#-------------------------------------------------------------------- # NJet -- multi-leg one-loop matrix elements in the Standard Model # version : 2.1.0-git 6de4d1196bdb2dfe95bf61f2e4e6790a24c8e348 # Authors : Simon Badger, Valery Yundin # Homepage: https://bitbucket.org/njet/njet #-------------------------------------------------------------------- ## init: Switch floating point unit ==================================================== This is QCDLoop - version 1.97 Authors: Keith Ellis and Giulia Zanderighi {keith.ellis@durham.ac.uk, zanderi@mpp.mpg.de} For details see FERMILAB-PUB-07-633-T,OUTP-07/16P arXiv:0712.1851 [hep-ph], published in JHEP 0802:002,2008. ==================================================== ==================================================== FF 2.0, a package to evaluate one-loop integrals written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam ==================================================== for the algorithms used see preprint NIKHEF-H 89/17, 'New Algorithms for One-loop Integrals', by G.J. van Oldenborgh and J.A.M. Vermaseren, published in Zeitschrift fuer Physik C46(1990)425. ==================================================== ffini: precx = 4.4408920985006262E-016 ffini: precc = 4.4408920985006262E-016 ffini: xalogm = 4.9406564584124654E-324 ffini: xclogm = 4.9406564584124654E-324 ## init: FF and QCDLoop are used to calculate the scalar one-loop integrals ==================== Test point 1 ==================== s12=1.6142857142857146*10^(+01) s23=-1.5750876390376627*10^(+00) +++++ { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), } num: 3.2379247848605992*10^(+00) old an: 3.2379247848433921*10^(+00) new an: 2.6982706540361467*10^(-01) an ratio: 1.2000000000000059*10^(+01) ++++- { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), } num: 4.3421253690606045*10^(+00) old an: 4.3421253686288690*10^(+00) new an: 3.6184378071907292*10^(-01) an ratio: 1.1999999999999984*10^(+01) +++-+ { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), } num: 1.7629061366385233*10^(+01) old an: 1.7629061366155852*10^(+01) new an: 1.4690884471796455*10^(+00) an ratio: 1.2000000000000073*10^(+01) +++-- { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(9.0724553195969759*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[3]->(2.6780797734138959*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(-6.1793300160908504*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(1.8500200648795702*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[6]->(4.9537269944659403*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(5.0060121277039196*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[8]->(1.7328630905941855*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[9]->(4.4645400244310096*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[10]->(3.2391617804972359*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[11]->(5.0556136661339286*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[12]->(4.5087764441489329*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(3.3036695688813280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(1.3705599142218496*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(3.8121817963351257*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[16]->(1.3196110918201296*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(2.4911296280331876*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[18]->(1.8784344784718039*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(2.1423612406007844*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(5.9589299510698082*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[21]->(2.0627216850913346*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(5.3143861002858035*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(2.9362344381500263*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[24]->(6.4397438703329302*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[25]->(-6.4575985015083752*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[26]->(5.7369014340601054*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[27]->(8.2238705864932149*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[28]->(3.1072864289339192*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[29]->(8.1692658186868417*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[30]->(-0.0000000000000000*10^(+00)+I*(2.2520498966721121*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[32]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[33]->(-0.0000000000000000*10^(+00)+I*(-4.2730511551395010*10^(+00))), sf[34]->(0.0000000000000000*10^(+00)+I*(5.6541352446360849*10^(+00))), sf[35]->(0.0000000000000000*10^(+00)+I*(4.3057409578240202*10^(+00))), sf[36]->(0.0000000000000000*10^(+00)+I*(6.7304263348069391*10^(+00))), sf[37]->(0.0000000000000000*10^(+00)+I*(8.6879270605998151*10^(+00))), sf[38]->(0.0000000000000000*10^(+00)+I*(6.3812433172049428*10^(+00))), sf[39]->(0.0000000000000000*10^(+00)+I*(7.8598579137293125*10^(+00))), sf[40]->(0.0000000000000000*10^(+00)+I*(7.2633698496109798*10^(+00))), } num: 6.0736810082690397*10^(+01) old an: 6.0736810082399472*10^(+01) new an: 1.4164269476865391*10^(+03) an ratio: 4.2880298332082262*10^(-02) ++-++ { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), } num: 3.9274451328832042*10^(+03) old an: 3.9274451328841096*10^(+03) new an: 3.2728709440701010*10^(+02) an ratio: 