Foundations 3A - QM, Worksheet 5
Problem 1

One can produce “circularly polarized” electromagnetic waves, in which the electric field vector rotates about the
direction of propagation of the wave. Within the dipole approximation, such a wave can be represented by the electric
field vector

Et) = % [€ exp(—iwt) + € exp(iwt)],

where € is a complex unit vector. If the wave propagates in the positive z-direction, then é = (X% — i¥)/V/2,
& = (X +i9)/V2 for “right-circular” polarization and é = (% + iy)/v2, € = (X — i¥)/V2 for “left-circular”
polarization (these two cases correspond to opposite senses of rotation of the electric field vector). Here X and y are
unit vectors in, respectively, the x- and the y-directions.

e What is the TD Hamiltonian term H'(r,t) that gives rise to £(¢)? (We want —V H'(r,t) = force = ¢€(t).)

Suppose that an atom of hydrogen, initially in a bound state with magnetic quantum number m,, makes a transition
to a bound state with magnetic quantum number m; under the effect of a right-circularly polarized field.

e What should the difference my — m, be for the corresponding transition probability to be non-zero?

Hint: The wave functions of these two states, ¥,(r) and ;(r) are products of a spherical harmonic and a function
of the radial variable r only: v,(r) = Ry, (7)Y, m, (0, ¢) or just |ng,ls, ms) and p(r) = Ry, (1)Yi,m, (6, @) or just
|le, lbv mb>'

You may use the commutation relations : [L.,z +iy| = hi(z +1iy), [L.,z—iy|] = —h(z—iy)

Problem 2 (See Griffiths Example 1.12)

We start with the two-level example of the lectures (the two states are 1, V).
A particle of mass m is initially in state a with wave function ¥,(r). The particle interacts with a potential H'(t)
that does not change with time, after it is switched on at t = 0.

Hl(t) = { ?/(I‘) i; 8 (1)

At time ¢ > 0 the particle is in a linear combination of the two states a, b with wavefunction:

P(r,t) = cq(t) Yo (r) exp|—iEq t/h] + cp(t) ¥u(r) exp[—iEy t/h)]

*k

Remember that for a sinusoidal perturbation, V(r) cos(wt) , (Lectures 10-11), in first order TD PT, the amplitudes
cq(t), cp(t) are

1 Vba etlwotw)t _ eilwo—w)t _ | Via il —w Sin[(wo — w)t/2]
Cl(ll)(t):]_ Cl(7 )(t):_ﬁ PR + P ~ _ - 6( 0 )t/QLUO—_w

with hwg = Ey — E,. The probability for transition a — b is P,_,;, = |cl(71)(t)|2:

2 sin?[(wp — w
Pasp(w,t) = |V;;‘ ([SJOO— W)lt/2]

*%



e [a] What are the amplitudes ¢,, ¢; and the probability for transition P,_,;(t) when the perturbation is time-
independent (1) and acts for time 0 < ¢’ < ¢?

*%

We now consider that the initial state of the particle has wave vector k’ and is represented by the plane wave

[V is the total volume. We follow Griffiths and use box normalisation for plane waves, which is not rigorous.]

The probability current, j(r), for a particle gives the probability the particle will cross an area, per unit area per unit
time. When the particle is described by the wf ¢ (r), the probability current is given by:

. Zh * *

) = = (0 (1) V() — b () Ve (1))

e [b] What is the probability current j;(r) for the incident particle described by ;7
*%

Because of the interaction with V(r), the state of the particle makes a transition to a bunch of plane wave states
1 ik-r
Pp(r) = —= €™ (2)

The density of states in energy p(E) of final states ¢y with energy E = h%k?/(2m) travelling in a solid angle dQ is:

V2m3E

p(E) = VWdQ (3)

*k

Remember, from Fermi’s Golden Rule, in Lecture 13-14 (for a sinusoidal perturbation), the rate at which particles
are scattered in continuum states (2) into a solid angle d€Q is:

7TV,‘ 2
Ria0 = |2hf| p(Ey)

e [c] What is the rate of scattering R;_,q4q into a solid angle d©2, when the perturbation (1) is independent of time,
after it is switched on at ¢ = 07

k%

Extra Problem: Born Approximation
e [d] Find the differential scattering cross-section do/dS?, which gives the rate at which particles are scattered into a
solid angle df2, per solid angle df) and divided by the magnitude of the incoming probability current:

do _ Ria0
s} J; dQ)




