PHYS4181 Particle Physics - Phenomenology

Rodrigo Alonso
IPPP OC307
rodrigo.alonso-de-pablo@durham.ac.uk

These are the notes for the third instalment of the 4th year course Particle Physics
PHYS4181. In a series of 12 lectures we will become familiar with the known spectrum
of elementary particles, their interactions and properties and how do we study them
in the laboratory. This course reaches till the edge of known physics and it stands on
previous necessary knowledge. The audience is presumed to have been introduced to
relativistic quantum mechanics and gauge theories. What one is expected to come out
of here with is knowledge of our present theory of elementary particles, the principles
it is based on, the symmetries and conservation laws it presents, and how to connect
it with experimental observations. In less lofty and more practical terms we will learn
about conserved charges, Feynman rules and phase space integrals.

These lectures are meant to be self-contained to a large extent but a useful short
bibliography is:

[2] Quarks & Leptons, M. Halzen & A. Martin

[5] Modern Particle Physics, M. Thomson

[1] Introduction to Elementary Particle Physics, D. Griffiths
[6] Elementary Particle Physics in a Nutshell, C. G. Tully

in addition to previous years materials available on DUO.

Self-assessed problems will be made periodically available and so will their solutions a
week later, you have ten days to work on them and send your self-assessment. The sched-
ule is at www.dur.ac.uk /resources/physics/students/leveldweeklyproblems.pdf. Some of
these problems can be found on these notes as footnotes but they will be collected in
the problem sheets as well. In addition workshops will be held on Fridays to solve a
different set of problems and your queries about the self-assessed problems.

Both for the purposes of easing you into the subject and starting soundly anchored
in reality, we open with an historic review and look at the experiments that took us
where we are today.


https://www.dur.ac.uk/resources/physics/students/level4weeklyproblems.pdf
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Outline of lectures

The approximate schedule for the lectures is,

Lecture [1] Brief historical introduction to particle physics and overview of the
course material.

Lecture [2| Collider characterization and kinematics. The CMS experiment as an
example of a particle physics detector.

Lecture (3| Theory perspective, path integral and fundamental action. Review of
Feynman rules.

Lecture 4] The Standard Model: particle content, fundamental Lagrangian and
conservation laws.

Lecture [5| Quarks as constituents of the proton, deep inelastic scattering.

Lecture [6] Hadronic and partonic cross section connection, parton distribution
functions.

Lecture [7| Quantum Chromodynamics, SU(3).. Asymptotic freedom.

Lecture |8 The Electroweak interactions, SU(2)r, x U(1)y. Chirality. Mass vs
interaction eigenstates: bosons.

Lecture [9] Electroweak gauge boson properties from collider experimental data.

Lecture [10|Spontaneous symmetry breaking. Higgs boson properties from collider
physics.

Lecture [11]Mass vs electroweak interaction eigenstates, fermions. Flavour Physics
of quarks and leptons.

Lecture [12| Beyond the Standard Model.
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1 A brief history of particle physics

The history of particle physics is, as that of physics in general, not a straightforward
affair but full of twists and turns, dead ends and awe inspiring leaps in knowledge.
While this makes for an entertaining read, see for example the first chapter in 77, it can
also be misleading to the uninitiated looking to understand the established physics that
came out of the historical process. So here we will be rather selective in our choice of
discoveries and theoretical ideas to highlight so as to fit best our current simple picture
which describes nature, the Standard Model (SM). The purpose here is to acquire some
culture and familiarity with the particle spectrum and the observations that built it.