1.1999999999999964*10^(+01) ++-+- { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(2.0639840709104421*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[3]->(6.8997916811337419*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(9.0724553195969759*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(9.6282627131215437*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[6]->(2.6780797734138959*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(4.3742248388508126*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[8]->(-1.3601544268499699*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[9]->(1.1269731564432723*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[10]->(-6.1793300160908504*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[11]->(-1.3095924152126770*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[12]->(1.8500200648795702*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(2.4806209147041351*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(2.3884069858435280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(7.4700118999739928*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[16]->(-3.3740275184714510*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(-1.5955507277005232*10^(-02)+I*(0.0000000000000000*10^(+00))), sf[18]->(1.7997671461878717*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(5.9589299510698082*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(2.0627216850913346*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[21]->(-2.9139421253149504*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(5.3143861002858035*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(3.8557513760995819*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[24]->(0.0000000000000000*10^(+00)+I*(8.7382698131185741*10^(+00))), sf[25]->(1.4949201608098489*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[26]->(-6.4575985015083752*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[27]->(0.0000000000000000*10^(+00)+I*(1.4272598316366936*10^(+00))), sf[28]->(8.1692658186868417*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[29]->(-9.3341601914255534*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[30]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[32]->(2.7814776696570274*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[33]->(-0.0000000000000000*10^(+00)+I*(-4.2730511551395010*10^(+00))), sf[34]->(4.5431091456297218*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[35]->(0.0000000000000000*10^(+00)+I*(6.7304263348069391*10^(+00))), sf[36]->(0.0000000000000000*10^(+00)+I*(8.6879270605998151*10^(+00))), sf[37]->(1.9969705830916022*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[38]->(5.5545290838312651*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[39]->(0.0000000000000000*10^(+00)+I*(6.3812433172049428*10^(+00))), } num: 7.1571555870594966*10^(+03) old an: 7.1571555870660932*10^(+03) new an: 1.6208069796522468*10^(+04) an ratio: 4.4157976100286173*10^(-01) ++--+ { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(2.0639840709104421*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[3]->(6.8997916811337419*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(4.3742248388508126*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(-1.3601544268499699*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[6]->(1.1269731564432723*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(2.3884069858435280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[8]->(7.4700118999739928*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[9]->(-1.5955507277005232*10^(-02)+I*(0.0000000000000000*10^(+00))), sf[10]->(1.7997671461878717*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[11]->(5.0060121277039196*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[12]->(-2.4479612511865705*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(1.8175999474255407*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(3.2391617804972359*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(5.0556136661339286*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[16]->(3.6296936268376476*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(3.2712566702892909*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[18]->(3.3036695688813280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(1.3705599142218496*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(3.8121817963351257*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[21]->(2.7369678310655834*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(-1.8641731345919639*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(2.4911296280331876*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[24]->(1.8784344784718039*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[25]->(0.0000000000000000*10^(+00)+I*(8.7382698131185741*10^(+00))), sf[26]->(0.0000000000000000*10^(+00)+I*(1.4272598316366936*10^(+00))), sf[27]->(7.5626015293359705*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[28]->(8.2238705864932149*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[29]->(7.7987737517864586*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[30]->(3.1072864289339192*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[32]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[33]->(2.7814776696570274*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[34]->(4.5431091456297218*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[35]->(0.0000000000000000*10^(+00)+I*(5.6541352446360849*10^(+00))), sf[36]->(0.0000000000000000*10^(+00)+I*(4.3057409578240202*10^(+00))), sf[37]->(1.9969705830916022*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[38]->(5.5545290838312651*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[39]->(0.0000000000000000*10^(+00)+I*(7.8598579137293125*10^(+00))), sf[40]->(0.0000000000000000*10^(+00)+I*(7.2633698496109798*10^(+00))), } num: 2.2625655849929394*10^(+03) old an: 2.2625655851000192*10^(+03) new an: 3.8747837089337265*10^(+08) an ratio: 