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Outline

1. DM indirect searches

2. DM annihilation in the Early Universe

3. DM annihilation products

Lecture 1

Neutrinos

4. DM capture and annihilation rates

5. SIMPs exclusion as a study case

Lecture 2

Neutrinos + Gammas
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Possible Processes

DM Annihilation

SM

SM

DM Decay
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easy to detectmight not reach us; 

DM Capture and Annihilation

‑ Annihilation rate

‑ DM Capture

→ρχ ; mχ ; σχN (sd or si) ; vχ

‑ Annihilation products (SM particles)

 → propagation / energy losses
‑ Detection rate

Production at Early Universe

ν: point to their sources; easily reach us; hard to detect
Ɣ: point to their sources; 

strongly model 
dependent

backgrounds
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DM Production
‑ Annihilation XS

➞ production mechanism (Early Universe)

★ thermal equilibrium in Early Universe

★ connection to key parameters (ρχ ; mχ ; σA ; vχ)

0

0

0

0χ

χ

χ

χ

Γ > H(t)

★ non thermal production (axions, super massive DM) 

Γ = n < σAv >
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Early Universe
Thermodynamics & Statistical Mechanics

‑N DM particles => Boltzmann equation:

Expansion 
of the 

Universe

Annihilation
Rate

↓

o
 Katherine Garrett and Gintaras Dūda, “Dark Matter: A Primer,” Advances in Astronomy,  (2011)

dni

dt
= −3Hni −

N�

j=1

�σijvij �
�
ni nj − n

eq
i n

eq
j

�↓

↓
χχ → f f

↓
f f → χχ
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DM Freezes Out

Y = n / s

Plot: Rocky Kolb and M. Turner: The Early Universe
Frontiers in Physics

equilibrium
--- freeze out 

(current abundance)
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WIMP Abundance
If DM is a thermal relic, massive and weakly interacting

Freeze out condition: ΓA = nχ < σAv >= H(t)

Early Universe (radiation dominated): 

H =
1.66g0.5

∗ T
2

mpl
s � 0.4g∗T

3

Freeze out temperature can be determined:    Tfo ~ mχ/20
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� 100

mχ mpl g0.5
∗ σA < v >

�nχ

s

�

o
� 10−8

(mχ/GeV)(σA < v > /10−27cm3 s−1)

Ωχh
2 =

h2 ρχ
ρc

=
h2 mχ nχ

ρc
ρc � 10−5 h2 GeVcm−3

Freeze out temperature can be determined:    Tfo ~ mχ/20

Thursday, July 11, 2013



WIMP ``Miracle’’

Ωχh
2 �

�
3× 10−27cm3 s−1

< σAv >

�

σ(weakscale) ∼ G2
F

m2
W

mW ∼ 100GeV v = c/3

⇒ σAv ∼ ϑ(10 −26) cm3s−1

Ωχ = 0.1h−2

DM abundance!
Ωχ = 0.1h−2
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WIMP ``Miracle’’

Ωχh
2 �

�
3× 10−27cm3 s−1

< σAv >

�

σ(weakscale) ∼ G2
F

m2
W

mW ∼ 100GeV v = c/3

⇒ σAv ∼ ϑ(10 −26) cm3s−1

Ωχ = 0.1h−2

DM abundance!
Ωχ = 0.1h−2

Exercise 1: Redo this calculation.
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Non Thermal Production
mχ upper limit : σA ↓ mχ ↑

⇒ Ωχh
2 ≤ 1 + Unitarity ⇒ mχ ≤ ϑ(100TeV)

- super massive DM (wimpzillas, simpzillas):
→ non-thermally produced at much later times

- axions 

- asymmetric DM: dark baryon with m ~ 5 GeV

→ low interaction rate such that thermal equilibrium 
never happened

(thermally produced)
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DM Capture

- take Sun and/or Earth as examples

- capture probability:u

◯W

Mχ ; σχN ; vχ ; nt ; ρχ
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DM Capture

- take Sun and/or Earth as examples

- capture probability:u

◯W

- χ speed distribution f(u):

