INDIRECT DARK MATTER DETECTION

http://www.mpi-hd.mpg.de/lin/research_DM.en.html

Ivone Freire Mota Albuquerque IFUSP Invisibles School - Durham - July 2013

Neutrinos + Gammas

1. Neutrino telescopes and results on DM searches

2. Gamma, e⁻ e⁺ telescopes and results on DM searches

Hints on DM?

3. Neutrino / Gamma correlated signals

4. FermiLAT bubble and line signal

IceCube Detector

Earth as target

IceCube Detector

Earth as target

IceCube Detector

→ depends on string spacing => Deep Core => below 100 GeV (10 GeV)

Neutrino Telescopes

Baikal NT200

Antares

Mediterranean Sea (2008) 2005 NT200+ 200m x 350m Nestor

Pylos Greece (2003) 2005 NT200+ ~300mx32m

Lake Baikal - Russia (1993) 2005 NT200+ Height x diam = 210m x 200m

Antares Detector

Antares Detector

Field of View

Future Telescopes

The next generation multi-km³ neutrino telescope

Mediterranean Sea ANTARES+NESTOR (european collaboration) Denser Infill Array in IceCube Extension to lower energy neutrinos 1 GeV threshold neutrino oscillations

IceCube Search for WIMPs

$$\begin{array}{rcl} \chi \,+\, \overline{\chi} \,\,\rightarrow\,\, \mathbf{W}^{+}\,\mathbf{W}^{-} \\ & \rightarrow \,\,\tau^{+}\,\tau^{-} & (\mathbf{below}\,\,\mathbf{m_W}\,=\,\mathbf{80.4\,GeV}) \\ & \rightarrow \,\,\mathbf{b}\,\overline{\mathbf{b}} \end{array}$$

- IceCube detector (79 strings)
- Deep Core => E_{thr} = 20 GeV
- 317 live days of data

IceCube Coll. - Aartsen et al. PRL **IIO** (2013)

IceCube Search for WIMPs

$$\begin{array}{rcl} \chi \,+\, \overline{\chi} \,\,\rightarrow\,\, \mathbf{W}^{+}\,\mathbf{W}^{-} \\ & \rightarrow \,\,\tau^{+}\,\tau^{-} & (\mathbf{below}\,\,\mathbf{m_W}\,=\,\mathbf{80.4\,GeV}) \\ & \rightarrow \,\,\mathbf{b}\,\overline{\mathbf{b}} \end{array}$$

- IceCube detector (79 strings)
- Deep Core => E_{thr} = 20 GeV
- 317 live days of data

IceCube Coll. - Aartsen et al. PRL **IIO** (2013)

Simulated signal: Wimpsim and DarkSusy

→ assumes capture and annihilation rates are in equilibrium

IceCube Search for WIMPs

$$\begin{array}{rcl} \chi \,+\, \overline{\chi} \,\,\rightarrow\,\, \mathbf{W}^{+}\,\mathbf{W}^{-} \\ & \rightarrow \,\, \tau^{+}\,\tau^{-} & (\mathbf{below}\,\,\mathbf{m_W}\,=\,\mathbf{80.4\,GeV}) \\ & \rightarrow \,\,\mathbf{b}\,\overline{\mathbf{b}} \end{array}$$

- IceCube detector (79 strings)
- Deep Core => E_{thr} = 20 GeV
- 317 live days of data

IceCube Coll. - Aartsen et al. PRL **IIO** (2013)

Simulated signal: Wimpsim and DarkSusy

- → assumes capture and annihilation rates are in equilibrium
 - Expected background: atmospheric ν and μ

→ simulated with Corsika (D. Heck et al., FZKA Report No. 6019, 1998)

 \rightarrow follows well (M. Honda et al., Phys. Rev. D 75, 2007)

IceCube Results

IceCube Results

TABLE I. Results from the combination of the three independent data sets. The upper 90% limits on the number of signal events μ_s^{90} , the WIMP annihilation rate in the Sun Γ_A , the muon flux Φ_{μ} and neutrino flux Φ_{ν} , and the WIMP-proton scattering cross sections (spin independent, $\sigma_{\text{SL},p}$; spin dependent, $\sigma_{\text{SD},p}$) at the 90% confidence level, including systematic errors. The sensitivity $\bar{\Phi}_{\mu}$ (see the text) is shown for comparison.