5.8392048564760746*10^(-06) ++--- { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(2.0639840709104421*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[3]->(6.8997916811337419*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(-6.1793300160908504*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(-1.3095924152126770*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[6]->(4.9537269944659403*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(2.3884069858435280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[8]->(6.1534801224675801*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[9]->(1.7997671461878717*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[10]->(5.0060121277039196*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[11]->(3.5940820473519031*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[12]->(4.4645400244310096*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(1.8175999474255407*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(3.8121817963351257*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(2.7369678310655834*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[16]->(3.3998395880738257*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(2.4666887054985525*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[18]->(2.1423612406007844*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(5.9589299510698082*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(4.2782323758353966*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[21]->(3.8557513760995819*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(3.8939556782825018*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(6.4397438703329302*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[24]->(1.4949201608098489*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[25]->(5.7369014340601054*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[26]->(7.5626015293359705*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[27]->(7.7987737517864586*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[28]->(-9.3341601914255534*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[29]->(-0.0000000000000000*10^(+00)+I*(2.2520498966721121*10^(+00))), sf[30]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), } num: 3.2549726997319074*10^(+04) old an: 3.2549726997312449*10^(+04) new an: 4.0619344560459867*10^(+04) an ratio: 8.0133560375066626*10^(-01) -++++ { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), } num: 2.0237191460186221*10^(+01) old an: 2.0237191459972117*10^(+01) new an: 1.6864326216643910*10^(+00) an ratio: 1.1999999999999659*10^(+01) -+++- { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(7.7366180268006870*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[3]->(1.2636556639383687*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(4.3742248388508126*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(1.9227357404381462*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[6]->(1.1269731564432723*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(2.3884069858435280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[8]->(1.1536321233640841*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[9]->(-1.5955507277005232*10^(-02)+I*(0.0000000000000000*10^(+00))), sf[10]->(1.7997671461878717*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[11]->(5.0556136661339286*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[12]->(8.2575549442450757*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[13]->(-2.4722166147331217*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(1.3705599142218496*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(3.8121817963351257*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[16]->(6.2266032809347716*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[17]->(2.4666887054985525*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[18]->(1.8784344784718039*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(2.1423612406007844*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(5.9589299510698082*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[21]->(-2.9139421253149504*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(3.8557513760995819*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(2.9362344381500263*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[24]->(6.4397438703329302*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[25]->(-9.8696044010893580*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[26]->(0.0000000000000000*10^(+00)+I*(1.4272598316366936*10^(+00))), sf[27]->(-1.1473169295368666*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[28]->(3.1072864289339192*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[29]->(-9.3341601914255534*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[30]->(-0.0000000000000000*10^(+00)+I*(2.2520498966721121*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[32]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[33]->(0.0000000000000000*10^(+00)+I*(4.5040915739905056*10^(+00))), sf[34]->(0.0000000000000000*10^(+00)+I*(6.7304263348069391*10^(+00))), sf[35]->(1.9969705830916022*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[36]->(0.0000000000000000*10^(+00)+I*(7.2633698496109798*10^(+00))), } num: 5.3023956006896196*10^(+00) old an: 5.3023956010854247*10^(+00) new an: 5.6554484360542920*10^(+04) an ratio: 9.3757297251300089*10^(-05) -++-+ { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(7.7366180268006870*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[3]->(1.2636556639383687*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(9.0724553195969759*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(3.9878915097332137*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[6]->(2.6780797734138959*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(4.3742248388508126*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[8]->(1.9227357404381462*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[9]->(-3.7832391655683439*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[10]->(1.1269731564432723*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[11]->(-6.1793300160908504*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[12]->(-2.7161883788812085*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(1.8500200648795702*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(4.9537269944659403*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(2.3884069858435280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[16]->(1.1536321233640841*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(-1.5955507277005232*10^(-02)+I*(0.0000000000000000*10^(+00))), sf[18]->(6.1534801224675801*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(1.7997671461878717*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(5.0060121277039196*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[21]->(1.7328630905941855*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(-2.4479612511865705*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(4.4645400244