#-------------------------------------------------------------------- # NJet -- multi-leg one-loop matrix elements in the Standard Model # version : 2.1.0-git b1299d2f884075dfc762c1b11b6435d8f19fb9b2 # Authors : Simon Badger, Valery Yundin # Homepage: https://bitbucket.org/njet/njet #-------------------------------------------------------------------- ## init: Switch floating point unit ==================================================== This is QCDLoop - version 1.97 Authors: Keith Ellis and Giulia Zanderighi (keith.ellis@durham.ac.uk, zanderi@mpp.mpg.de) For details see FERMILAB-PUB-07-633-T,OUTP-07/16P arXiv:0712.1851 [hep-ph], published in JHEP 0802:002,2008. ==================================================== ==================================================== FF 2.0, a package to evaluate one-loop integrals written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam ==================================================== for the algorithms used see preprint NIKHEF-H 89/17, 'New Algorithms for One-loop Integrals', by G.J. van Oldenborgh and J.A.M. Vermaseren, published in Zeitschrift fuer Physik C46(1990)425. ==================================================== ffini: precx = 4.4408920985006262E-016 ffini: precc = 4.4408920985006262E-016 ffini: xalogm = 4.9406564584124654E-324 ffini: xclogm = 4.9406564584124654E-324 ## init: OneLOop is used to calculate the scalar one-loop integrals NJet: simple example of PentagonFunctions-cpp based 2-loop evaluation Notation: DblLoop = 2*Re(A2.cA0) LoopSqe2 = A1.cA1 ==================== Test point 1 ==================== # rnd seed 1, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (4.1073910982315066e-01,2.0393336282060188e-01,-3.5476001585959551e-01,-3.5540554501787401e-02) # p3 = (2.3727316959679566e-01,6.2348782873773385e-02,1.6215556401520545e-01,1.6160680475641930e-01) # p4 = (3.5198772058005368e-01,-2.6628214569437526e-01,1.9260445184439006e-01,-1.2606625025463190e-01) Pentagon functions evaluation time: 1672ms 2L evaluation time: 4829ms L^2 evaluation time: 500ms VV evaluation time: 7001ms Born: 5.8458405658021827e+06 Loop: (-7.8918847638329466e+08,0.0000000000000000e+00)/e^2 + (-5.0462088426729033e+08,0.0000000000000000e+00)/e^1 + (7.4476842329627038e+08,0.0000000000000000e+00) LoopSq: (1.3153141273054911e+09,0.0000000000000000e+00)/e^4 + (1.7647859641923328e+09,0.0000000000000000e+00)/e^3 + (-3.3913907745347222e+08,0.0000000000000000e+00)/e^2 + (3.7726335447369211e+08,0.0000000000000000e+00)/e^1 + (2.8010969891311898e+09,0.0000000000000000e+00) LoopSqe2: (1.3153141273054911e+09,0.0000000000000000e+00)/e^4 + (1.7647859641923328e+09,-1.9934681721801196e-24)/e^3 + (-2.5027440940650194e+09,-5.1420476185049994e-24)/e^2 + (-8.5996629201081818e+09,-3.5624157785962094e-24)/e^1 + (-5.1807226413087896e+09,-3.5428737218216219e-24) Absolute error: (-2.3822801641527197e-22,0.0000000000000000e+00)/e^4 + (-1.4586277346761170e-07,-8.3156776386980118e-24)/e^3 + (-2.8088208199160476e-07,1.0423733083564980e-23)/e^2 + (5.3995071397875420e-05,9.7879186881354446e-24)/e^1 + (-8.3303774623585101e-04,7.2783863300651285e-23) Fractional error[e^4]: -1.8111872401408627e-31 Fractional error[e^3]: -8.2651820916066079e-17 Fractional error[e^2]: 1.1222964531519045e-16 Fractional error[e^1]: -6.2787427716057706e-15 Fractional error[e^0]: 1.6079566576167901e-13 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-4.3843804243516370e+08,0.0000000000000000e+00)/e^4 + (-4.2750137250455091e+08,0.0000000000000000e+00)/e^3 + (2.1487831375908291e+09,0.0000000000000000e+00)/e^2 + (3.4257126768734480e+09,0.0000000000000000e+00)/e^1 + (-4.7879848280960277e+09,0.0000000000000000e+00) Absolute error: (7.9409338805090657e-23,0.0000000000000000e+00)/e^4 + (4.8620924489203844e-08,0.0000000000000000e+00)/e^3 + (7.6536062400203670e-08,0.0000000000000000e+00)/e^2 + (-1.8076201346421650e-05,0.0000000000000000e+00)/e^1 + (-1.1312269190200154e-03,0.0000000000000000e+00) Fractional error[e^4]: -1.8111872401408627e-31 Fractional error[e^3]: -1.1373279155656104e-16 Fractional error[e^2]: 3.5618327909076161e-17 Fractional error[e^1]: -5.2766250562844319e-15 Fractional error[e^0]: 2.3626368078318555e-13 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 2 ==================== # rnd seed 2, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (4.5262742135982181e-02,-3.7938713674424223e-02,-3.1787775991454201e-03,-2.4479893859525708e-02) # p3 = (4.9174017367771934e-01,1.4265227585006039e-01,3.2654221902632637e-01,3.3886414061796884e-01) # p4 = (4.6299708418629848e-01,-1.0471356217563616e-01,-3.2336344142718095e-01,-3.1438424675844313e-01) Pentagon functions evaluation time: 1674ms 2L evaluation time: 4413ms L^2 evaluation time: 459ms VV evaluation time: 6546ms Born: 4.5974636458664972e+08 Loop: (-6.2065759219197713e+10,0.0000000000000000e+00)/e^2 + (-8.6129009271295109e+10,0.0000000000000000e+00)/e^1 + (-9.1020229566762279e+10,0.0000000000000000e+00) LoopSq: (1.0344293203199619e+11,0.0000000000000000e+00)/e^4 + (2.9151482693865877e+11,0.0000000000000000e+00)/e^3 + (6.4938956028294392e+11,0.0000000000000000e+00)/e^2 + (1.0555563720839407e+12,0.0000000000000000e+00)/e^1 + (1.1844111669951362e+12,0.0000000000000000e+00) LoopSqe2: (1.0344293203199619e+11,0.0000000000000000e+00)/e^4 + (2.9151482693865876e+11,-2.9691138996452263e-22)/e^3 + (4.7923275740884770e+11,-6.0521178478665405e-22)/e^2 + (5.5916810263587481e+11,1.4080862768326172e-21)/e^1 + (3.9468883833968138e+11,7.7551414610856088e-21) Absolute error: (5.0821976835258020e-21,0.0000000000000000e+00)/e^4 + (-1.0360552299429834e-04,1.2065466331768632e-22)/e^3 + (-6.5206916468100439e-04,2.9922700421686196e-22)/e^2 + (-1.3085997770854976e-02,-1.9828529056409192e-21)/e^1 + (-1.3263688303008684e+00,-5.2788047422493403e-21) Fractional error[e^4]: 4.9130448873527821e-32 Fractional error[e^3]: -3.5540395691811332e-16 Fractional error[e^2]: -1.3606523231146839e-15 Fractional error[e^1]: -2.3402618477643134e-14 Fractional error[e^0]: -3.3605430441875189e-12 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-3.4480977343998729e+10,0.0000000000000000e+00)/e^4 + (-8.4528583953420053e+10,0.0000000000000000e+00)/e^3 + (-1.9732814870707570e+10,0.0000000000000000e+00)/e^2 + (3.1479869162895652e+11,0.0000000000000000e+00)/e^1 + (1.1453888757595578e+12,0.0000000000000000e+00) Absolute error: (-2.5410988417629010e-21,0.0000000000000000e+00)/e^4 + (3.4535174331432777e-05,0.0000000000000000e+00)/e^3 + (2.0459907987310459e-04,0.0000000000000000e+00)/e^2 + (4.0781057313576191e-03,0.0000000000000000e+00)/e^1 + (3.8285811953468176e-01,0.0000000000000000e+00) Fractional error[e^4]: 7.3695673310291731e-32 Fractional error[e^3]: -4.0856208298087163e-16 Fractional error[e^2]: -1.0368469030580236e-14 Fractional error[e^1]: 1.2954646381327265e-14 Fractional error[e^0]: 3.3426037884364092e-13 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 3 ==================== # rnd seed 3, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (7.6196219725659046e-02,-1.9783128890417816e-02,4.6667929075996414e-03,-7.3435092127290249e-02) # p3 = (4.7539311855278965e-01,-3.5220386979451790e-01,7.9684674949917261e-02,3.0919476684969786e-01) # p4 = (4.4841066172155131e-01,3.7198699868493572e-01,-8.4351467857516903e-02,-2.3575967472240761e-01) Pentagon functions evaluation time: 7071ms 2L evaluation time: 4460ms L^2 evaluation time: 460ms VV evaluation time: 11991ms Born: 7.0263859421881687e+08 Loop: (-9.4856210219540277e+10,0.0000000000000000e+00)/e^2 + (-1.5229548642970972e+11,0.0000000000000000e+00)/e^1 + (-2.4885764725417582e+11,0.0000000000000000e+00) LoopSq: (1.5809368369923380e+11,0.0000000000000000e+00)/e^4 + (5.0765170534731576e+11,0.0000000000000000e+00)/e^3 + (1.3660523256203825e+12,0.0000000000000000e+00)/e^2 + (1.9879085081456588e+12,0.0000000000000000e+00)/e^1 + (2.7128691197950792e+12,0.0000000000000000e+00) LoopSqe2: (1.5809368369923380e+11,0.0000000000000000e+00)/e^4 + (5.0765170534731675e+11,-2.3070709925519142e-22)/e^3 + (1.1059986395499922e+12,2.1501848172660897e-22)/e^2 + (1.8573673678634891e+12,-5.0115065434680715e-21)/e^1 + (8.4912165929474576e+23,1.5686278749380886e-20) Absolute error: (3.6517707938501023e-19,0.0000000000000000e+00)/e^4 + (-2.1655089110657102e-03,-4.4979063100525181e-22)/e^3 + (-1.5790735111171606e-02,-4.2779402139090945e-22)/e^2 + (1.1856554761736544e+06,1.0182422845721307e-20)/e^1 + (-3.2221354221657873e+11,8.8155939685493954e-20) Fractional error[e^4]: 2.3098777309771805e-30 Fractional error[e^3]: -4.2657374894154017e-15 Fractional error[e^2]: -1.4277354913923336e-14 Fractional error[e^1]: 6.3835270108007871e-07 Fractional error[e^0]: -3.7946687461040548e-13 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-5.2697894566411265e+10,0.0000000000000000e+00)/e^4 + (-1.4989467377475479e+11,0.0000000000000000e+00)/e^3 + (-1.9602767745659797e+11,0.0000000000000000e+00)/e^2 + (6.2468669616816092e+10,0.0000000000000000e+00)/e^1 + (2.0137205299395070e+12,0.0000000000000000e+00) Absolute error: (-6.2680438096818225e-20,0.0000000000000000e+00)/e^4 + (7.2183630368857029e-04,0.0000000000000000e+00)/e^3 + (5.0015098384811641e-03,0.0000000000000000e+00)/e^2 + (-3.9521849691141944e+05,0.0000000000000000e+00)/e^1 + (1.0740568333302453e+11,0.0000000000000000e+00) Fractional error[e^4]: 1.1894296463367563e-30 Fractional error[e^3]: -4.8156234341806328e-15 Fractional error[e^2]: -2.5514304425652019e-14 Fractional error[e^1]: -6.3266674212160527e-06 Fractional error[e^0]: 5.3336936151835847e-02 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 4 ==================== # rnd seed 4, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (2.9256410320928146e-01,2.1992770064354058e-01,-1.8996854216210689e-01,-3.3727050939863032e-02) # p3 = (2.1668577448382835e-01,6.5036456548073228e-02,-2.0173235143046240e-01,-4.5022689498335309e-02) # p4 = (4.9075012230689019e-01,-2.8496415719161381e-01,3.9170089359256929e-01,7.8749740438198342e-02) Pentagon functions evaluation time: 1667ms 2L evaluation time: 4431ms L^2 evaluation time: 456ms VV evaluation time: 6554ms Born: 1.4177811795089597e+07 Loop: (-1.9140045923370956e+09,0.0000000000000000e+00)/e^2 + (-1.5903843490933681e+09,0.0000000000000000e+00)/e^1 + (-3.6924138552595223e+08,0.0000000000000000e+00) LoopSq: (3.1900076538951594e+09,0.0000000000000000e+00)/e^4 + (5.4537337409588991e+09,0.0000000000000000e+00)/e^3 + (8.1582394945043472e+09,0.0000000000000000e+00)/e^2 + (1.5058844919078962e+10,0.0000000000000000e+00)/e^1 + (1.6409766978302246e+10,0.0000000000000000e+00) LoopSqe2: (3.1900076538951594e+09,0.0000000000000000e+00)/e^4 + (5.4537337409588992e+09,-9.1786134592174013e-24)/e^3 + (2.9108872311050419e+09,-2.1333218483054307e-23)/e^2 + (-3.8986822581465047e+09,-3.0769261256199106e-23)/e^1 + (-1.6357098015660771e+09,-1.0437716037540476e-22) Absolute