We start back in the late 1940s, the
scientific community has discovered that
atoms are made of electrons orbiting
around nuclei themselves made of pro-
tons and neutrons and the photon is
the building block of the electromagnetic
field, but further, the positron, discov-
ered in cosmic rays by Carl D. Ander-
sen, has been identified as the antipar-
ticle of the electron predicted in Dirac’s
equation. In 1947, where we start our
timeline in fig. 3] C. F. Powell and his
co-workers at Bristol cleared up the con-
fusion around the new particles seen in
the impact of cosmic rays (basically pro-
tons) with the atmosphere. Making use
of photographic emulsion they identified
two kinds of particles, muons (u) and
pions (7). El While the pion had been
predicted as the mediator of nuclear in-
teractions by Hideki Yukawa, the muon was unexpected, (I.I. Rabi is quoted as saying
‘Who ordered that?’, if he only knew what was coming!). Cosmic rays were to bring
surprises in the form of new particles that same year, G. Rochester and C. Butler pub-
lished a cloud chamber photograph displaying a particle decaying into pions; the Kaon
had been found. The 50s saw a frenzy of new particle discoveries in what quickly grew
to be a long catalogue, 7, p, A... see http://pdg.lbl.gov/ for our current list. Some of
these particles behaved like heavier pions and were termed mesons while other seemed
heavier versions of protons or neutrons and were called baryons.

To make sense of it, M. Gell-Mann and G. Zweig theorised the existence of quarks,

Figure 1: Spectrum of elementary particles,
all of the above have been detected except the
graviton

!Pions are more frequently seen the higher up and some of these emulsions were placed in the top
of mountains. Can you make sense of why muons make it further down the atmosphere than pions by
looking at their basic properties? You can assume they both are produced at the same rate and with
equal velocity. PDG site, pion|PDG site, muon.


http://pdg.lbl.gov/
http://pdg.lbl.gov/2019/tables/rpp2019-sum-mesons.pdf
http://pdg.lbl.gov/2019/tables/rpp2019-sum-leptons.pdf
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three of them: up, down and strange, which both mesons and baryons (collectively
denominated hadrons) were made of. This interpretation put some order in the particle
zoo arranging them in multiplets of a symmetry group. It is interesting to remark from
this historical viewpoint that, like most of the theory milestones of fig. |3} in the inception
of the ideas that make up the Standard Model they were often not taken seriously, at
times by the authors themselves, and it took many years to develop them into their
present form. So despite the fact that deep inelastic scattering experimental data from
Stanford Linear Accelerator (SLAC) by the late 60s provided evidence for the proton
being composed of smaller objects, it would take another particle discovery for the
theory to take shape. The components of the proton were termed partons in R. P.
Feynman’s interpretation of deep inelastic scattering, which were later identified with
quarks and gluons. On the theory side the quark model was taken one step further
by M. Gell-Mann and H. Fritzsch with the formulation of what we now call quantum
chromodynamics (QCD), a gauge theory, while in 1973 D. Gross, D. Politzer and F.
Wilczek discovered the asymptotic freedom of the model.

In November of 1974 the discovery of the J/¥
particle was announced simultaneously by collabora-
tions of experiments at SLAC, lead by B. Richter, and
Brookhaven National Laboratory (BNL), lead by S.
Ting. A hectic period in particle physics ensued out
of which the quark theory would emerge as the model
for hadrons. The new particle could be accounted for
with the addition of a fourth quark, charm, already pro-
posed in the work of S. Glashow, G. Iliopoulos and L.
Maiani in 1970. The addition of this quark implied not
only the presence of the J/W¥ but other particles which
were indeed found experimentally. A few years later in
1977 evidence for a fifth quark presented itself in the
e e discovery of the Upsilon by L. Lederman et al. at the

o 5 experiment E288 in Fermilab. Further evidence in sup-

port of the quark model and QCD came in 1979 from

Figure 2: Discovery of the Up- three jet events at the TASSO experiment at PETRA

silon and the 5th quark, taken collider, in Deutsches Elektronen Synchrotron (DESY).

from S sentoad These events arise from the emission of a gluon, the me-

diator of the gauge interaction in QCD. The last quark

to join the ranks is the heaviest, the top quark, discovered at the TeVatron in Fermilab
in 1995.