310096*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[24]->(1.8175999474255407*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[25]->(1.1521557634503750*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[26]->(-9.8696044010893580*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[27]->(-6.4575985015083752*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[28]->(0.0000000000000000*10^(+00)+I*(1.4272598316366936*10^(+00))), sf[29]->(5.7369014340601054*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[30]->(7.5626015293359705*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[32]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[33]->(0.0000000000000000*10^(+00)+I*(4.5040915739905056*10^(+00))), sf[34]->(0.0000000000000000*10^(+00)+I*(5.6541352446360849*10^(+00))), sf[35]->(1.9969705830916022*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[36]->(0.0000000000000000*10^(+00)+I*(6.3812433172049428*10^(+00))), } num: 1.6060603022266707*10^(+02) old an: 1.6060603022265121*10^(+02) new an: 5.5797375944033185*10^(+04) an ratio: 2.8783796281700584*10^(-03) -++-- { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(7.7366180268006870*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[3]->(1.2636556639383687*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(9.0724553195969759*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(3.9878915097332137*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[6]->(2.6780797734138959*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(2.3884069858435280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[8]->(-3.3740275184714510*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[9]->(1.7997671461878717*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[10]->(5.0060121277039196*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[11]->(8.1765385818500247*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[12]->(1.8175999474255407*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(3.2391617804972359*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(5.0556136661339286*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(8.2575549442450757*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[16]->(1.7500329801169012*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(3.2712566702892909*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[18]->(3.3036695688813280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(5.9589299510698082*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(9.7329809454160598*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[21]->(2.0627216850913346*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(3.8557513760995819*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(3.8939556782825018*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[24]->(1.1521557634503750*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[25]->(7.5626015293359705*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[26]->(-1.1473169295368666*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[27]->(8.2238705864932149*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[28]->(8.1692658186868417*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[29]->(-9.3341601914255534*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[30]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[32]->(0.0000000000000000*10^(+00)+I*(4.5040915739905056*10^(+00))), sf[33]->(4.5431091456297218*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[34]->(0.0000000000000000*10^(+00)+I*(8.6879270605998151*10^(+00))), sf[35]->(0.0000000000000000*10^(+00)+I*(7.8598579137293125*10^(+00))), } num: 2.1721678913998641*10^(+00) old an: 2.1721678904516466*10^(+00) new an: 1.0452901874567135*10^(+08) an ratio: 2.0780525030438960*10^(-08) -+-++ { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(7.7366180268006870*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[3]->(1.2636556639383687*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(2.0639840709104421*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(6.8997916811337419*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[6]->(9.0724553195969759*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[7]->(3.9878915097332137*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[8]->(9.6282627131215437*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[9]->(2.6780797734138959*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[10]->(-6.1793300160908504*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[11]->(-2.7161883788812085*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[12]->(-1.3095924152126770*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(1.8500200648795702*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(5.0556136661339286*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(8.2575549442450757*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[16]->(3.6296936268376476*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(1.7500329801169012*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[18]->(1.3705599142218496*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(3.8121817963351257*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(6.2266032809347716*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[21]->(2.7369678310655834*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(3.3998395880738257*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(1.8784344784718039*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[24]->(1.1521557634503750*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[25]->(1.4949201608098489*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[26]->(-6.4575985015083752*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[27]->(-1.1473169295368666*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[28]->(7.7987737517864586*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[29]->(3.1072864289339192*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[30]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[32]->(0.0000000000000000*10^(+00)+I*(4.5040915739905056*10^(+00))), sf[33]->(2.7814776696570274*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[34]->(0.0000000000000000*10^(+00)+I*(6.3812433172049428*10^(+00))), sf[35]->(0.0000000000000000*10^(+00)+I*(7.2633698496109798*10^(+00))), } num: 