error: (-3.7057691442375640e-22,0.0000000000000000e+00)/e^4 + (-5.7203837659009902e-07,-1.0206936789618558e-23)/e^3 + (5.2963957360862361e-03,-2.3761493840861534e-23)/e^2 + (2.1614121029554785e-02,-2.6317495525970306e-23)/e^1 + (-5.1463824216290496e-04,-7.7714042009890873e-23) Fractional error[e^4]: -1.1616803300495640e-31 Fractional error[e^3]: -1.0488931138936034e-16 Fractional error[e^2]: 1.8195125113368265e-12 Fractional error[e^1]: -5.5439555209688928e-12 Fractional error[e^0]: 3.1462686209385983e-13 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-1.0633358846317198e+09,0.0000000000000000e+00)/e^4 + (-1.4280214226213358e+09,0.0000000000000000e+00)/e^3 + (3.0161178666918443e+09,0.0000000000000000e+00)/e^2 + (1.0173489802374081e+10,0.0000000000000000e+00)/e^1 + (1.5559441336288242e+10,0.0000000000000000e+00) Absolute error: (-2.0514079191315086e-22,0.0000000000000000e+00)/e^4 + (1.9067945886336587e-07,0.0000000000000000e+00)/e^3 + (-1.7655367903529394e-03,0.0000000000000000e+00)/e^2 + (-5.9107435918319325e-03,0.0000000000000000e+00)/e^1 + (3.2638704169568490e+01,0.0000000000000000e+00) Fractional error[e^4]: 1.9292191195465973e-31 Fractional error[e^3]: -1.3352702966692663e-16 Fractional error[e^2]: -5.8536730604942358e-13 Fractional error[e^1]: -5.8099469372374109e-13 Fractional error[e^0]: 2.0976784104354331e-09 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 5 ==================== # rnd seed 5, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (2.6248344598488412e-01,-1.7078449739898180e-02,-1.6064712176262394e-01,2.0687771325100736e-01) # p3 = (2.9191254936802306e-01,-6.0232203877931889e-02,1.6671869070546873e-01,2.3192648892267568e-01) # p4 = (4.4560400464709282e-01,7.7310653617830069e-02,-6.0715689428447895e-03,-4.3880420217368304e-01) Pentagon functions evaluation time: 1679ms 2L evaluation time: 4377ms L^2 evaluation time: 459ms VV evaluation time: 6515ms Born: 9.6198677029928809e+08 Loop: (-1.2986821399040389e+11,0.0000000000000000e+00)/e^2 + (-2.1999312532133733e+11,0.0000000000000000e+00)/e^1 + (1.0869862930424108e+11,0.0000000000000000e+00) LoopSq: (2.1644702331733982e+11,0.0000000000000000e+00)/e^4 + (7.3350161431498623e+11,0.0000000000000000e+00)/e^3 + (4.3865288904908558e+11,0.0000000000000000e+00)/e^2 + (2.8486808225700841e+11,0.0000000000000000e+00)/e^1 + (1.4614456899659413e+12,0.0000000000000000e+00) LoopSqe2: (2.1644702331733982e+11,0.0000000000000000e+00)/e^4 + (7.3350161431498624e+11,3.3317990713654342e-22)/e^3 + (8.2611806726500933e+10,2.7586430449128611e-21)/e^2 + (-4.4578559996012422e+12,2.5198185299836590e-21)/e^1 + (-8.9379980664520858e+12,-1.8147502887513489e-20) Absolute error: (-4.4045713257223618e-20,0.0000000000000000e+00)/e^4 + (-9.1150986580503971e-05,2.5642007202640945e-22)/e^3 + (-1.0309681479060037e-04,-8.8198432562737930e-22)/e^2 + (-1.1303891998762507e+01,-8.0849028384909749e-21)/e^1 + (1.9484082172492691e+02,-1.0554673255857027e-20) Fractional error[e^4]: -2.0349419725050598e-31 Fractional error[e^3]: -1.2426828353422161e-16 Fractional error[e^2]: -1.2479670748748808e-15 Fractional error[e^1]: 2.5357238995099095e-12 Fractional error[e^0]: -2.1799156844332196e-11 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-7.2149007772446607e+10,0.0000000000000000e+00)/e^4 + (-2.1804590192176499e+11,0.0000000000000000e+00)/e^3 + (2.1626070309184753e+11,0.0000000000000000e+00)/e^2 + (2.0638783855588136e+12,0.0000000000000000e+00)/e^1 + (2.2540438614740369e+12,0.0000000000000000e+00) Absolute error: (4.6586812098986519e-21,0.0000000000000000e+00)/e^4 + (3.0383662193501287e-05,0.0000000000000000e+00)/e^3 + (2.3464890622681088e-05,0.0000000000000000e+00)/e^2 + (3.7678815046509445e+00,0.0000000000000000e+00)/e^1 + (-7.7555107259991560e+01,0.0000000000000000e+00) Fractional error[e^4]: -6.4570274127564399e-32 Fractional error[e^3]: -1.3934525678177141e-16 Fractional error[e^2]: 1.0850279448465205e-16 Fractional error[e^1]: 1.8256315541725860e-12 Fractional error[e^0]: -3.4407097654823021e-11 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 6 ==================== # rnd seed 6, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (3.9003003321363969e-01,1.5572792751971823e-01,1.0676230598507763e-01,-3.4128294627741792e-01) # p3 = (3.2815579567625399e-01,1.1636097253886831e-01,-1.3715055965489413e-01,2.7447417782384087e-01) # p4 = (2.8181417111010632e-01,-2.7208890005858654e-01,3.0388253669816494e-02,6.6808768453577045e-02) Pentagon functions evaluation time: 1703ms 2L evaluation time: 4373ms L^2 evaluation time: 454ms VV evaluation time: 6530ms Born: 4.4997161959518344e+07 Loop: (-6.0746168645349764e+09,0.0000000000000000e+00)/e^2 + (-6.7192412259947222e+09,0.0000000000000000e+00)/e^1 + (6.2660513899830030e+09,0.0000000000000000e+00) LoopSq: (1.0124361440891627e+10,0.0000000000000000e+00)/e^4 + (2.2495016394192018e+10,0.0000000000000000e+00)/e^3 + (9.8412318819274636e+08,0.0000000000000000e+00)/e^2 + (3.1934010681170069e+09,0.0000000000000000e+00)/e^1 + (3.5140769767349047e+10,0.0000000000000000e+00) LoopSqe2: (1.0124361440891627e+10,0.0000000000000000e+00)/e^4 + (2.2495016394192013e+10,-5.1657183091739997e-23)/e^3 + (-1.5669783851014721e+10,-4.4219642600479010e-23)/e^2 + (-1.2496917153463758e+11,7.9660196572950939e-23)/e^1 + (-1.5369770911614231e+11,2.0355466400090280e-22) Absolute error: (-2.9646153153900512e-21,0.0000000000000000e+00)/e^4 + (-1.0341312324880539e-05,-3.5605712307475522e-24)/e^3 + (-3.2363633847105967e-03,1.8228788959248435e-22)/e^2 + (-2.0831566182736044e-02,1.6361227609773456e-23)/e^1 + (-9.6894778122650235e-02,5.4876395741441366e-23) Fractional error[e^4]: -2.9281998007461149e-31 Fractional error[e^3]: -4.5971570518839729e-16 Fractional error[e^2]: 2.0653529209345290e-13 Fractional error[e^1]: 1.6669364073492462e-13 Fractional error[e^0]: 6.3042434841648353e-13 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-3.3747871469638758e+09,0.0000000000000000e+00)/e^4 + (-6.2609168441772500e+09,0.0000000000000000e+00)/e^3 + (1.5628856143534125e+10,0.0000000000000000e+00)/e^2 + (5.5150182664946530e+10,0.0000000000000000e+00)/e^1 + (-7.7421233168234437e+09,0.0000000000000000e+00) Absolute error: (2.0844951436336297e-22,0.0000000000000000e+00)/e^4 + (3.4471041082935113e-06,0.0000000000000000e+00)/e^3 + (1.0775339091280554e-03,0.0000000000000000e+00)/e^2 + (6.1420135976646320e-03,0.0000000000000000e+00)/e^1 + (7.0987928676169894e-02,0.0000000000000000e+00) Fractional error[e^4]: -6.1766714546988361e-32 Fractional error[e^3]: -5.5057497074080639e-16 Fractional error[e^2]: 6.8945154989723682e-14 Fractional error[e^1]: 1.1136887134135455e-13 Fractional error[e^0]: -9.1690516633744220e-12 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 7 ==================== # rnd seed 7, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (4.5548858867817770e-01,1.3787616956357617e-01,-3.9696828458843979e-01,1.7571624089259827e-01) # p3 = (8.3576886336348581e-02,3.9676937354651808e-02,4.2780086841083438e-02,5.9838956723052298e-02) # p4 = (4.6093452498547371e-01,-1.7755310691822798e-01,3.5418819774735635e-01,-2.3555519761565057e-01) Pentagon functions evaluation time: 1674ms 2L evaluation time: 4395ms L^2 evaluation time: 