m_{χ}			Γ_A	$\bar{\Phi}_{\mu}$	Φ_{μ}	$\Phi_{ u}$	$\sigma_{{ m SI},p}$	$\sigma_{{ m SD},p}$
(GeV/c^2)	Channel	μ_s^{90}	(s^{-1})	$(km^{-2}y^{-1})$	$(km^{-2}y^{-1})$	$(\mathrm{km}^{-2}y^{-1})$	(cm ²)	(cm ²)
20	$ au^+ au^-$	162	$2.46 imes 10^{25}$	$5.26 imes 10^4$	$9.27 imes 10^4$	2.35×10^{15}	$1.08 imes10^{-40}$	$1.29 imes 10^{-38}$
35	$ au^+ au^-$	70.2	$1.03 imes 10^{24}$	1.03×10^{4}	1.21×10^{4}	$1.02 imes 10^{14}$	6.59×10^{-42}	$1.28 imes 10^{-39}$
35	$b\bar{b}$	128	$1.99 imes 10^{26}$	5.63×10^{4}	1.04×10^{5}	$6.29 imes 10^{15}$	1.28×10^{-39}	2.49×10^{-37}
50	$ au^+ au^-$	19.6	$1.20 imes 10^{23}$	4.82×10^{3}	2.84×10^{3}	$1.17 imes 10^{13}$	1.03×10^{-42}	$2.70 imes 10^{-40}$
50	$b\bar{b}$	55.2	$1.75 imes 10^{25}$	2.06×10^{4}	$1.80 imes 10^4$	$5.64 imes 10^{14}$	$1.51 imes 10^{-40}$	3.96×10^{-38}
100	W^+W^-	16.8	3.35×10^{22}	1.49×10^{3}	1.19×10^{3}	$1.23 imes 10^{12}$	6.01×10^{-43}	$2.68 imes 10^{-40}$
100	$b\bar{b}$	28.9	$1.82 imes 10^{24}$	7.57×10^{3}	5.91×10^{3}	$6.34 imes 10^{13}$	3.30×10^{-41}	$1.47 imes 10^{-38}$
250	W^+W^-	29.9	$2.85 imes 10^{21}$	3.04×10^{2}	4.15×10^{2}	$9.72 imes 10^{10}$	1.67×10^{-43}	$1.34 imes 10^{-40}$
250	$b\bar{b}$	19.8	$1.27 imes 10^{23}$	$1.85 imes 10^{3}$	1.45×10^{3}	4.59×10^{12}	7.37×10^{-42}	$5.90 imes 10^{-39}$
500	W^+W^-	25.2	$8.57 imes 10^{20}$	$1.46 imes 10^{2}$	2.23×10^{2}	$2.61 imes 10^{10}$	1.45×10^{-43}	$1.57 imes 10^{-40}$
500	$b\bar{b}$	30.6	$4.12 imes 10^{22}$	8.53×10^{2}	1.02×10^{3}	1.52×10^{12}	$6.98 imes 10^{-42}$	$7.56 imes 10^{-39}$
1000	W^+W^-	23.4	$6.13 imes 10^{20}$	1.19×10^{2}	$1.85 imes 10^{2}$	$1.62 imes 10^{10}$	3.46×10^{-43}	$4.48 imes 10^{-40}$
1000	$b\bar{b}$	30.4	1.39×10^{22}	4.33×10^{2}	5.99×10^{2}	5.23×10^{11}	7.75×10^{-42}	$1.00 imes 10^{-38}$
3000	W^+W^-	22.2	$7.79 imes 10^{20}$	1.09×10^{2}	$1.66 imes 10^{2}$	$1.65 imes 10^{10}$	3.44×10^{-42}	5.02×10^{-39}
3000	$b\bar{b}$	26.1	$4.88 imes 10^{21}$	2.52×10^{2}	3.47×10^{2}	$1.89 imes 10^{11}$	2.17×10^{-41}	3.16×10^{-38}
5000	W^+W^-	22.8	$8.79 imes 10^{20}$	1.01×10^{2}	$1.58 imes 10^{2}$	$1.77 imes 10^{10}$	$1.06 imes 10^{-41}$	$1.59 imes 10^{-38}$
5000	$b\bar{b}$	26.4	$6.50 imes 10^{20}$	2.21×10^{2}	3.26×10^{2}	$1.63 imes 10^{11}$	$4.89 imes 10^{-41}$	$7.29 imes 10^{-38}$

Consistent with expected background

IceCube Coll. - Aartsen et al. - PRL **IIO** (2013)

Limits on Neutralino DM

Limits on Neutralino DM

Combined AMANDA-II + IceCube Data

IceCube - 22 strings

Total live time 1065 days

IceCube Coll. - Abbasi et al. PRD **85** (2012)

Complementarity among indirect and direct detection

INDIRECT

DIRECT

spin-dependent

low velocity (easier to capture)

spin-independent

high velocity (easier to detect)

Complementarity among indirect and direct detection

INDIRECT

DIRECT

spin-dependent

spin-independent

low velocity (easier to capture) high velocity (easier to detect)

Note: CDMS has natural Ge and Si ~8% ⁷³Ge(spin 9/2) and ~5% ²⁹Si(spin 1/2)

Complementarity among indirect and direct detection

INDIRECT

DIRECT

spin-dependent

spin-independent

low velocity (easier to capture) high velocity (easier to detect)

Note: CDMS has natural Ge and Si ~8% ⁷³Ge(spin 9/2) and ~5% ²⁹Si(spin 1/2)

different sensitivities to structures in DM halo

Complementarity among indirect and direct detection

INDIRECT

DIRECT

spin-dependent

spin-independent

low velocity (easier to capture) high velocity (easier to detect)