7.2944258949290570*10^(+03) old an: 7.2944258949358864*10^(+03) new an: 1.5793106510149162*10^(+04) an ratio: 4.6187403917324638*10^(-01) -+-+- { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(7.7366180268006870*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[3]->(1.2636556639383687*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(2.0639840709104421*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(9.2703442872886632*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[6]->(6.8997916811337419*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(9.0724553195969759*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[8]->(3.9878915097332137*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[9]->(2.6780797734138959*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[10]->(4.3742248388508126*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[11]->(1.9227357404381462*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[12]->(-1.3601544268499699*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(-3.7832391655683439*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(3.8121817963351257*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(2.7369678310655834*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[16]->(1.3196110918201296*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(-1.8641731345919639*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[18]->(2.1423612406007844*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(5.9589299510698082*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(9.7329809454160598*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[21]->(4.2782323758353966*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(2.0627216850913346*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(6.4397438703329302*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[24]->(1.1521557634503750*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[25]->(-9.8696044010893580*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[26]->(0.0000000000000000*10^(+00)+I*(8.7382698131185741*10^(+00))), sf[27]->(7.7987737517864586*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[28]->(8.1692658186868417*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[29]->(-0.0000000000000000*10^(+00)+I*(2.2520498966721121*10^(+00))), sf[30]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[32]->(0.0000000000000000*10^(+00)+I*(4.5040915739905056*10^(+00))), sf[33]->(0.0000000000000000*10^(+00)+I*(4.3057409578240202*10^(+00))), sf[34]->(0.0000000000000000*10^(+00)+I*(8.6879270605998151*10^(+00))), sf[35]->(5.5545290838312651*10^(+00)+I*(0.0000000000000000*10^(+00))), } num: 3.0416154103105823*10^(+03) old an: 3.0418845415388955*10^(+03) new an: 1.4842368724357929*10^(+09) an ratio: 2.0494602970931684*10^(-06) -+--+ { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[2]->(7.7366180268006870*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[3]->(1.2636556639383687*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[4]->(2.0639840709104421*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[5]->(9.2703442872886632*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[6]->(6.8997916811337419*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[7]->(4.3742248388508126*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[8]->(1.9227357404381462*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[9]->(-1.3601544268499699*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[10]->(-6.1793300160908504*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[11]->(-1.3095924152126770*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[12]->(2.4806209147041351*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[13]->(4.9537269944659403*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[14]->(5.0060121277039196*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[15]->(8.1765385818500247*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[16]->(3.5940820473519031*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[17]->(4.4645400244310096*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[18]->(3.2391617804972359*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[19]->(5.0556136661339286*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[20]->(8.2575549442450757*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[21]->(-2.4722166147331217*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[22]->(4.5087764441489329*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[23]->(3.3036695688813280*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[24]->(-9.8696044010893580*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[25]->(0.0000000000000000*10^(+00)+I*(8.7382698131185741*10^(+00))), sf[26]->(1.4949201608098489*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[27]->(5.7369014340601054*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[28]->(-1.1473169295368666*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[29]->(8.2238705864932149*10^(-01)+I*(0.0000000000000000*10^(+00))), sf[30]->(0.0000000000000000*10^(+00)+I*(7.7931004419757040*10^(+00))), sf[31]->(0.0000000000000000*10^(+00)+I*(8.4157345922496063*10^(+00))), sf[32]->(0.0000000000000000*10^(+00)+I*(4.5040915739905056*10^(+00))), sf[33]->(-0.0000000000000000*10^(+00)+I*(-4.2730511551395010*10^(+00))), sf[34]->(5.5545290838312651*10^(+00)+I*(0.0000000000000000*10^(+00))), sf[35]->(0.0000000000000000*10^(+00)+I*(7.8598579137293125*10^(+00))), } num: 3.2855100254411795*10^(+04) old an: 3.2855102977243158*10^(+04) new an: 1.4397431421994888*10^(+04) an ratio: 2.2820114237217739*10^(+00) -+--- { sf[1]->(1.0000000000000000*10^(+00)+I*(0.0000000000000000*10^(+00))), } num: 3.9133573948513695*10^(+03) old an: 3.9133573949364786*10^(+03) new an: 3.2611311623752977*10^(+02) an ratio: 1.2000000000264084*10^(+01) ## init: Restore floating point unit total number of errors and warnings =================================== fferr: no errors the warning system has been disabled