Press & Spergel - Astrophys.J. 296 (1985)
A. Gould - Astrophys.J. 388 (1991)

Jungman,Kamionkowski, Griest - Phys. Rep. 267 (1995)

→

Mχ ; σχN ; vχ ; nt ; ρχ
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astrophysics

dFin

dudJ2
=
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u

f(u)d3u→

Thursday, July 11, 2013



- scattering rate:

DM Capture
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- fractional energy loss:

where

- scattering rate:

DM Capture

.u2

w2
≤ ∆E

E
≤ 4MχmN

(Mχ + mN)2

- to ensure capture:
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DM Capture

- scattering is isotropic: Pcap =

4MχmN

(Mχ+mN)2 −
�
u
w

�2

4MχmN

(Mχ+mN)2

Pcap =

4MχmN

(Mχ+mN)2 −
�
u
w

�2

4MχmN

(Mχ+mN)2

=
v2

w2

�
1 − u2 (Mχ − mN)2

4Mχ mN v2
esc

�

dΓc

dV
=

�
f(u)

u
wnt σχN Pcap du
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4Mχ mN v2
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�

dΓc

dV
=

�
f(u)

u
wnt σχN Pcap du

capture is more efficient for Mχ ~ mN

otherwise kinematically suppressed 

- XS form factor suppression => if momentum transfer is not small 
compared to nucleus radius  

- capture rate per 
shell volume:

dΓC

dV
=

�
f(u)

u
wΩ(w)Pcap du
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 Capture in the Sun and Earth

K☼ ~ 1021 K⊕ ~ 1012

ΓC SI = K
ρχ

0.3GeV/cm3

270km/s

vχ

100GeV

Mχ

�

inuc

Fi(Mχ)
σχNi

10−42 cm2
fiφi S(Mχ/mNi) s

−1

↓
form factor kin suppression

↓
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EARTH:   XS is spin independent
SUN:  SD (H) + SI
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Capture in the Sun

Zentner, PRD 80 (2009)

XS:  spin independent
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Annihilation Rate

- DM time evolution:

ΓA =
N

2
ΓI

ΓI = n < σAv > where n ≡ χ density in the Sun
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Annihilation Rate

- DM time evolution:

.

ΓA =
N

2
n < σAv >=

N2

2Veff
< σA v >

ΓA =
N

2
ΓI

ΓI = n < σAv > where n ≡ χ density in the Sun
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Maximum Ann Rate

τ≣ timescale for equilibrium among capture and annihilation 
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Maximum Ann Rate

τ≣ timescale for equilibrium among capture and annihilation 

Annihilation rate is maximum at equilibrium 
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Annihilation in the Sun and Earth

 1 TeV DM ; 

t_solar system ~ 1.4 x 109 years
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Annihilation in the Sun and Earth

 1 TeV DM ; 

t_solar system ~ 1.4 x 109 years

Far from
equilibrium

τ⊙ ∼ 5× 107 y
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Annihilation in the Sun and Earth

 1 TeV DM ; 

t_solar system ~ 1.4 x 109 years

Far from
equilibrium

In equilibrium
for a long timeτ⊙ ∼ 5× 107 y
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Cosmology and particle physics complement
each other 

Beyond the SM

While cosmology requires DM, particle physics 
(extensions of the SM) independently offers 

many candidates (LSP, LKKP, ...)

→ stable particles which annihilate into SM particles
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Annihilation Products

χ + χ → SM particles
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Annihilation Products

Entirely model dependent! 

χ + χ → SM particles

- Which particles can reach us from 
the Sun?

neutrinos!

- Which ones can reach a orbiting 
satellite ?

CR +
gammas!

Look for channels which produce these particles

X

CR don’t point to their sources
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Possible SM Products

- primary products:

χ + χ → SM particles

tt , bb , W+W− , Z0Z0 , ll , ...
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Model dependency: 
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leptons are preferred
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Possible SM Products

- primary products:

χ + χ → SM particles

- LSP: neutralino (depending on its mass) 
produces all these states

Model dependency: 

- LKKP: if n=1 mode of gauge boson (B1): charged 
leptons are preferred

tt , bb , W+W− , Z0Z0 , ll , ...