Note: CDMS has natural Ge and Si ~8% ⁷³Ge(spin 9/2) and ~5% ²⁹Si(spin 1/2)

different sensitivities to structures in DM halo

clumps (voids) might enhance (lower) annihilation and lower chances of direct detection

IceCube Search for LKP

UED: KK photon $\chi^{(1)}$ as LKP

$\chi \overline{\chi} \rightarrow \mathbf{H} \overline{\mathbf{H}}$

$\mathbf{H} \rightarrow \cdots \rightarrow \mathbf{x} \pi^{\mathbf{0}} \rightarrow \gamma \gamma$

2) Secondary photons from radiative processes

→ energy loss processes for e⁺ / e⁻: inverse Compton or synchroton emission

smooth energy spectrum

1)

Can we get light out of DM?

 $\chi \overline{\chi} \rightarrow \mathbf{H} \overline{\mathbf{H}}$

 $\mathbf{H} \rightarrow \cdots \rightarrow \mathbf{x} \pi^{\mathbf{0}} \rightarrow \gamma \gamma$

2) Secondary photons from radiative processes

→ energy loss processes for e⁺ / e⁻: inverse Compton or synchroton emission

smooth energy spectrum

1)

Can we get light out of DM?

 $\chi \overline{\chi} \rightarrow \mathbf{H} \overline{\mathbf{H}}$

 $\mathbf{H} \rightarrow \cdots \rightarrow \mathbf{x} \pi^{\mathbf{0}} \rightarrow \gamma \gamma$

2) Secondary photons from radiative processes

→ energy loss processes for e⁺ / e⁻: inverse Compton or synchroton emission

smooth energy spectrum

e+ / e- diffusion + energy loss

1)

- Inverse Compton emission:

 $\label{eq:constraint} \rightarrow \mbox{interstellar field radiation: CMB} \quad \begin{array}{ll} (\mathbf{E}_{\gamma} \ \sim \ \mathbf{2.6} \times \mathbf{10^{-4} \, eV}) \\ \mbox{dust} & (\mathbf{E}_{\gamma} \ \sim \ \mathbf{10^{-2} \, eV}) \\ \mbox{stars} & (\mathbf{E}_{\gamma} \ \sim \ \mathbf{1 \, eV}) \end{array} \end{array}$

Bergstrom, Snellman, PRD 12, 1988

Bergstrom, Ullio, Nuc. Phys. B **504**, 1997

Cline, PRD 86, 2012

Bergstrom, Snellman, PRD **12**, 1988

Bergstrom, Ullio, Nuc. Phys. B **504**, 1997

Cline, PRD 86, 2012

monochromatic line

Examples of Y Spectra

FIG. 1: Case of $m_{\chi} = 130 \text{ GeV DM}$ particle annihilating to W^+W^- pair with a cross-section of $1.05 \times 10^{-25} \text{ cm}^3 \text{s}^{-1}$ at to a 2γ line with a cross-section of $1.25 \times 10^{-27} \text{ cm}^3 \text{s}^{-1}$. V plot the $|b| < 5^{\circ}$, $|l| < 5^{\circ}$.

Cholis, Tavakoli, Ullio, PRD 86, 2012

galactic diffuse γ backgrd: dragon package <u>http://www.desy.de</u>/~maccione/ DRAGON/

FIG. 6: Wino/Axion model of [30]. $m_{\chi} = 145 \text{ GeV}$ $\langle \sigma v \rangle_{\chi\chi \longrightarrow Z\gamma} = 1.26 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}, \langle \sigma v \rangle_{\chi\chi}^{tot} = 3.2 \times 10^{-24} \text{ cm}^3 \text{s}^{-1}.$

> [30] Acharya, G. Kane et al., arXiv:1205.5789
- γ flux from DM annihilation from within a solid angle Ω :

$$\begin{split} \Phi_{\gamma} \ &= \ \mathbf{J} \frac{<\sigma \mathbf{v}>}{2\,\mathbf{M}_{\chi}^{2}} \sum \frac{d\mathbf{N}_{\gamma}}{d\mathbf{E}_{\gamma}} & \begin{array}{l} \text{Sum over all DM}\\ \text{annihilation into } \boldsymbol{\gamma} \mathbf{s} \end{array} \\ \mathbf{J}(\boldsymbol{\Delta}\boldsymbol{\Omega},\psi) \ &= \ \frac{1}{\boldsymbol{\Delta}\boldsymbol{\Omega}} \int \mathbf{d}\boldsymbol{\Omega} \int_{\mathbf{l.o.s}} \rho^{2}(\mathbf{l})\mathbf{d} \ \mathbf{l}(\psi) & \left[\mathbf{J}\right] \ &= \ \frac{\mathbf{GeV}}{\mathbf{cm}^{5}} \\ \mathbf{d} \mathbf{i} \mathbf{rection in the sky} \end{split}$$

$$\rho(\mathbf{r}) = \rho_0 \exp(-\alpha \mathbf{f}(\mathbf{r}^n))$$

- γ flux from DM annihilation from within a solid angle Ω :

$$egin{array}{lll} \Phi_\gamma \ = \ {f J} \, rac{< \sigma {f v} >}{2 \, {f M}_\chi^2} \, \sum rac{{f d} {f N}_\gamma}{{f d} {f E} \, \gamma} \end{array}$$