The physics of leptons and the weak interactions developed in the same era but it
is conceptually useful to separate it from the history of strong interactions. The muon
was in the particle catalogue by 1950 but the electron neutrino was only detected in
1956 via inverse nuclear beta decay by C. L. Cowan and F. Reines at the Savanah River
nuclear reactor. The neutrino had been theorised by Pauli in the 30s to carry the missing
energy in beta decay but in another example of the growth of theories it had to wait 20



https://indico.cern.ch/event/448629/attachments/1159168/1668061/Journal_Club_Sept23.pdf
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Figure 3: Timeline of milestones in particle physics history

years to be recognized as a real entity. As we know today the muon has its own partner
muon neutrino but in the late 1950s the presence of a single neutrino in nature was a
possibility. L. Lederman, M. Schwartz, J. Steinberger and collaborators at BNL found a
source of muon neutrinos from pion decay interacted with protons to produce muons but
no electrons. It was concluded that the partner neutrino of the muon was different from
the electron neutrino of beta decays and added to our elementary particles. History and
nature would repeat themselves when the tau lepton (7), a heavier version of the muon
just like the muon is a heavier version of the electron, was discovered in the mid 70s at
experiments lead by M. L. Perl at SLAC and Lawrence Berkeley National Laboratory
(LBL) whereas the tau neutrino was detected by the DONUT collaboration at Fermilab
in the year 2000.

Beta decay as well as the decay of taus and muons into lighter particles was known
to be mediated by a ‘contact’ interaction distinct from the electromagnetic or strong
forces; it was described by E. Fermi’s theory of the 30s. This theory was known to be
incomplete at higher energies which lead Glashow and Weinberg and Salam to seminal
works during the 60s. These works accounted for the contact interaction by introducing
a vector boson mediator, the W boson, which originates from a gauge theory. These
models predicted not only the W particle producing charged currents interactions and
decays but also another massive gauge boson, the Z, which induced ‘neutral current’
interactions. These neutral current interactions were measured by the Gargamelle bubble
chamber at CERN in 1973. The electroweak theory, although supported by experiments,
did not have direct confirmation in the form of detection of the predicted W and Z
bosons. It was CERN again with the efforts lead by C. Rubbia and S. Van der Meer
in the experiments UA1,UA2 on the Super Proton Synchrotron (SPS) that announced
within months the discoveries of the W and the Z bosons in 1983.
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The weak interaction was therefore based on the same gauge principle as the strong
and electromagnetic interactions yet with the crucial difference that electro-weak bosons
were massive. This required a mechanism for the mass generation of elementary particles
in addition to the gauge principle or the theory would be inconsistent at higher energies.
A simple mechanism for mass generation was proposed in 1964 by P. Higgs, R. Brout
and F. Englert and G. Guralnik, C. R. Hagen and T. Kibble which took the name of the
former. The prediction of this mechanism was a scalar particle which coupled to the rest
of elementary particles proportionally to their masses. Corroboration of this idea clocks
in as the longest with almost fifty years between the seminal works and the discovery of
the Higgs boson at CERN in 2012.

@ The spectrum of known particles and their properties fills a thick book, yet
they are all made up of a few elementary components as we will see in these
lectures.



http://pdg.lbl.gov/2019/html/computer_read.html
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2 The LHC as a particle physics experiment

The experimental techniques and methods in particle physics have evolved throughout
the years and often had spin-off developments that helped shape society as we know it
today (e.g. the www was developed at CERN). Again we cannot do justice to it all but
simply give here a very simple sketch of a modern particle accelerator.

Both in photographic emulsions and cloud chambers used as particles detectors in
the 40s and 50s charged particles could be seen by the tracks of ionized material they
left when traversing the detector. These detectors in the infancy of particle physics used
cosmic rays as a source but with the advent of particle accelerators one could control
the production as well as detection. Linear and circular, fixed target and center of mass
accelerators have been built and together with ever-more-advanced detectors produced
the results that fueled particle physics. The basic physics of detection and production
however are not hard to grasp and here we jump to a current experiment to serve as
pedagogical example.