- Majorana fermions with mχ < mt : bb , τ+τ−

Choose your favorite model! 
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ν as Annihilation Product

χχ → qq → jets

χχ → tt → W+W− → lν

χχ → qq

→ νν

χχ → bb → l νX

(Eν = Mχ)
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ν as Annihilation Product

χχ → qq → jets

χχ → tt → W+W− → lν
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→ νν

DM annihilation => products
↓

unknown
and

model dependent
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ν as Annihilation Product

χχ → qq → jets

χχ → tt → W+W− → lν

χχ → qq

→ νν

DM annihilation => products
↓ ↓

unknown
and

model dependent

SM
physics

χχ → bb → l νX

.

energy dist

↓

(Eν = Mχ)
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SIMPS as a Case Scenario
Strongly Interacting Massive Particles

SIMP
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SIMPS as a Case Scenario
Strongly Interacting Massive Particles

SIMP

WIMPs: interact at most once in a target (Sun, Earth or a detector)

SIMPs: interact many times => much easier to capture or detect
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SIMP Production

- Thermal: mass limit of mχ ≤ ϑ(100TeV)

- Non-thermal and extremely massive: Simpzillas (wimpzillas)

D. Chung; A. Riotto; R. Kolb

→ expanding production beyond thermal 

* low interaction rate in order to avoid thermal equilibrium

* extremely massive: close to the inflaton mass (1012 GeV)
large mass prevents from thermalizing

ΓA < H(t)

* production mechanism: decay of inflaton; gravitational at 
end of inflation, ...

Thursday, July 11, 2013



“In lustra past, theorists explained particles that were known 
to exist (...) and predicted others that had to exist (...). 
Overwhelmed by the sucesses of the standard model, they 
now find themselves all too often enumerating the properties 
of particles that have no reason not to exist.”

                             CHAMPS, A.de Rujula, S.L.Glashow, U.Sarid - Nuc. Phys. B 333 (1990)

Why (w) simpzillas?
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Simpzilla capture and annihilation in the Sun

- Number of Simpzillas that hit the Sun:

→ local DM density: 0.3 GeV/cm3

nχ =
0.3

Mχ
cm−3 = 3× 10−13

�
1012 GeV

Mχ

�
cm−3

ESTIMATED RATES

→ flux in the solar neighborhood: F =
n < v >

4π
→ Sun’s area ~ 6 x 1022 cm2

∼ 4× 1016

�
1012 GeV

Mχ

�
s−1 Simpzillas hitting the Sun:
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Simpzilla’s trapped in the Sun
- number of interactions in the Sun:

Nint = n⊙ σχn R⊙ ∼ 1012
� σχn

10−24 cm2

�

Thursday, July 11, 2013



Simpzilla’s trapped in the Sun
- number of interactions in the Sun:

- assume DM impacts the Sun with vesc = 600 Km/s = 2 x 10-3 c

Nint = n⊙ σχn R⊙ ∼ 1012
� σχn

10−24 cm2

�

Thursday, July 11, 2013



Simpzilla’s trapped in the Sun
- number of interactions in the Sun:
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- assume DM impacts the Sun with vesc = 600 Km/s = 2 x 10-3 c

Nint = n⊙ σχn R⊙ ∼ 1012
� σχn

10−24 cm2

�

Mχ >> mn ⇒ ∆E =
mpv2

2

∆Etot = Nint ∆E = 2× 106
� σ χn

10−24 cm2

�
GeV
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- number of interactions in the Sun:

- energy loss per collision:

- assume DM impacts the Sun with vesc = 600 Km/s = 2 x 10-3 c

Nint = n⊙ σχn R⊙ ∼ 1012
� σχn

10−24 cm2

�

Mχ >> mn ⇒ ∆E =
mpv2

2

- simpzilla initial energy: Eχ ∼ 2× 106

�
Mχ

1012 GeV

�
GeV

∆Etot = Nint ∆E = 2× 106
� σ χn

10−24 cm2

�
GeV
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Simpzilla’s trapped in the Sun
- number of interactions in the Sun:

- energy loss per collision:

- assume DM impacts the Sun with vesc = 600 Km/s = 2 x 10-3 c

Nint = n⊙ σχn R⊙ ∼ 1012
� σχn

10−24 cm2

�

Mχ >> mn ⇒ ∆E =
mpv2

2

- simpzilla initial energy: Eχ ∼ 2× 106

�
Mχ

1012 GeV

�
GeV

Most simpzillas are captured!
ΓC  ~ 4 x 1016 s-1  

∆Etot = Nint ∆E = 2× 106
� σ χn

10−24 cm2

�
GeV
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Simpzilla’s capture rate
- depends on efficiency of losing energy in the Sun: q(Mχ, σχn, R⊙, M⊙)

→ q ≤ 1: efficient in losing energy => most will be captured

ΓC = 1017 (1 + y2)

�
1012

mχ

��
vχ

240km/s

��
R⊙

7× 1010cm

��
2× 1033 g

M⊙

�
s−1
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Simpzilla’s capture rate
- depends on efficiency of losing energy in the Sun: q(Mχ, σχn, R⊙, M⊙)

→ q ≤ 1: efficient in losing energy => most will be captured

→ q ≤ 1: not efficient => only low velocity ones will be captured

ΓC = 1017 (1 + y2)

�
1012

mχ

��
vχ

240km/s

��
R⊙

7× 1010cm

��
2× 1033 g

M⊙

�
s−1

ΓC = 1017 [1 + y2 − e−x2

(1 + y2 + x2)]

�
1012

mχ

��
vχ

240km/s

��
R⊙

7× 1010cm

��
2× 1033 g

M⊙

�
s−1

y ≡ 2.5

�
vesc

600km/s

��
vχ

240km/s

�−1

s−1

x ≡ y√
q − 1
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Simpzilla’s capture rate

σχp = 10−22 cm2

10−24

10−26

I.A., Lam Hui, Rocky Kolb, PRD 64, 
2001
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Simpzilla’s annihilation

ΓA =
ΓC

2

NH = 6× 106

�
1012

mχ

�
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Simpzilla’s annihilation

ΓA =
ΓC

2

dNH

dx
=

15

16
x−3/2 (1 − x)2 x ≡ E

Ejet

=
E

mχ

(fragmentation function: C. Hill, Nuc. Phys. B 224 (1983)

NH = 6× 106

�
1012

mχ

�
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Simpzilla’s annihilation

ΓA =
ΓC

2

dNH

dx
=

15

16
x−3/2 (1 − x)2 x ≡ E

Ejet

=
E
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(fragmentation function: C. Hill, Nuc. Phys. B 224 (1983)

NH = 6× 106

�
1012

mχ

�

NH =

�
1

ε

dNH

dx
dx ε ≡ ΛQCD
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Simpzilla’s annihilation

ΓA =
ΓC

2

dNH

dx
=

15

16
x−3/2 (1 − x)2 x ≡ E

Ejet

=
E

mχ

(fragmentation function: C. Hill, Nuc. Phys. B 224 (1983)

.                                 per
                                 jetNH = 6× 106

�
1012

mχ

�

NH =

�
1

ε

dNH

dx
dx ε ≡ ΛQCD

mχ
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Hadron Spectrum at Sun’s Core

Annihilation products: Nt+t = 2.8× 105

�
1012

mχ

�

Bs = 1.6 x 106

Cs = 2.8 x 106

light qs = 7.4 x 106

NH ⇒ ε ≡ mQ

mχ
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Hadron Spectrum at Sun’s Core