Sum over all DM annihilation into γs

$$\begin{split} \mathbf{J}(\boldsymbol{\Delta}\boldsymbol{\Omega},\boldsymbol{\psi}) \; = \; \frac{1}{\boldsymbol{\Delta}\boldsymbol{\Omega}} \int \mathbf{d}\boldsymbol{\Omega} \int_{\mathbf{l.o.s}} \rho^{\mathbf{2}}(\mathbf{l}) \mathbf{d} \; \mathbf{l}(\boldsymbol{\psi}) \qquad [\mathbf{J}] \; = \; \frac{\mathbf{GeV}}{\mathbf{cm}^{5}} \\ & \mathbf{direction in the sky} \end{split}$$

- NFW density profile: $\rho(\mathbf{r}) \frac{\rho_s}{\frac{\mathbf{r}}{\mathbf{R}_s} \left(1 + \frac{\mathbf{r}}{\mathbf{R}_s}\right)^2}$ $\rho(\mathbf{r})$ and \mathbf{R}_s are halo parameters

$$\rho(\mathbf{r}) = \rho_{\mathbf{0}} \exp(-\alpha \mathbf{f}(\mathbf{r}^{\mathbf{n}}))$$

- γ flux from DM annihilation from within a solid angle Ω :

$$egin{array}{lll} \Phi_\gamma \ = \ {f J} \, rac{< \sigma {f v} >}{2 \, {f M}_\chi^2} \, \sum rac{{f d} {f N}_\gamma}{{f d} {f E} \, \gamma} \end{array}$$

Sum over all DM annihilation into γs

$$\begin{split} \mathbf{J}(\boldsymbol{\Delta}\boldsymbol{\Omega},\boldsymbol{\psi}) \; = \; \frac{1}{\boldsymbol{\Delta}\boldsymbol{\Omega}} \int \mathbf{d}\boldsymbol{\Omega} \int_{\mathbf{l.o.s}} \rho^{\mathbf{2}}(\mathbf{l}) \mathbf{d} \; \mathbf{l}(\boldsymbol{\psi}) \qquad [\mathbf{J}] \; = \; \frac{\mathbf{GeV}}{\mathbf{cm}^{\mathbf{5}}} \\ & \mathbf{direction in the sky} \end{split}$$

- NFW density profile: $\rho(\mathbf{r}) \frac{\rho_s}{\frac{\mathbf{r}}{\mathbf{R}_s} \left(1 + \frac{\mathbf{r}}{\mathbf{R}_s}\right)^2}$ $\rho(\mathbf{r})$ and \mathbf{R}_s are halo parameters

$$\rho(\mathbf{r}) = \rho_{\mathbf{0}} \exp(-\alpha \, \mathbf{f}(\mathbf{r}^{\mathbf{n}}))$$

Ω => depends on telescope, source, fov => should be optimized to maximize signal/noise

- γ flux from DM annihilation from within a solid angle Ω :

$$egin{array}{lll} \Phi_\gamma \ = \ {f J} \, rac{< \sigma {f v} >}{2 \, {f M}_\chi^2} \, \sum rac{{f d} {f N}_\gamma}{{f d} {f E} \, \gamma} \end{array}$$

Sum over all DM annihilation into γs

$$\begin{split} \mathbf{J}(\boldsymbol{\Delta}\boldsymbol{\Omega},\boldsymbol{\psi}) \; = \; \frac{1}{\boldsymbol{\Delta}\boldsymbol{\Omega}} \int \mathbf{d}\boldsymbol{\Omega} \int_{\mathbf{l.o.s}} \rho^{\mathbf{2}}(\mathbf{l}) \mathbf{d} \; \mathbf{l}(\boldsymbol{\psi}) \qquad [\mathbf{J}] \; = \; \frac{\mathbf{GeV}}{\mathbf{cm}^{\mathbf{5}}} \\ & \mathbf{direction in the sky} \end{split}$$

- NFW density profile: $\rho(\mathbf{r}) \frac{\rho_{\mathbf{s}}}{\frac{\mathbf{r}}{\mathbf{R}_{\mathbf{s}}} \left(1 + \frac{\mathbf{r}}{\mathbf{R}_{\mathbf{s}}}\right)^2}$ $\rho(\mathbf{r})$ and $\mathbf{R}_{\mathbf{s}}$ are halo parameters

- Einasto density profile: $\rho(\mathbf{r}) = \rho_0 \exp(-\alpha \mathbf{f}(\mathbf{r}^n))$

Ω => depends on telescope, source, fov => should be optimized to maximize signal/noise

Galactic Center Good statistics Huge Background

Dwarf galaxies

(Fornax dwarf spheroidal galaxy) Large mass/light ratio (no gas detected)