Colliders are characterized in simple terms by two quantities: center of mass energy
Vs and luminosity L; let us start discussing s. Consider two free particles in collision
course with momenta

P = (Ep.p,) vy = (Ep,,p,) (2.1)

where we have chosen our unit of speed as the speed of light, i.e. ¢ =1 and E2 =m; 24 p

What is the energy available in the collision to, for example, produce new partlcles7 Part
of the total energy, E1 + Fs, is translational and due to the system moving as a whole,
so a different observer moving at a relative speed v sees momenta:
E
= (2.2)
P,

ﬁ:(%):[ﬂl—*ﬂu _PUT>+(8 Pi)

where v’ is the transpose velocity (a row vector) and the projectors are explicitly P =

vl /v? and P =1 — Pj. To determine the energy available for the ‘reaction’ one can
do as in classical mechanics and sit on the center of mass frame. In order to do this we
find the Lorentz transformation, that is v, such that the total 3-momentum vanishes
in the new frame p p, TP, =0, then the total energy in this frame is the internal energy
available. This exercise leads to the CM energy which can be expressed in terms of the
original 4-momenta ag’]

BN+ By = (By, 4+ By, () +2,)* = V(o1 +p2)? (2.3)

So no matter what rest frame we find ourselves in, we can find the center of mass energy
by the Lorentz contraction of (p; + p2)*, which is a Lorentz invariantlﬂ Indeed whether a

*Derive this equation by finding the boost that takes to the center of mass frame, that is vy, =
ve.m.(p1, p2) solving p + P, = 0 and later substituting in E Lt Ep
3In a fixed target experlment a beam collides into a static target for example take static protons and
E. = 10TeV energy electrons; the center of mass energy is then s = m2 + mZ + 2mpE. ~ (10GeV)>.
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collision of a positron and an electron can produce a muon and anti-muon is something
which all observers can agree on. The collider that will serve as example here is the
Large Hadron Collider (LHC) at CERN. The LHC accelerates two streams of protons
travelling in opposite directions (and so the laboratory frame is the center of mass frame)
in its 27 kilometre ring to an energy of 6.5 TeV= 6.5 x 10'2eV each for a CM energy
of /s = 13TeV. When the two beams of protons meet some of them will interact and
possibly produce observable signals in the detectors. Let’s look at one of the protons in
one of the beams with momentum p;, the probability that this proton interacts with the
other beam when he traverses it during a time interval dt is

dP = o x Fdt = 0 x ng |v; — vy|dt (2.4)

where F is the flux of particles from beam 2 per unit time ([F]J=m~2s7!), that is the
number density of particles ng = No/V times the relative velocity. The other factor, o,
is the cross section and can be thought of as the area around a particle within which
particles going through will interact (but note that the cross section depends on what
particle we are scattering with). Then beam 1 has itself N; protons so the probability
of some interaction or event to occur is

dNev
dt

=Ny xFo=Lo (2.5)

where L is called the instantaneous luminosity, proportional to the flux and the number
of particles of each beam. This parameter we can control experimentally, as opposed to
the cross section, which is given by fundamental physics.

The beams at LHC are however not a contin-
uous but they are separated into bunches, some
Np ~ 3000 circulating in each direction. Per
bunch crossing then in formula we obtain
the probability of a proton to interact substi-
tuting the time that it takes him to traverse
the other bunch dt = L/|v; — val, taking the
bunch to be a cylinder of length L and volume
V = AL, so P = o0Ny/A. There are N1 protons
per bunch, the same on each beam (N; ~ N3),
and approximately N; ~ 10'' whereas given
that they travel at nearly the speed of light and Figure 4: The LHC tunnel, some
the LHC ring is 27km long, they go through 27km long. Credit home.cern
the interaction point with a frequency of f =
¢/27km~ 10* s~1. Altogether this yields a luminosity of L = NiNoN,f/A, given that
the beams are squeezed via quadrupole magnets to an area of ~ um? one can estimate
the LHC luminosity at around 20 nb~!s~! were a barn (b) is a unit of area equal to
10~ %*cm?.