456ms VV evaluation time: 6525ms Born: 5.4160932944175513e+07 Loop: (-7.3117259474636943e+09,0.0000000000000000e+00)/e^2 + (-7.4515115819522761e+09,0.0000000000000000e+00)/e^1 + (-3.0740965863654433e+09,0.0000000000000000e+00) LoopSq: (1.2186209912439491e+10,0.0000000000000000e+00)/e^4 + (2.5416232268760313e+10,0.0000000000000000e+00)/e^3 + (3.6900446322593148e+10,0.0000000000000000e+00)/e^2 + (4.8955273185771860e+10,0.0000000000000000e+00)/e^1 + (5.7465810073506838e+10,0.0000000000000000e+00) LoopSqe2: (1.2186209912439491e+10,0.0000000000000000e+00)/e^4 + (2.5416232268760313e+10,1.8413643936949160e-23)/e^3 + (1.6854934491857884e+10,5.1823303470350898e-23)/e^2 + (-2.8881717668976011e+10,-3.0159197647298699e-23)/e^1 + (-9.4993525213419970e+10,-1.0363790619934766e-22) Absolute error: (1.0587911840678754e-22,0.0000000000000000e+00)/e^4 + (-2.9168657214605889e-06,-3.8604408970669314e-23)/e^3 + (-1.5309865556610646e-05,1.2511221977999751e-22)/e^2 + (8.0306945201331986e-03,5.4150986074270902e-23)/e^1 + (-1.1815556940376252e-01,2.8068664025871092e-22) Fractional error[e^4]: 8.6884371078088694e-33 Fractional error[e^3]: -1.1476389146182682e-16 Fractional error[e^2]: -9.0833135922340040e-16 Fractional error[e^1]: -2.7805460229810229e-13 Fractional error[e^0]: 1.2438276097060812e-12 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-4.0620699708131635e+09,0.0000000000000000e+00)/e^4 + (-6.9826517669552776e+09,0.0000000000000000e+00)/e^3 + (7.4789577199181302e+09,0.0000000000000000e+00)/e^2 + (3.7088089879692465e+10,0.0000000000000000e+00)/e^1 + (6.3441213140281253e+10,0.0000000000000000e+00) Absolute error: (-2.1175823681357508e-22,0.0000000000000000e+00)/e^4 + (9.7228857382019602e-07,0.0000000000000000e+00)/e^3 + (4.7446041445052031e-06,0.0000000000000000e+00)/e^2 + (-2.6822750954426061e-03,0.0000000000000000e+00)/e^1 + (-3.7633819387072527e-01,0.0000000000000000e+00) Fractional error[e^4]: 5.2130622646853216e-32 Fractional error[e^3]: -1.3924345739557820e-16 Fractional error[e^2]: 6.3439376477142871e-16 Fractional error[e^1]: -7.2321737359444935e-14 Fractional error[e^0]: -5.9320775130602564e-12 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 8 ==================== # rnd seed 8, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (4.6819047457023280e-01,-3.4126835953167125e-02,-3.9409610175976071e-01,2.5045147658555691e-01) # p3 = (1.9305403530947715e-01,-1.0545445936812447e-01,1.2015766052904622e-01,-1.0821901018229618e-01) # p4 = (3.3875549012029005e-01,1.3958129532129160e-01,2.7393844123071449e-01,-1.4223246640326073e-01) Pentagon functions evaluation time: 1670ms 2L evaluation time: 4379ms L^2 evaluation time: 470ms VV evaluation time: 6519ms Born: 1.3798112691222203e+07 Loop: (-1.8627452133149975e+09,0.0000000000000000e+00)/e^2 + (-1.4078933743158982e+09,0.0000000000000000e+00)/e^1 + (1.2444755120979247e+09,0.0000000000000000e+00) LoopSq: (3.1045753555249958e+09,0.0000000000000000e+00)/e^4 + (4.9114540311380891e+09,0.0000000000000000e+00)/e^3 + (2.1745183814813147e+09,0.0000000000000000e+00)/e^2 + (5.6543229886689840e+09,0.0000000000000000e+00)/e^1 + (8.0191229753143643e+09,0.0000000000000000e+00) LoopSqe2: (3.1045753555249958e+09,0.0000000000000000e+00)/e^4 + (4.9114540311380893e+09,-1.4460962268861454e-24)/e^3 + (-2.9323033839191951e+09,8.3926371336743370e-24)/e^2 + (-1.7292129525034076e+10,-6.1684315840596632e-24)/e^1 + (-1.5783143159402497e+10,1.3113518817414759e-23) Absolute error: (-3.9704669402545328e-22,0.0000000000000000e+00)/e^4 + (8.2624548142317207e-08,-6.2450289918804920e-24)/e^3 + (4.7310753286548543e-07,-2.4168699951298877e-23)/e^2 + (-1.7336016818311401e-04,4.6704642422242081e-23)/e^1 + (1.3344991584727976e-03,3.0120198730727288e-23) Fractional error[e^4]: -1.2789082195053086e-31 Fractional error[e^3]: 1.6822828355612508e-17 Fractional error[e^2]: -1.6134330965206933e-16 Fractional error[e^1]: 1.0025379923978587e-14 Fractional error[e^0]: -8.4552179815830664e-14 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-1.0348584518416653e+09,0.0000000000000000e+00)/e^4 + (-1.2577032447040859e+09,0.0000000000000000e+00)/e^3 + (4.6706913287432742e+09,0.0000000000000000e+00)/e^2 + (1.0428642740960986e+10,0.0000000000000000e+00)/e^1 + (-4.1929731598088090e+09,0.0000000000000000e+00) Absolute error: (-4.3013391852757439e-23,0.0000000000000000e+00)/e^4 + (-2.7541516047439431e-08,0.0000000000000000e+00)/e^3 + (-1.4789351042574974e-07,0.0000000000000000e+00)/e^2 + (5.8541909969273928e-05,0.0000000000000000e+00)/e^1 + (1.6127990678987787e-03,0.0000000000000000e+00) Fractional error[e^4]: 4.1564517133922530e-32 Fractional error[e^3]: 2.1898262697031871e-17 Fractional error[e^2]: -3.1664158475987944e-17 Fractional error[e^1]: 5.6135694187064814e-15 Fractional error[e^0]: -3.8464330832308954e-13 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 9 ==================== # rnd seed 9, seq 2 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (2.5323840242931946e-01,-5.1955817076492865e-02,1.6517053238460871e-01,-1.8479441757978754e-01) # p3 = (3.8990530024048579e-01,3.3719891805378402e-01,4.9214349012809567e-02,1.8947554108703896e-01) # p4 = (3.5685629733019475e-01,-2.8524310097729115e-01,-2.1438488139741828e-01,-4.6811235072514176e-03) Pentagon functions evaluation time: 1676ms 2L evaluation time: 4374ms L^2 evaluation time: 454ms VV evaluation time: 6504ms Born: 7.0976976386649734e+06 Loop: (-9.5818918121977141e+08,0.0000000000000000e+00)/e^2 + (-6.5555501482726179e+08,0.0000000000000000e+00)/e^1 + (9.7557651924077478e+08,0.0000000000000000e+00) LoopSq: (1.5969819686996190e+09,0.0000000000000000e+00)/e^4 + (2.2787747039541145e+09,0.0000000000000000e+00)/e^3 + (-5.7738662967045895e+08,0.0000000000000000e+00)/e^2 + (1.9623803582510198e+08,0.0000000000000000e+00)/e^1 + (3.3861959632116126e+09,0.0000000000000000e+00) LoopSqe2: (1.5969819686996190e+09,0.0000000000000000e+00)/e^4 + (2.2787747039541140e+09,-1.3745041415089440e-24)/e^3 + (-3.2043166741268108e+09,5.0854861436892331e-24)/e^2 + (-1.1953134287897760e+10,6.5887508738577123e-24)/e^1 + (-7.3799186923535268e+09,8.0848524018801387e-24) Absolute error: (2.6469779601696886e-23,0.0000000000000000e+00)/e^4 + (-9.9725645357792611e-07,-8.2023922823276169e-25)/e^3 + (-3.7316688641652878e-07,3.1011116839231845e-23)/e^2 + (2.3512522506473551e-06,2.0837902806375967e-23)/e^1 + (-1.5026612402007826e-04,-7.1170147344825838e-23) Fractional error[e^4]: 1.6574876936932820e-32 Fractional error[e^3]: -4.3762836749394034e-16 Fractional error[e^2]: 1.1645755534390753e-16 Fractional error[e^1]: -1.9670591779663493e-16 Fractional error[e^0]: 2.0361487745897774e-14 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-5.3232732289987301e+08,0.0000000000000000e+00)/e^4 + (-5.6440488292141789e+08,0.0000000000000000e+00)/e^3 + (2.6794372936298984e+09,0.0000000000000000e+00)/e^2 + (4.7051525182468460e+09,0.0000000000000000e+00)/e^1 + (-6.0794423291246197e+09,0.0000000000000000e+00) Absolute error: (-5.9557004103817993e-23,0.0000000000000000e+00)/e^4 + (3.3241881785930866e-07,0.0000000000000000e+00)/e^3 + (4.9408687547915377e-09,0.0000000000000000e+00)/e^2 + (-1.8122829379976855e-06,0.0000000000000000e+00)/e^1 + (-1.0875757967583180e-04,0.0000000000000000e+00) Fractional