Galactic Center Good statistics Huge Background

Dwarf galaxies

(Fornax dwarf spheroidal galaxy) Large mass/light ratio (no gas detected)

Galactic Center Good statistics Huge Background

Coma Cluster

Dwarf galaxies

(Fornax dwarf spheroidal galaxy) Large mass/light ratio (no gas detected)

Galactic Center Good statistics Huge Background

Spectral lines: excellent identification rare events => low sensitivity

Cluster of galaxies

Coma Cluster

J Factors

$\Delta \Omega = 1^{o}$ and NFW profile

Name	[(R), (1	P)]	$\left[\langle R^2 \rangle - R \equiv \log_{10} \right]$	$\langle R \rangle^2, \langle P^2 \rangle - \langle P \rangle^2, \langle RP \rangle - \langle R \rangle \langle R \rangle$ $(r_s/kpc), P \equiv \log_{10}(\rho_s/M_{\odot} kp)$	$P)$] J^{NFW} c^{-3}) $(10^{19} \frac{GeV^2}{cm^5})$	
Ursa Major II Coma Berenices Bootes I Usra Minor Sculptor Draco Sextans Fornax	[-0.78, 8 [-0.79, 8 [-0.57, 8 [-0.19, 7 [-0.021, [0.32, 7 [-0.43, 7 [-0.24, 7	8.54] 8.41] 8.31] 7.99] 7.57] 7.57] 7.41] 7.93] 7.82]		[0.0417, 0.0986, -0.0554] [0.0603, 0.132, -0.0820] [0.0684, 0.165, -0.0931] [0.0430, 0.116, -0.0697] [0.0357, 0.0798, -0.0528] [0.0236, 0.0364, -0.0286] [0.0302, 0.109, -0.0570] [0.0474, 0.140, -0.0798]	$\begin{array}{c} 0.58^{+0.91}_{-0.35}\\ 0.16^{+0.22}_{-0.08}\\ 0.16^{+0.33}_{-0.13}\\ 0.64^{+0.23}_{-0.18}\\ 0.24^{+0.06}_{-0.18}\\ 1.20^{+0.31}_{-0.25}\\ 0.06^{+0.03}_{-0.02}\\ 0.06^{+0.03}_{-0.03}\\ \end{array}$	Ferm As larg
Cluster	RA	Dec.	z	$J \ (10^{17} \ {\rm GeV^2 \ cm^{-5}})$		
AWM 7 Fornax M49 NGC 4636	43.6229 54.6686 187.4437 190.7084	41.5781 -35.3103 7.9956 2.6880	0.0172 0.0046 0.0033 0.0031	${ \begin{array}{c} 1.4 \substack{+0.1 \\ -0.1 \\ 6.8 \substack{+1.0 \\ -0.9 \\ 4.4 \substack{+0.2 \\ -0.1 \\ 4.1 \substack{+0.3 \\ -0.3 \end{array} } \end{array} } }$	С	luster
Centaurus (A3526) Coma	192.1995 194.9468	-41.3087 27.9388	0.0114 0.0231	$2.7_{-0.1}^{+0.1} \\ 1.7_{-0.1}^{+0.1}$	FermiLat (Ackerr	mann et al.)

Dwarfs

iLat (Ackermann et al.), strophy. J. 712, 2010

ge mass/light ratio ckg (no gas detected)

'S

), JCAP **1005**, 2010

Galactic center: J ~ 10^{21} GeV²cm⁻⁵

PAMELA Telescope

 magnetic spectrometer:
 bending depends on electric charge and rigidity
 momentum is determined
 - calorimeter: e[±] separation from p[±]

- satellite in an elliptical orbit at an altitude between 350 and 610 Km

a Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

Saturday, July 13, 2013

Fermi-LAT Telescope

Y rays convert into e⁺e⁻ e⁺e⁻ reconstruction: energy and direction incident Y-ray

Quantity	LAT (Minimim Spec.)	EGRET
Energy Range	20 MeV - 300 GeV	20 MeV - 30 GeV
Peak Effective Area ¹	> 8000 cm ²	1500 cm ²
Field of View	> 2 sr	0.5 sr
Angular Resolution ²	< 3.5° (100 MeV) < 0.15° (>10 GeV)	5.8° (100 MeV)
Energy Resolution ³	< 10%	10%
Deadtime per Event	< 100 µs	100 ms
Source Location Determination ⁴	< 0.5'	15'
Point Source Sensitivity ⁵	< 6 x 10 ⁻⁹ cm ⁻² s ⁻¹	$\sim 10^{-7} \text{ cm}^{-2} \text{ s}^{-1}$

→ energy reconstruction depends on Monte Carlo

→ energy reconstruction depends on Monte Carlo

→ beam test data for electrons and hadrons up to 282 GeV

Bits of Light

Hints from from electromagnetic fluxes

Fermi-LAT e⁻ e⁺ separated fluxes

Fermi-LAT e⁻ e⁺ separated fluxes

no magnet => effect of Earth magnetic field (20 to 200 GeV)

