
Foundations 3A - QM, Worksheet 5

Problem 1

One can produce “circularly polarized” electromagnetic waves, in which the electric field vector rotates about the
direction of propagation of the wave. Within the dipole approximation, such a wave can be represented by the electric
field vector

E(t) =
E0
2

[ε̂ exp(−iωt) + ε̂∗ exp(iωt)] ,

where ε̂ is a complex unit vector. If the wave propagates in the positive z-direction, then ε̂ = (x̂ − iŷ)/
√

2,

ε̂∗ = (x̂ + iŷ)/
√

2 for “right-circular” polarization and ε̂ = (x̂ + iŷ)/
√

2, ε̂∗ = (x̂ − iŷ)/
√

2 for “left-circular”
polarization (these two cases correspond to opposite senses of rotation of the electric field vector). Here x̂ and ŷ are
unit vectors in, respectively, the x- and the y-directions.

• What is the TD Hamiltonian term H ′(r, t) that gives rise to E(t)? (We want −∇H ′(r, t) = force = qE(t).)

Suppose that an atom of hydrogen, initially in a bound state with magnetic quantum number ma, makes a transition
to a bound state with magnetic quantum number mb under the effect of a right-circularly polarized field.

• What should the difference mb −ma be for the corresponding transition probability to be non-zero?

Hint: The wave functions of these two states, ψa(r) and ψb(r) are products of a spherical harmonic and a function
of the radial variable r only: ψa(r) = Rna

(r)Ylama
(θ, φ) or just |na, la,ma〉 and ψb(r) = Rnb

(r)Ylbmb
(θ, φ) or just

|nb, lb,mb〉.

You may use the commutation relations :
[
Lz, x+ iy

]
= h̄ (x+ iy),

[
Lz, x− iy

]
= −h̄ (x− iy)

Problem 2 (See Griffiths Example 1.12)

We start with the two-level example of the lectures (the two states are ψa, ψb).
A particle of mass m is initially in state a with wave function ψa(r). The particle interacts with a potential H ′(t)
that does not change with time, after it is switched on at t = 0.

H ′(t) =

{
0 t < 0
V(r) t ≥ 0

(1)

At time t > 0 the particle is in a linear combination of the two states a, b with wavefunction:

ψ(r, t) = ca(t)ψa(r) exp[−iEa t/h̄] + cb(t)ψb(r) exp[−iEb t/h̄]

∗∗

Remember that for a sinusoidal perturbation, V(r) cos(ωt) , (Lectures 10-11), in first order TD PT, the amplitudes
ca(t), cb(t) are

c(1)
a (t) = 1 c

(1)
b (t) = −Vba

2h̄

[
ei(ω0+ω)t − 1

ω0 + ω
+
ei(ω0−ω)t − 1

ω0 − ω

]
' − iVba

h̄
ei(ω0−ω)t/2 sin[(ω0 − ω)t/2]

ω0 − ω

with h̄ ω0 = Eb − Ea. The probability for transition a→ b is Pa→b = |c(1)
b (t)|2:

Pa→b(ω, t) =
|Vba|2

h̄2

sin2[(ω0 − ω)t/2]

(ω0 − ω)2

∗∗



• [a] What are the amplitudes ca, cb and the probability for transition Pa→b(t) when the perturbation is time-
independent (1) and acts for time 0 ≤ t′ ≤ t?

∗∗

We now consider that the initial state of the particle has wave vector k′ and is represented by the plane wave

ψi(r) =
1√
V
eik

′·r

[V is the total volume. We follow Griffiths and use box normalisation for plane waves, which is not rigorous.]

The probability current, j(r), for a particle gives the probability the particle will cross an area, per unit area per unit
time. When the particle is described by the wf ψ(r), the probability current is given by:

j(r) = − ih̄

2m

(
ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)

)
• [b] What is the probability current ji(r) for the incident particle described by ψi?

∗∗

Because of the interaction with V(r), the state of the particle makes a transition to a bunch of plane wave states

ψf (r) =
1√
V
eik·r. (2)

The density of states in energy ρ(E) of final states ψf with energy E = h̄2k2/(2m) travelling in a solid angle dΩ is:

ρ(E) = V

√
2m3E

8π3h̄3 dΩ (3)

∗∗

Remember, from Fermi’s Golden Rule, in Lecture 13-14 (for a sinusoidal perturbation), the rate at which particles
are scattered in continuum states (2) into a solid angle dΩ is:

Ri→dΩ =
π|Vif |2

2h̄
ρ(Ef )

• [c] What is the rate of scattering Ri→dΩ into a solid angle dΩ, when the perturbation (1) is independent of time,
after it is switched on at t = 0?

∗∗

Extra Problem: Born Approximation
• [d] Find the differential scattering cross-section dσ/dΩ, which gives the rate at which particles are scattered into a
solid angle dΩ, per solid angle dΩ and divided by the magnitude of the incoming probability current:

dσ

dΩ
=
Ri→dΩ

Ji dΩ