Luminosity is therefore measured in (length) 2x (time)~! and the cumulative lumi-
nosity over time is called integrated luminosity, Liy,. The LHC has collected in what

a


home.cern
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is called run 2 (2015-2018) an integrated luminosity of around 140 inverse femto-barn
(fb~1). This represents a huge amount of data, some 10000 trillion collisions yet if we
are interested in a particular process, like Higgs production, we have a much smaller
data set. Let’s do an estimate of Higgs production, given the Higgs production cross
section opp_p,

NHiggs = Lint Oppsh = / Ldt oppn ~ 140fb™1 4 x 10*b = 5.6 x 10°.  (2.6)
These events are recorded in the detectors placed at the collision point. At LHC

there is not just one collision point but four, where the detectors ATLAS, CMS, LHCb
and ALICE are placed. ALICE studies heavy ion collisions and LHCb b-quark physics.

Key:
e MLON
“———— Electron

Hadron (e.g. Pion)
----- Photon

¢ 5 Iron return yoke interspersed
Transverse slice with Muon chambers

Figure 5: CMS transverse view

The two multi-purpose detectors are CMS and ATLAS and we describe here CMS as an
example. It is 21 x15x15m in size and 14,000 tons heavy with most of its weight coming
from a superconducting solenoid (circling 18.500A!) that produces one of the strongest
magnetic fields ever manufactured. We can see a transverse view of the detector in fig.
There are four main components in the detector each with different functionality.

(a) The inner part of the detector is the tracker where particles trajectories can be
identified and traced back to the vertex where they originated from. Since it has
a powerful background magnetic field, charged particles curve and their momenta
and charge can be measured.

(b) In the next encapsulating shell we find the electromagnetic calorimeter (ECAL)
which stops electrons and photons and measures their energy.
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()

Surrounding the electromagnetic calorimeter the hadron calorimeter (HCAL) is
where hadrons (pions, kaons, protons etc) are stopped and their energy measured.
A given process produces a lot of hadrons in the direction of the original parton,
this is called a jet and they are the way in which we ‘see’ partons after collision.
At the same time it is designed to be as hermetic around the interaction region as
possible so as to identify missing energy events.

Lastly muons make it through all the previous detectors and are identified in the
muon chamber which contains a strong magnetic field and where muon momenta
momenta and charge is measured.

With all the information collected from the detector we try to reconstruct as much as
possible the kinematics of the elementary interaction that mediated the scattering.

@ The two characterizing parameters of a collider are center of mass energy
/s and luminosity L. The number of events is the cross section times luminosity
integrated over time Neyents = f L odt =Ljyto with Ly the integrated luminosity.
We took CMS as an example of a particle detector with its main components being
tracker, electromagnetic calorimeter, hadron calorimeter and muon chamber and

we reviewed what type of particles we see where, |(a)i(d)

10
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3 Path integral and Feynman rules

In this lecture we turn to the theory formulation in particle physics. The formalism
chosen here is based on the path integral; first we introduce this concept in quantum
mechanics to next apply it to Quantum Field Theory (QFT) and finally summarise our
results in the form of Feynman rules and formulae for observables.

The events in our collider of choice depend on cross sections which are given by phase-
space integrals of squared scattering amplitudes, themselves derived from a fundamental
action. The action S is the spacetime integral of the Lagrangian density L,

S(®) = /dt/d%c(q)(x)) (3.1)

where ® denotes collectively the fields associated with particles one is studying, e.g. a
neutrino field v (x). In particle theory models for nature are often discussed in terms of
their Lagrangian which, since the rise of QF'T, has played a central role. The connection
between Lagrangian and cross sections and decay rates is not a simple one nonetheless;
here, rather than focus on rigour, we sketch the basics of the formulation (and the way
to sidestep it). To guide our intuition through the math, let us anticipate that the
action controls the evolution of a system and hence the range of possible outcomes in
our experiment.

Here are some of the questions that (perhaps) have occurred to you and we will
try to address. You are familiar with the Lagrangian from classical mechanics and the
derivation of equations of motion but how does it show up in quantum mechanics? And
why would we rather talk about Lagrangians over Hamiltonians as one does in quantum
mechanics? To answer these we use a path integral, which you might not have seen
before, so let us present it in its simplest realization.