Fermi-LAT e⁻ e⁺ separated fluxes

no magnet => effect of Earth magnetic field (20 to 200 GeV)

consistent with previous measurement + with PAMELA

AMS Positron Fraction

Aguilar et al. (AMS Coll.), PRL **IIO**, 2013

AMS Positron Fraction

AMS Positron Fraction

consistent with new physics (either from particle or astrophysics)

Possible Scenarios

- STANDARD solutions:

 \rightarrow **pulsars** (S. Profumo - arXiv:0812.4457)

→ secondaries from shock accelerated hadrons (Blasi - PRL 103 - 2009)

- DM solutions:

 $\chi \overline{\chi} \rightarrow (t\overline{t}, b\overline{b}, ...) \rightarrow \text{hadrons}$ $\Rightarrow \qquad \text{leptons}$ γs

Anti Proton Spectrum

O.~Adriani et al. (PAMELA), Phys. Rev. Lett., 105 (2010).

Anti Proton Spectrum

O.~Adriani et al. (PAMELA), Phys. Rev. Lett., 105 (2010).
DM can explain excess

Two Examples

Extracted from D. Grasso *et al.* Nucl.Instrum.Meth. A630, 48-51 (2011).

Fig. 11. Predictions for the CRE spectrum from two specific dark matter models, compared to current measurements. The same large scale Galactic CRE components (dotted line) as in Figs. 4 and 6 (model 0 in Table 1) is used here. Note that the theoretical model curves showed in this plot do not account for the smearing due the finite experimental energy resolution.

Lepto-philic models: pair annihilation into e[±],µ[±],T[±] P.Fox, E. Poppitz (PRD 79 - 2009)

Annihilation into e[±] Finkbeiner, N. Weiner (PRD 76 - 2007)

DM Fit

DM Fit

DM Fit

Boost on Γ_A is necessary!!

 $-\Gamma_A$ can be enhanced in several ways:

=> DM substructures in the halo

- => Annihilation XS is enhanced
 - * Sommerfeld enhancement
- => combination of both effects

diffuse γ-ray emission at intermediate galactic latitudes => conservative limits assuming DM signal does not exceed the observed diffuse limit

Saturday, July 13, 2013

W/O backgrd modeling: compares expected counts from DM with event counts after all triggers

diffuse γ-ray emission at intermediate galactic latitudes => conservative limits assuming DM signal does not exceed the observed diffuse limit

Saturday, July 13, 2013

W/O backgrd modeling: compares expected counts from DM with event counts after all triggers

constrained fit: linear fit to all expected backgrounds IC: Inverse Compton FSR: Final State Radiation

diffuse γ-ray emission at intermediate galactic latitudes => conservative limits assuming DM signal does not exceed the observed diffuse limit

Saturday, July 13, 2013

 $\chi\chi \rightarrow bb, ISO$ $\chi \rightarrow bb, |$ 10^{-2} 1028 w/o background modeling ---- 30 constrained free source fits 10-22 10^{2} [_________] 10⁻²³ 10 1 [8] 10^{2} 10 ----- 3a 10²⁴ w/o background modeling σ^wWIMP freeze−out constrained free source fits 1023 10^{2} 10^{3} 10^{2} 10^{3} 10^{4} m [GeV] m [GeV] $\chi \chi \rightarrow \mu^+ \mu^-$, ISO $\chi \rightarrow \mu^* \mu^-$, ISO 10^{-21} 10^{28} IC+FSR, w/o background modeling FSR, w/o background modeling IC+FSR, constrained free source fit 10^{-22} 10^{2} -3σ [_s 10⁻²³ c ш0] ≤ 10⁻²⁴ 10^{26} 1 10 IC+FSR, w/o background modeling ----- 3*a* 10 10^{2} FSR, w/o background modeling O'WIMP freeze-out $= 5\sigma$ IC+FSR, constrained free source fits 10-2 10^{23} 10^{2} 10^{3} 10^{3} 10⁴ 10 m [GeV] m [GeV] $\chi \chi \rightarrow \tau^+ \tau^-$, ISO $\rightarrow \tau^* \tau^*$, ISO 10^{-21} 10^{2} IC+FSR, w/o background modeling FSR, w/o background modeling IC+FSR, constrained free source fits 10^{-22} 1023 -3σ [ຣູເມວ] ເຊິ່ງ 10⁻²³ 10⁻²⁴ · 5a 10^{2} T [S] 10^{2} 10^{-25} IC+FSR, w/o background modeling 102 **TWIMPfreeze-out** FSR, w/o background modeling IC+FSR, constrained free source fits 10-2 10^{2}

W/O backgrd modeling: compares expected counts from DM with event counts after all triggers

constrained fit: linear fit to all expected backgrounds IC: Inverse Compton FSR: Final State Radiation

> Good fit to PAMELA e⁺e⁻ results

diffuse γ-ray emission at intermediate galactic latitudes => conservative limits assuming DM signal does not exceed the observed diffuse limit

W/O backgrd modeling: compares expected counts from DM with event counts after all triggers

constrained fit: linear fit to all expected backgrounds IC: Inverse Compton FSR: Final State Radiation

