
Foundations 3A - QM,
Worksheet 1

Problem 1

(a) Show that the (l = 0,m = 0) and (l = 1,m = 1)
spherical harmonics are normalized to unity, i.e., that∫ π

0

dθ sin θ

∫ 2π

0

dφY ∗0,0(θ, φ)Y0,0(θ, φ) = 1

and also that∫ π

0

dθ sin θ

∫ 2π

0

dφY ∗1,1(θ, φ)Y1,1(θ, φ) = 1.

[Hints: The relevant spherical harmonics are given at
the end of the question. For the latter integral, think
about setting u = cos θ and integrating over u rather
than over θ.]

(b) Also, show that the (l = 1,m = 1) spherical harmonic
is orthogonal to the (l = 1,m = −1) and (l = 2,m = 1)
spherical harmonics. I.e., show that∫ π

0

dθ sin θ

∫ 2π

0

dφY ∗1,−1(θ, φ)Y1,1(θ, φ) = 0

and that∫ π

0

dθ sin θ

∫ 2π

0

dφY ∗2,1(θ, φ)Y1,1(θ, φ) = 0.

(c) Write the function cos θ sin θ cosφ as a linear super-
position of spherical harmonics.

Y0,0(θ, φ) =
1√
4π

Y1,±1(θ, φ) = ∓
√

3

8π
sin θ exp(±iφ),

Y2,±1(θ, φ) = ∓
√

15

8π
sin θ cos θ exp(±iφ).

Problem 2

The ground state of a hydrogen atom and the first excited
state with l = 0 are often referred to as, respectively, the
1s state and the 2s state (1 and 2 because these are the
values of the principal quantum number for these two
states, and s because states with l = 0 are called “s-
states”). If one adopts a system of units in which the
unit of length is the Bohr radius, then the corresponding
wave functions read

ψ100(r) = 2 exp(−r)Y0,0(θ, φ)

ψ200(r) = (1/
√

2)(1− r/2) exp(−r/2)Y0,0(θ, φ).

(a) Show that ψ100(r) is normalized to unity. Show, also,
that ψ100(r) is orthogonal to ψ200(r).

You may use the fact that the spherical harmonics are
normalized for doing the angular integral and, for the
radial integral, use the fact that∫ ∞

0

rk exp(−αr) dr = k!/αk+1.

(b) By what function of time should you multiply ψ100(r)
to obtain a solution of the time-dependent Schrödinger
equation?

(c) Can a linear combination of the wave functions
ψ100(r) and ψ200(r) ever represent a stationary state?
(Justify your answer.)

(d) Suppose that an atom of hydrogen is prepared in a
certain state of wave function Ψ(r, t) and that at t = 0
one tests (somehow) whether this atom is in the ground
state. What is the probability of finding it in this state
at that time if Ψ(r, t = 0) = (1/

√
2) exp(−r/2)Y0,0(θ, φ)?

Problems for extra practice

Problem 3

Given a state of the hydrogen atom for which l = 1
and m = 0, calculate the probability that the bound
electron is in a cone with vertex in the nucleus, axis
along the positive z-axis and aperture of 120 degrees.
[Hints: 120 degrees is the total aperture of the cone,
counted from “side to side”, not from the z-axis to
the border of the cone. Write the wave function as
R(r)Y1,0(θ, φ) with Y1,0(θ, φ) = (3/4π)1/2 cos θ. You
do not need to know the radial wave function R(r)
to complete the calculation, but you may want to
take into account the fact that there is a probability of
1 that the electron is somewhere, wherever this might be.]

Problem 4

Recall how the Cartesian coordinates x, y and z are
related to the spherical polar coordinates r, θ and φ:
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

(a) Show that

− 1√
2

[Y1,1(θ, φ)− Y1,−1(θ, φ)] =

√
3

4π

x

r
,

i√
2

[Y1,1(θ, φ) + Y1,−1(θ, φ)] =

√
3

4π

y

r
,

Y1,0(θ, φ) =

√
3

4π

z

r
.



(b) Further, show that these three functions are eigen-
functions of, respectively, the x-, y- and z-components
of the orbital angular momentum operator. What are
the corresponding eigenvalues? Note: In spherical polar
coordinates,

Lx = −ih̄
(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
,

Ly = −ih̄
(

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

)
,

Lz = −ih̄ ∂

∂φ
.

(c) Someone says that it is perfectly fine to work with
p-state wave functions whose angular dependence is
given by x/r, y/r and z/r, someone else says that this
is impossible unless one multiplies x/r, y/r and z/r by
a normalization factor of (3/4π)1/2, and a third person
says that this is all rubish anyway because only func-
tions whose angular dependence is either Y1,0(θ, φ) or
Y1,1(θ, φ) or Y1,−1(θ, φ) are valid p-state wave functions.
Who is right, if anyone?

Problem 5

Throughout this problem, we use atomic units whereby
the Bohr radius (a0), the absolute charge of the elec-
tron (e), the mass of the electron, (m), the reduced
Planck’s constant (h̄) and the constant 4πε0 are all unity.

Apart for small differences due to relativistic effects
(which we shall neglect here), the 2s and 2p states of
hydrogen all have the same energy, −1/8 atomic units.
The corresponding normalized wave functions are given
by the following equations:

ψ200(r) = (1/
√

2)(1− r/2) exp(−r/2)Y0,0(θ, φ) (1)

ψ21m(r) = (1/
√

24)r exp(−r/2)Y1,m(θ, φ), (2)

with m = 0, 1 or −1. Eq. (1) refers to the 2s state and
Eq. (2) to the 2pm states.

Suppose that the interaction of the electron with the nu-
cleus is not a pure Coulomb potential (−1/r), but rather

V (r) = −1

r
+H ′(r)

with

H ′(r) = −V0
exp(−3r)

r
,

where V0 a constant.

(a) Using the orthonormality property of the spherical
harmonics,∫ π

0

dθ sin θ

∫ 2π

0

dφY ∗`′,m′(θ, φ)Y`,m(θ, φ) = δ`′`δm′m,

show that ∫
ψ∗211(r)H ′(r)ψ200(r) d3r = 0.

(b) Further, show that∫
ψ∗200(r)H ′(r)ψ200(r) d3r = −19V0/1024

and that∫
ψ∗21m(r)H ′(r)ψ21m(r) d3r = −V0/1024

for m = 0, 1 and −1. Hints: Use the facts that the
spherical harmonics are normalized for doing the angular
integral and that∫ ∞

0

rk exp(−αr) dr = k!/αk+1.

(c) As shown by these last results, the effect of the
perturbation H ′(r) is weaker on the 2p states than on
the 2s state. Why could this be expected to be so,
from a physical point of view? [Hint: consider how the
charge distribution differs between these different states.]

(d) [Optional] Use time-independent degenerate pertur-
bation theory to calculate how the unperturbed energy
level (−1/8 atomic units) shifts and splits under the
effect of H ′(r), to first order in H ′(r).

(e) [Optional] Does this perturbation mix states of
different values of l or m?

Note: This problem shows that the 2s state and the 2p
states split in energy under the effect of this perturbation.
In fact, the energy degeneracy of the 2s and 2p states is a
specific feature of the Coulomb potential. S and p states
of a same principal quantum numbers are not degenerate
in more complex atoms.