Path integral in quantum mechanics

Take a canonically quantized system with operators Q, P and eigenstates |Q), |P), as
you are familiar with from quantum mechanics:

(@, Pl =ih QQ) =QlQ) (3:2)
(QIP) = e™oP/" P|P) = P|P) (3.3)

You can think of () and P as position and momentum in one dimension, but they could
be other conjugate variables of our system, and we will eventually take them to be field
U and conjugate variable 0; . Take an initial state |Q7) at some time ¢ = 0, and let
us compute the possibility that it ends up in a different state |Qp) after a time T. The
time evolution is given by the Hamiltonian

d I
in1Q) = H1Q) H="3+V(Q) (34)

11
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where we assumed a time independent Hamiltonian and it can be thought of as kinetic
plus potential energy for a non-relativistic object moving in one dimension with unit
mass. The amplitude we are considering then has a simple expression:

(Qrle T/ Qy) (3.5)

Next we break the time 7" in N + 1 intervals 6t = T'/(N + 1) and insert a number of
‘identities’ to evaluate the operators in terms of eigenvalues.

<QF‘e_iﬁT/h|Ql> — <QF|€—iﬁ5t/h,e—iﬁ5t/h . e—if{&/he—iﬁét/h’QI) (36)

—/<QF\e—“%“\QN><QNre-”%“\QN_1>---<Q2e—iﬁ%“\cz1><@11e-if’n“r@1>ﬂd@i

Lets break it down to each of the pieces

- Hot dP
@nale " H1Q5) = [(Quale FIPIPIQ) (37)
= [@puipe (v >)<P|QJ>* (3.9
:/e"Q”hlPe (v ﬁaf’ne"'fii (3.9)
The argument of the exponential is
i6t [ P?

- (G - R -+ v@) (3.10)

bt (1 Q@ @ -
__h<2 <P‘ i ) e +V<QJ>> (3:11)

We can carry out the integral in P since it is a Gaussian which we know gives in general

_(z—b)?
/dze 22 = V2ma? (3.12)

B st (Qg+1tQJ V(@)
/<Qy+1\e P ><P\QJ> —\/;eh< 2 J) (3.13)

and the amplitude reads

so that

) /H [dQ st (Q]J;#Q] (Qy))] e%t (%—V(Qz))
2ot i€

with Qny1 = QF and where we can identify the finitesimal derivative of @ in (Qj41 —
Q;)/0t and the Lagrangian in half its square minus the potential V(Q). This finitesi-
mal version of the Lagrangian is multiplied by the increment of time dt so taking the
infinitesimal limit we can write:

(@Qrle*1T|Qp) = (

12
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o 3
: : — QF
ot 20t 30t T—36t T —20t T—6t
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Figure 6: Three paths or functions Q(¢) in green blue and red for our path integral
formulation of the amplitude

N Qr )
(Qple T/ Q) = / DQerC) (3.14)
Qr
with
T T 52 T
S[Q]:/O dtL(Q):/O dt (%—V(Q)), DQ:éltiglo(%:(Z) Hin. (3.15)

The path integral takes a little getting used to. A given ‘point’ in the space we are
integrating over is given by the value of @ at the N = T'/§t — 1 different times. One
can plot this as in fig. [6} with time on the horizontal axis and @ on the vertical axis, we
specify the ‘point’ by the values of ) in the vertical axis at each time. If we join these
values with a line, which must start and end at Q; r respectively, we have ourselves a
‘coarse-grained’ function Q(t) or a ‘path’ from Qp to @ which in the §¢t — 0 limit does
turn into a function. Well, there you go, the path integral is an integral over functions, or
in our physical interpretation paths from the initial to the final state, where we note that
these functions do not even have to be continuous or differentiable. The contribution of
different paths to the final outcome is dictated by the action which acts as a weighting
factor.