> Good fit to PAMELA e⁺e⁻ results

Good fit to Fermi e⁺e⁻ results

diffuse γ-ray emission at intermediate galactic latitudes => conservative limits assuming DM signal does not exceed the observed diffuse limit

W/O backgrd modeling: compares expected counts from DM with event counts after all triggers

constrained fit: linear fit to all expected backgrounds IC: Inverse Compton FSR: Final State Radiation

> Good fit to PAMELA e⁺e⁻ results

Good fit to Fermi e⁺e⁻ results

diffuse γ-ray emission at intermediate galactic latitudes => conservative limits assuming DM signal does not exceed the observed diffuse limit

Indirect Searches

Boost on annihilation XS

Should also boost neutrino flux (Delaunay, Fox, Perez JHeP 05 2009)

Indirect Searches

Boost on annihilation XS

Capture and annihilation equilibrium is accelerated

Should also boost neutrino flux (Delaunay, Fox, Perez JHeP 05 2009)

Boost on annihilation XS

 Γ_{A} enhanced by boost B_{f} over XS: $\langle \sigma v \rangle = B_{f} \langle \sigma v \rangle_{R}$

Boost on annihilation XS

 Γ_{A} enhanced by boost B_{f} over XS: $\langle \sigma v \rangle = B_{f} \langle \sigma v \rangle_{R}$

Today Earth is far from equilibrium Enhancement is effective if accelerates equilibrium

DM Annihilation in the Earth

 $\chi \,\overline{\chi} \to f_{\nu \overline{\nu}} \,\nu_{\mu} \,\overline{\nu}_{\mu}$

- primary flux from the center of the Earth:

 $\mathbf{m}_{\chi} = 500$ and $1000 \,\mathrm{GeV}$

- monochromatic V flux

- secondary V are too low in energy (Delaunay, Fox, Perez JHeP 05 2009)

V production and propagation

- Monte Carlo Simulation: WIMPSIM code

(M. Blennow, J. Edsjo, T. Ohlsson - JCAP **01** 2008)

=> CC and NC interactions

=> v oscillations

V production and propagation

- Monte Carlo Simulation: WIMPSIM code

(M. Blennow, J. Edsjo, T. Ohlsson - JCAP **01** 2008)

=> CC and NC interactions

=> v oscillations

- Output: V_{μ} flux $\left(\frac{d\phi_{\nu}}{dE_{\nu}}\right)$ at the detector

V production and propagation

- Monte Carlo Simulation: WIMPSIM code

(M. Blennow, J. Edsjo, T. Ohlsson - JCAP **01** 2008)

=> CC and NC interactions

=> v oscillations

- Output: V_{μ} flux $\left(\frac{d\phi_{\nu}}{dE_{\nu}}\right)$ at the detector
- Number of μ at given angular region Ω at IceCube*:

$$\int \left(\frac{d\phi_{\nu}}{dE_{\nu}\,dA\,dt\,d\Omega} \right)\,dE_{\nu}t_{\mathbf{exp}}\,\mathbf{A_{eff}}\Omega$$

$DM v_s$ angular distribution

V_s from DM at IC40

taking IC angular experimental resolution into account:
 (2° for up-going vertical events)

V_s from DM at IC40

taking IC angular experimental resolution into account:
 (2° for up-going vertical events)

IC-40 Effective Area

FIG. 5. Effective area for $\nu_{\mu} + \bar{\nu}_{\mu}$ as a function of the true neutrino energy in intervals of the true zenith angle of the neutrino. The angle averaged area is represented by the solid black line.

Expected V_s from DM at IC40

IC40 Results

IceCube 40 string configuration

- Measurement of atmospheric neutrino energy spectrum (0.1 => 400 TeV) (R.~Abbasi et al., PRD83, 2011)
- A Search for a Diffuse Flux of Astrophysical V_{μ} (R.~Abbasi et al., PRD83, 2011)

=> search for diffuse E⁻² flux of cosmic origin

IC40 Results

IceCube 40 string configuration

- Measurement of atmospheric neutrino energy spectrum (0.1 => 400 TeV) (R.~Abbasi et al., PRD83, 2011)
- A Search for a Diffuse Flux of Astrophysical V_{μ} (R.~Abbasi et al., PRD83, 2011)

=> search for diffuse E⁻² flux of cosmic origin

Both consistent with expected atmospheric flux

IC40 Data

- Public data from diffuse analysis:
 - => <u>www.icecube.wisc.edu/science/data</u>
 - events from near or below the horizon
 - background contamination (atm μ from above) < 1%
 - final sample of I3 K events
- angular cut (4.1, 3.7°) corresponding to 500 (1000) GeV DM

IC40 Data

- Public data from diffuse analysis:
 - => <u>www.icecube.wisc.edu/science/data</u>
 - events from near or below the horizon
 - background contamination (atm μ from above) < 1%
 - final sample of I3 K events
- angular cut (4.1, 3.7°) corresponding to 500 (1000) GeV DM

data reduced to 14 (9) events

Results

 $S \equiv$ predicted number of events $B \equiv$ measured IC40 events after angular cuts XeI00 limits: $\sigma_{\chi p} \sim 4$ (8) x 10⁻⁴⁴ cm² for $m_{\chi} = 500$ (1000) GeV