Annihilation products: Nt+t = 2.8× 105

�
1012

mχ

�

Bs = 1.6 x 106

Cs = 2.8 x 106

light qs = 7.4 x 106

NH ⇒ ε ≡ mQ

mχ

H spectrum at Sunʼs core:

x =
E

mχ
⇒ mQ

Ntot

dN

dE
∼ 1

2

�
E

mq

�−3/2

E > mQ
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Top Spectrum at Sun’s Core

tops

ν from top decay

I.A., Lam Hui, Rocky Kolb, PRD 64, 
2001
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Secondary ν from Simpzilla Annihilation

t → W + b (∼ 100%)
�→ e νe (10%)
�→ µ νµ (10%)
�→ τ ντ (10%)

τ → µ νµ ντ (18%)
e νe ντ (18%) ντ

CC−→ τ
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�→ e νe (10%)
�→ µ νµ (10%)
�→ τ ντ (10%)

τ → µ νµ ντ (18%)
e νe ντ (18%) ντ
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 ν  spectrum at Sunʼs core:

dN

dE
= N

E + mW�
(E + mt)[(E + mt)2 − m2

t ][(E + mW)2 − m2
W]
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Secondary ν from Simpzilla Annihilation

t → W + b (∼ 100%)
�→ e νe (10%)
�→ µ νµ (10%)
�→ τ ντ (10%)

τ → µ νµ ντ (18%)
e νe ντ (18%) ντ

CC−→ τ

 ν  spectrum at Sunʼs core:

 ν  emission rate (above 50 GeV):
at the Sunʼs core 

dN

dE
= N

E + mW�
(E + mt)[(E + mt)2 − m2

t ][(E + mW)2 − m2
W]

Nντ ∼ 104

�
1012

mχ

�
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Estimated Event Rate in IceCube

I.A., Lam Hui, Rocky Kolb, PRD 64, 
2001

σχp = 10−26 cm2

10−24

10−22
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Signal vs Background

I.A., Jodi Lamoureux, George Smoot, 
PRD 66, 2002
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Monte Carlo Simulation:   WIMPSIM code
(M. Blennow, J. Edsjo, T. Ohlsson - JCAP 01 2008)

=> CC and NC interactions

=> ν oscillations

Simpzilla Indirect Detection
νμ propagation from Sun’s core to Earth
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(M. Blennow, J. Edsjo, T. Ohlsson - JCAP 01 2008)

=> CC and NC interactions
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→ Input:  νμ  spectrum at Sun’s core
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Monte Carlo Simulation:   WIMPSIM code
(M. Blennow, J. Edsjo, T. Ohlsson - JCAP 01 2008)

=> CC and NC interactions

=> ν oscillations

→ Output:  νμ  flux           at the detector

Simpzilla Indirect Detection
νμ propagation from Sun’s core to Earth

→ Input:  νμ  spectrum at Sun’s core
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νμ Rate at IceCube 

 Number of μ at given angular region Ω at IceCube:
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νμ Rate at IceCube 

 Number of μ at given angular region Ω at IceCube:

 Effective area: efficiency of detector (energy dependent)
               probability
μ energy loss

detector and analysis efficiency

νµ
CC−→ µ
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νμ Rate at IceCube 

 Number of μ at given angular region Ω at IceCube:

 Effective area: efficiency of detector (energy dependent)
               probability
μ energy loss

detector and analysis efficiency

νµ
CC−→ µ

 Comparison of detected events with predicted rate
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Expected Rate in IceCube 

I.A., Carlos de Los Heros, PRD 81, 
2010
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IceCube-22 Results

 IceCube-22 published results: Phys. Rev. D 81(2010)
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Closing the SIMP window

Starkman et al, PRD 41, 1990

Mack et al, PRD 76, 2007

IA, Laura Baudis, PRL 90, 2003

I.A., Carlos de Los Heros, PRD 81, 
2010
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Exercise 2: Do a rough estimate on the number of 
WIMPs captured by the Sun, following the steps done 
for Simps. Find out the ratio between the capture rate
of Simps over the one for wimps, for a mass and cross 

section value of your choice. 

Exercise 3: Suppose you have a beyond the SM
favorite DM candidate. List the necessary

steps to estimate if it is possible to indirectly detect 
it.
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