1.2 TeV arcy m(4) i 9 740 GeV mt? 1.0 GeV mt? 1.0 GeV 8 1.1 TeV arcy m(4) i 9 740 GeV mt? 1.0 GeV i 8 1.1 TeV mt? 1.0 GeV i 8 1.2 HTeV tard=15 i 8 1.07 TeV mt? 1.5 So CeV i 8 00 GeV mt? 1.5 So CeV i 8 00 GeV mt? 1.5 So CeV i 9 00 GeV mt? 1.5 So CeV i	ATLAS-CONF-2013-052 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-027 1205-4055 ATLAS-CONF-2013-027 1205-4055 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 ^d gen. <u>8</u> med.	ē→bēl ē→cēl ē→cēl ē→bēl	0 0 0-1 a, pr 0-1 a, pr	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yas Yas Yas Yas	20.1 20.3 20.1 20.1	B 1.2 TeV m(t^2)<000 GeV // B 1.14 TeV m(t^2)<000 GeV	ATLAS-CONF-2013-001 ATLAS-CONF-2013-054 ATLAS-CONF-2013-001 ATLAS-CONF-2013-001
3rd gen. squarks direct production	$ \begin{split} \bar{\tilde{b}}_1 \bar{\tilde{b}}_1, \ \bar{\tilde{b}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{b}}_1 \bar{\tilde{b}}_1, \ \bar{\tilde{b}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (BgH), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (BgH), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (molum), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (molum), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \overline{k}_1^T \\ \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \bar{\tilde{c}}_1 (hoavy), \ \bar{\tilde{c}}_1 \rightarrow b \tilde{c$	0 2 •,μ (35) 1-2 •,μ 2 •,μ 2 •,μ 0 1 •,μ 0 2 •,μ(Z) 3 •,μ(Z)	2 b 0-3 b 1-2 b 0-2 jets 0-2 jets 2 b 1 b 2 b 1 b 1 b 1 b	Yas Yas Yas Yas Yas Yas Yas Yas	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	L 100-630 GeV mft ² ₁ /- too CeV i k 430 GeV mft ² ₁ /- too CeV i k 167 GeV mft ² ₁ /- too CeV i k 167 GeV mft ² ₁ /- too CeV ift ² k 220 GeV mft ² ₁ /- too CeV, mft ² ₁ /- to CeV ift ² k 150-440 GeV mft ² /- too CeV, mft ² /- to CeV ift ² k 150-580 GeV mft ² /- too CeV, mft ² /- to CeV ift ² k 200-680 GeV mft ² /- too CeV ift ² k 320-680 GeV mft ² /- too CeV ift ² k 600 GeV mft ² /- too CeV ift ² k 500 GeV mft ² /- too CeV ift ² k 500 GeV mft ² /- too CeV ift ² k 620 GeV mft ² /- too CeV ift ²	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1205-4005, 1209-2013-046 ATLAS-CONF-2013-046 ATLAS-CONF-2013-046 ATLAS-CONF-2013-053 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW drect	$\begin{array}{l} \tilde{d}_{1} p \tilde{d}_{1} p, \tilde{\ell} \rightarrow \tilde{\ell}^{2}_{1} \\ \tilde{X}_{1}^{2} \tilde{X}_{1}^{-} \tilde{X}_{1}^{-} \rightarrow \tilde{\ell}^{4} (\tilde{r}^{2}) \\ \tilde{X}_{1}^{2} \tilde{X}_{1}^{-} \tilde{\chi}_{1}^{-} \rightarrow \tilde{r}^{4} (\tilde{r}^{2}) \\ \tilde{X}_{1}^{2} \tilde{X}_{2}^{-} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{-} \tilde{r}^{4} (\tilde{r}^{2}), \tilde{\ell} \tilde{r} \tilde{\ell}_{1}^{-} (\tilde{r}^{2}) \\ \tilde{X}_{1}^{2} \tilde{X}_{2}^{-} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{-} \\ \end{array}$	2 •, µ 2 •, µ 2 • , µ 3 •, µ 3 •, µ	0 0 0	Yas Yas Yas Yas Yas	20.3 20.3 20.7 20.7 20.7	i 85-315 GeV ເຄີຍ (1, 25-450 GeV ເຄີຍ (1, 25	ATLA S-CONF-2013-049 ATLA S-CONF-2013-049 ATLA S-CONF-2013-028 ATLA S-CONF-2013-028 ATLA S-CONF-2013-028 ATLA S-CONF-2013-028