error[e^4]: 1.1188041932429653e-31 Fractional error[e^3]: -5.8897225718295449e-16 Fractional error[e^2]: 1.8439949188353736e-18 Fractional error[e^1]: -3.8516986026904555e-16 Fractional error[e^0]: 1.7889400669993990e-14 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ==================== Test point 10 ==================== # rnd seed 10, seq 1 # p0 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,5.0000000000000000e-01) # p1 = (-5.0000000000000000e-01,0.0000000000000000e+00,0.0000000000000000e+00,-5.0000000000000000e-01) # p2 = (1.2148263360051487e-01,-9.8361108945026883e-02,5.9821876691037480e-02,3.8787441044541756e-02) # p3 = (3.9209836775641066e-01,-3.8766721207229400e-01,-4.0675018861748046e-02,-4.2435898976372906e-02) # p4 = (4.8641899864307447e-01,4.8602832101732089e-01,-1.9146857829289435e-02,3.6484579318311508e-03) Pentagon functions evaluation time: 1694ms 2L evaluation time: 4487ms L^2 evaluation time: 456ms VV evaluation time: 6637ms Born: 1.7762093537555335e+07 Loop: (-2.3978826275699702e+09,0.0000000000000000e+00)/e^2 + (-1.9706873048985766e+09,0.0000000000000000e+00)/e^1 + (-5.6638101574623910e+08,0.0000000000000000e+00) LoopSq: (3.9964710459499504e+09,0.0000000000000000e+00)/e^4 + (6.8020112007036640e+09,0.0000000000000000e+00)/e^3 + (1.0287814962620481e+10,0.0000000000000000e+00)/e^2 + (1.7433784514197466e+10,0.0000000000000000e+00)/e^1 + (1.9706537294902687e+10,0.0000000000000000e+00) LoopSqe2: (3.9964710459499504e+09,0.0000000000000000e+00)/e^4 + (6.8020112007036643e+09,2.4072755757510894e-23)/e^3 + (3.7138835919648449e+09,1.4253560876117535e-24)/e^2 + (-5.7827894471839094e+09,-4.3533131676870945e-23)/e^1 + (-9.2252594349226927e+09,-1.1602995570981353e-22) Absolute error: (6.8821426964411903e-22,0.0000000000000000e+00)/e^4 + (-4.7494513514270878e-07,2.0220478478117387e-23)/e^3 + (-9.0881294985416494e-07,-5.8636117070916477e-23)/e^2 + (-7.2559734658062929e-04,-1.9757598738556772e-22)/e^1 + (-3.0580346815547924e-02,-2.2716236315287104e-22) Fractional error[e^4]: 1.7220549372966428e-31 Fractional error[e^3]: -6.9824221267612139e-17 Fractional error[e^2]: -2.4470690245122999e-16 Fractional error[e^1]: 1.2547531830576663e-13 Fractional error[e^0]: 3.3148495206307644e-12 LoopSqe2[/e4]/B/5^3: 1.0000000000000000e+00 DblLoop: (-1.3321570153166501e+09,0.0000000000000000e+00)/e^4 + (-1.7788794946184497e+09,0.0000000000000000e+00)/e^3 + (3.5167244540345657e+09,0.0000000000000000e+00)/e^2 + (1.1971825938397023e+10,0.0000000000000000e+00)/e^1 + (1.6518567311793872e+10,0.0000000000000000e+00) Absolute error: (-1.8528845721187820e-22,0.0000000000000000e+00)/e^4 + (1.5831504504756972e-07,0.0000000000000000e+00)/e^3 + (2.4279160693159433e-07,0.0000000000000000e+00)/e^2 + (2.4112631008790839e-04,0.0000000000000000e+00)/e^1 + (5.7616242320056077e-03,0.0000000000000000e+00) Fractional error[e^4]: 1.3908905262780577e-31 Fractional error[e^3]: -8.8997059961909657e-17 Fractional error[e^2]: 6.9039132893409210e-17 Fractional error[e^1]: 2.0141147334472037e-14 Fractional error[e^0]: 3.4879684922141778e-13 DblLoop[/e4]/B/Nc/5^2: -1.0000000000000000e+00 ## init: Restore floating point unit ######################################################################## # This is OneLOop-3.5, date 14-05-2014 # # Author: Andreas van Hameren # # Please cite: vanHameren:2010cp, arXiv:1007.4716 # # vanHameren:2009dr, arXiv:0903.4665 # ######################################################################## total number of errors and warnings =================================== fferr: no errors the warning system has been disabled