At these limits: $B_F > 215$ (58) are excluded for $f_{vv} = 1$ at a 5σ level

Results

S = predicted number of events

B = measured IC40 events after angular cuts XeI00 limits: $\sigma_{\chi p} \sim 4$ (8) x 10⁻⁴⁴ cm² for m_{χ} = 500 (1000) GeV

At these limits: $B_F > 215$ (58) are excluded for $f_{vv} = 1$ at a 5σ level

Y-ray lines

$$\chi \overline{\chi} \to \mathbf{X} \gamma$$

In DM rest frame:

$${f E}_\gamma \;=\; {f m}_\chi \, \left(1 - {{f m}_\chi^2\over 4\,{f m}_\chi^2}
ight)$$

Y-ray lines

$$\chi \overline{\chi} \to \mathbf{X} \gamma$$

In DM rest frame:

$${
m E}_{\gamma} \;=\; {
m m}_{\chi} \; \left(1 - rac{{
m m}_{\chi}^2}{4\,{
m m}_{\chi}^2}
ight)$$

Monochromatic photons!
Y-ray lines

$$\chi \overline{\chi} \to \mathbf{X} \gamma$$

In DM rest frame:

$$\mathrm{E}_{\gamma} ~=~ \mathrm{m}_{\chi} ~ \left(1 - rac{\mathrm{m}_{\mathrm{X}}^2}{4\,\mathrm{m}_{\chi}^2}
ight)$$

Monochromatic photons!

If X => second
$$\gamma$$
 => $E_{\gamma} = m_{\chi}$

Y-ray lines

$$\chi \overline{\chi} \to \mathbf{X} \gamma$$

In DM rest frame:

$${
m E}_{\gamma} \;=\; {
m m}_{\chi} \; \left(1 - rac{{
m m}_{\chi}^2}{4\,{
m m}_{\chi}^2}
ight)$$

Monochromatic photons!

If X => second
$$\gamma$$
 => $E_{\gamma} = m_{\chi}$

DM is non relativistic in the halo: monochromatic in lab frame as well

Exercise 1: In many models DM particles annihilate into a γ and another particle (X). Show that the produced γ s are monochromatic with energy in its rest frame given by the equation shown in the previous slide.

Fermi-LAT search for Y-ray lines

Search for monochromatic Ys from DM annihilation or decay

Gamma sky: 20 MeV to 300 GeV Gamma lines: 5 to 300 GeV

	Annihilation		Decay	
Profile	ROI	J-factor	ROI	J-factor
		$(10^{22} \text{ GeV}^2 \text{ cm}^{-5})$		$(10^{23} \text{ GeV cm}^{-2})$
NFW Contracted	R3	13.9	R180	2.42
Einasto	R16	8.48	R180	2.49
NFW	R41	8.53	R180	2.46
Isothermal	R90	6.94	R180	2.80

3.7 years of data (arXiv:1305.5597)

Fermi-LAT search for Y-ray lines

Fermi-LAT search for Y-ray lines

 γ line feature at 133 GeV (s_local = 3.3 σ and s_global = 1.6 σ)

 γ line feature at 133 GeV (s_local = 3.3 σ and s_global = 1.6 σ)

> "Found no globally significant spectral line signals"

> > (arXiv:1305.5597)

 γ line feature at 133 GeV (s_local = 3.3 σ and s_global = 1.6 σ)

> "Found no globally significant spectral line signals"

velocity average limits ~ 10^{-29} - 10^{-27} much lower than thermal relic value

(arXiv:1305.5597)

 γ line feature at 133 GeV (s_local = 3.3 σ and s_global = 1.6 σ)

> "Found no globally significant spectral line signals"

velocity average limits ~ 10^{-29} - 10^{-27} much lower than thermal relic value

limits are on annihilation to γ s

(arXiv:1305.5597)

FermiLAT "Bubbles"

2 large γ ray structures above and below GC related to microwave haze in same region (found by WMAP and confirmed by Planck)

"Bubbles" and Haze

Many possible explanations

Problems when analyzing foreground?

Haze

synchrotron radiation from dark matter annihilations?

synchrotron radiation from astro sources?

production by 10 GeV electrons

Bubbles

TeV electrons scattering off CMB?

(same electrons that produce haze might scatter photons to higher energies => gamma rays)

DM?

"Bubbles" and Haze

(google cosmic invariance blog finkbeiner)

"Bubbles" and Haze

Finkbeiner, astro-ph/0409027 (2004)

(google cosmic invariance blog finkbeiner)

Planck results: compelling evidence that bubbles produce haze

Many explanations other than DM Little room for DM as main source

Hooper, Finkbeiner and Dobler, PRD **76** (2007) Finkbeiner and Dobler, Astrophys. J. **680** (2008) Cholis, Goodenough and Weiner, PRD **79** (2009)