Long-lived particles	Direct $\mathcal{E}_1^+ \mathcal{R}_1^+$ prod., long-level \mathcal{R}_1^+ Stable, stopped $g \in \mathbb{R}$ -hadron GMSB, stable $\bar{\tau}$ Direct $\bar{\tau}^+$ prod., stable $\bar{\tau}$ or $\bar{\ell}$ GMSB, $\mathcal{R}_1^+ \rightarrow g_1^-$ long-level \mathcal{R}_1^0 $\mathcal{R}_1^+ \rightarrow g_2^-$ (RPV)	0 0 1-2 µ 1-2 µ 2 y 1 µ	1 jat 1-5 jets 0 0 0	Yas Yas - Yas Yas	4.7 22.0 15.0 15.0 4.7 4.4	X ² 220 GeV 1 < r(X ²) < 10 m B B57 GeV m(X ²) < 10 m	1210.2852 ATLA 8-CONF-2013-057 ATLA 8-CONF-2013-058 ATLA 8-CONF-2013-058 1304.6310 1210.7451
RPV	$ \begin{array}{l} {\rm LFV} \ pp \rightarrow \bar{v}_r + X, \bar{v}_t \rightarrow a + \mu \\ {\rm LFV} \ pp \rightarrow \bar{v}_r + X, \bar{v}_t \rightarrow a(\mu) + \tau \\ {\rm Binear} \ {\rm RPV} \ {\rm CMSSM} \\ \bar{\mathcal{K}}_1^+ \bar{\mathcal{K}}_1^+ \overline{\mathcal{A}}_1^+ \overline{\mathcal{M}}_2^+ \bar{\mathcal{K}}_1^0 \rightarrow a \bar{v}_\mu, a_l \bar{v}_\mu \\ \bar{\mathcal{K}}_1^+ \bar{\mathcal{K}}_1^+ \overline{\mathcal{A}}_1^+ \overline{\mathcal{M}}_2^+ \bar{\mathcal{K}}_1^0 \rightarrow a \bar{v}_\mu, a_l \bar{v}_\mu \\ \bar{\mathcal{K}}_1^+ \bar{\mathcal{K}}_1^+ \overline{\mathcal{A}}_1^+ \overline{\mathcal{M}}_2^+ \bar{\mathcal{K}}_1^+ \overline{\mathcal{K}}_1^+ \rightarrow \pi \bar{v}_\mu \\ \bar{\mathcal{K}} \rightarrow \bar{q} q \\ \bar{g} \rightarrow \bar{q}_l \\ \bar{g} \rightarrow \bar{q}_l t, \ \bar{q}_l \rightarrow b \pi \end{array} $	2 •, µ 1 •, µ + τ 1 •, µ 3 •, µ + τ 0 2 •, µ (SS)	0 0 7 jøts 0 6 jøts 0-3 <i>b</i>	- Yas Yas Yas - Yas	4.6 4.6 4.7 20.7 20.7 4.6 20.7	π. 1.61 TeV X ₁₁₁ =0.10, A ₁₀₂ =0.05 π. 1.1 TeV X ₁₁₁ =0.10, A ₁₀₂ =0.05 ĝ. 6 1.2 TeV m(§)_m(ĝ], c _{0,10} χ [*] ₁ 760 GeV m(ξ [*] ₁)_beo CeV, A ₁₀₀ >0 χ [*] ₁ 350 GeV m(ξ [*] ₁)_beo CeV, A ₁₀₀ >0 δ 666 GeV m(ξ [*] ₁)_beo CeV, A ₁₀₀ >0 δ 660 GeV m(ξ [*] ₁)_beo CeV, A ₁₀₀ >0	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-026 ATLAS-CONF-2013-026 1210.4815 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (DS, Dirac χ)	0 0	4 jets mono-jet	- Yas	4.6 10.5	ngleon 100-287 GeV ind. Einitham 1110.2593 M [*] scale 704 GeV mtgl <co 567="" <="" alc="" de="" for="" gev="" gev,="" imit="" td=""><td>1210.4855 ATLA S-CONF-2012-147</td></co>	1210.4855 ATLA S-CONF-2012-147
	√s = 7 TeV √	s = 8 TeV	√S = full	8 TeV		10 ⁻⁺ 1 Mass scale (TeV)	

"Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

EXRe,

Incl. searches

Natural SUSY

+ RPV

Ē

Extended MSSM

SUSY no show tables

S

search

U L

SUSY

Natural

2013

15,

July

Heavy lons at LHC

LHCb A1.6 Preliminary

1.4

1.2

0.8

0.6

pA/Ap √s_{NN} = 5 TeV

HCb. prompt J

Some of the many heavy-ion highlights from the LHC

Seoul

Strings 2013,

৵

Present

Past, I

Greg

2013 G Plus many more results with exclusive strange and charm hadron identification, as well as beauty tagging, completely unique to the LHC experiments

The search for $B_{s(d)} \rightarrow \mu \mu$

July 15, 2013

Where do we stand now?

Guido Altarelli

UCSB/CERN

J. Incandela

Durham, UK

Invisibles13 Workshop

July 15, 2013

Implications

- 126 GeV Higgs boson
 - Important constraint on "simple" SUSY models
 - Especially if we require "naturalness" values of superpartner masses
 - i.e. avoiding non-fine-tuned solution to the hierarchy problem

"If not, we would be giving up at least one of the three SUSY 'miracles' " – Greg Landsberg (CMS Physics Coordinator)

- If 15% higher, we might have stopped considering MSSM scenarios...
- An interesting situation also in regard to SM
 - Vacuum stability \Rightarrow new physics must come in at ~10¹¹ GeV
 - ~15% higher, the SM would be fine to the Planck scale

SUSY still fills an obvious gap !

See talk by Nima Arkani-Hamed at Edinburgh Higgs Symposium, January 2013

What seems "so simple" may just be more complicated...

Fayet 1975

What next?

- Run 1 has been a success
 - But the LHC is in its childhood
- Run 2 and beyond
 - Extend searches, precision measurements - significantly
 - For the next 15+ years the LHC is the only Higgs (and top, W, Z ...) factory we have!

CERN Plan for the next 10 years

LHC Warm-UP 2013

Few perturbations (EL, CV, controls), Few issues with HW (HX-Comp-Tu)

July 15, 2013

July 15, 2013

Invisibles13 Workshop

UCSB/CERN

J. Incandela

Durham, UK

SMACC: Installation of shunts

UCSB/CERN

>160 IC in sector 56 (75% of one sector) are now equipped with shunts (almost 10% of the LHC, 2560 shunts)
 Started ahead of schedule, learning for critical activity

15

First shunt soldered on 24.04.2013

24.04.2013 : First shunts soldered (QBBI.11R5)

Run 2: ca. 2015-2018

Illustrate for CMS, same generally applies to ATLAS

Basically, life will not be easy ...

Pileup ~ 50 at 25 ns and L = 2x10³⁴ cm

Looking Ahead to Run 2: Summary of Challenges

CPU for 2015 (25 ns bunch spacing, L= 1.5E34 cm⁻²s⁻¹):
 x10 CPU required in 2015.

x2 or more from trigger rate; x2.5 from in-time pile up; x2 from out of time pileup at 25 ns (worse for luminosity leveling at 50 ns)

- Improvements are *crucial*
 - Faster algorithms needed:
 - A first example; increase tracking cluster charge thresholds
- A real challenge
 - Requires a lot of expertise.
 - Work for next 2 years will be very challenging

ATLAS Upgrades up to Phase-1

- Insertable B-Layer (LS1)
 - ➡ and new services for Pixels

• Muons (LS1)

➡ complete coverage
➡ new shielding

Muons (LS2)
 → New Small Wheel

ATLAS Forward Physics AFP

⇒ 210m downstream from P1 (before LS2)

LAr Calorimeter (LS2)

➡ fine granularity readout for Level-1

• Level-1 Trigger

- → new electronics
 → topological trigger
 (phased in before LS2)
- High Level
 Trigger farm
 (phased in before LS2)
- Tile Calorimeter (LS2)
 - ➡ new gap scintillators
 - ➡ new trigger electronics
- Fast Track Trigger FTK (LS2)
 - ➡ HW tracking input to Level-2

Markus Elsing

CMS Upgrades up to Phase-1

new Pixel detector

➡ installation in 2016/17 in end of year shutdown

Muons (LS1)

- ➡ complete coverage
- ➡ increase CSC readout granularity

Level-1 Trigger

- ⇒ new electronics
 - e, γ isolation (PU)
 - μ isolation, better p_T
 - narrower τ-cones
 - jets with PU subtraction
- ➡ topological trigger
- (ready for operation in 2016)

- Hadron Calorimeters (LS2)
 - new photodetectors, higher Level-1 granularity
 - better background rejection using timing
 - Iongitudinal segmentation (5 HB and 3 HE segments)

2013

July 15,

High Luminosity LHC (HL-LHC) and beyond

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030 - European strategy update document: Approved by CERN Council in May

Injectors, LEP/LHC tunnel, infrastructures

Courtesy L. Rossi

New CMS Higgs projections for 300(0) fb⁻¹

Bracket precision estimates

- 1. Systematics unchanged
- 2. Theory uncertainties reduced $\frac{1}{2}$, all other systematics ~ $\frac{1}{\sqrt{1}}$

Upgrades target precision Higgs measurements with pileup ~140!! (25 ns and L = 5x10³⁴ cm⁻²s⁻¹)

Workshop

UCSB/CERN

Incandela

Durham, UK

CMS Phase-2 Upgrades

Muons

- complete RPCs in forward region with new technology, GEM or GRPCs
- \Rightarrow extend η coverage ?

- new Inner Tracker
 - ➡ radiation hardness
 - better granularity and faster links
 - ➡ improved precision
 - ➡ less material
 - \Rightarrow extend η coverage ?

T/DAQ

- → Level-1 at 1 MHz (?) (requires all new FE/RO)
- ➡ Tracking at Level-1 (!)
- \rightarrow HLT output 10 kHz?

Technical Proposal in 2014

upgrade/replace Forward Calorimeters

- extend η coverage ?
- mitigate pileup effects with tracking and precise timing

UCSB/CERN

- > 6σ with 3000 fb⁻¹
- - ~ 30 events at 3000 fb⁻¹

 \Rightarrow top- and μ -Yukawa couplings with a precision on total signal strength of 25%

- Higgs self-couplings: ~ 3σ from
 - HH \rightarrow bbyy channel with 3000 fb⁻¹
 - HH \rightarrow bb $\tau\tau$ also promising

 $\pm 30\%$ on λ/λ_{SM} may be achieved

nvisibles13

ATLAS Phase-2 Upgrades

• new Inner Tracker

- ➡ radiation hardness
- better granularity and faster links
- improved precision
- ➡ less material
- \Rightarrow extend η coverage ?

LAr and Tile Calorimeter

➡ new FE and BE electronics

• T/DAQ

- ➡ Level-0 at 500 kHz
- Tracks at Level-1
- ⇒ 200 kHz input to HLT
- ➡ output 5 kHz ?

COLUMN TWO ATI AS etter of Intent

Muons

- new FE electronics
- improved resolution

Forward Calorimeters

- ➡ replace FCal ?
- ➡ replace HEC cold electronics ?

Further into the Future...

Well, maybe not quite this far forward...

80-km tunnel in Geneva area – VHE-LHC

Julie

Lake Geneva

 $16 T \Rightarrow 100 \text{ TeV in 100 km}$ $20 T \Rightarrow 100 \text{ TeV in 80 km}$

LEGEND

HE_LHC 80km option potential shaft location Geneva

Saleve

even better 100 km?

Courtesy L. Rossi 69

Conclusion

Advancing on 5 fronts

- 1. Run 1 Physics
- 2. LS1 consolidation
- 3. Phase 1 Upgrades
- 4. Run 2 preparation of detector, operations, computing, offline, trigger and simulations for physics
- 5. Phase 2 simulation studies to converge on cost, scope, possible baseline scenario(s) plus (staged) options