This integral is not possible to evaluate in general, but certain limits are somewhat
intuitive and of physical importance. Consider a neighbourhood around a given function
Qo with a non-vanishing variation of the action (65/6Q)[Qo] # 0; contributions around
this point can both increase and decrease the action and hence have phase factors that
tend to cancel out. By contrast around a configuration Q. with (05/0Q)[Qc] = 0 the fist
contribution is given by the second variation, which for ); a minimum, gives a same-sign

13
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coherent contribution. But this configuration we know, its the solution to Lagrange’s
equations! This means that the classical path is a potential good point around which
one can expand the path integral. Whether it is a good expansion in practice depends on
our system but one can formally take the limit 2 — 0 to suppress all other contributions
and recover classical mechanics from the path integral.

In general nevertheless we sum over all paths and it is the action that determines the
final result, the evolution of the system. From here already one can see the importance of
the action and Lagrangian. Finding the fundamental action (or equivalently Lagrangian)
that describes the world at its most elemental is the key to predict and understand the
possible phenomena and outcomes in nature. This makes the case for the theorists
fixation with Lagrangians; there is the hope that the search for new phenomena and
particles will yield a complete description of Nature which will be specified by ‘The
Action’. At present we know that our current theory given by the Standard Model
action is incomplete. But lets come back down to the specific physics we are concerned
with here, smashing particles together, which is one of our ways to search.

Path Integral in Quantum Field Theory

The connection with particle physics and quantum field theory is obtainable by transla-
tion, take a scalar field ¢(t,x) for example

(0r)?

Ba) 0] =ine—y)  H=TTE L VHRVE) (316)

where the difference is now we have fields and hence another label on top of time: space
and so H is a Hamiltonian density. This H leads to an action

Sto) = [ deds (;fw% - V<¢>>) (3.17)

The main difference and where we require a bit more work is that the states |¢) are not
the final states we are looking at. Canonical quantization prescribes that the operator
¢ creates and annihilates particles, in particular

(0l¢(z)|p) = e~ (3.18)

where |p) is a particle state with momentum p and hence the eigenstate of ¢, |¢), is
a superposition of multiparticle states. It will also be convenient, given our focus on
scattering of momentum eigenstates, to Fourier-transform our fields to momentum-space.

Given orthogonality of momentum states (which we assume), eq. tells us that
the insertion of ¢ creates a particle, made explicit in the decomposition of the field in
terms of creation a;; and annihilation operators a, which nonetheless we do not need
here. One has therefore that n insertions of the operator qg in between the vacuum state
must be related to the transition probabilities involving n particles (some of coming in

some of them going out).

14
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This requires that in our path integral we also allow for powers of the field ¢ ‘down-
stairs’ DgetSl?lgm while the final and initial states are taken to be the vacuum. Instead
of computing the n possible path integrals separately here we borrow a method from
statistical mechanics and define the partition function Z[.J] starting from

2[0] = (0l H T |0y 00 = / Depeislo (3.19)

which would be the Oth order integral. The source J is introduced as an extra term in
the action

210 = / DeiSleH+i [ d'ai(a) (@) (3.20)

so that taking derivatives with respect to J we bring down ¢’s which we interpret as
creating and annihilating particles and antiparticles.

If one knows how to perform the integral, the theory is solved, that is we can make
exact predictions. However in general one does not know how to solve this integral and
perturbation theory is our way to make progress. This is based on some basic integrals
which we do know how to perform, case study a Gaussian integral.

Let us illustrate this with the scalar action of eq. [3.17 and the two-point correlator,

52 Z[J]
i0J(x)id J(y) Z[0]

_ L ()51
= [ Pootaotw) (321)

where functional derivatives are defined by §J(y)/dJ(x) = §*(x — y). Let us rearrange
the action as

/d% <;¢(—D —m%)p + <Z>J> :/d4x <;(¢ + A (-0 -m?)(p+ AJ) — ;JAJ>

_ / 7 <;$(—D —m2)é - ;JAJ> (3.22)

where we used integration by parts, [ = "9, A we define to satisfy (—0—m?)AJ = J
and a shift in the dummy integration variable ¢ has been used. This result back in the
path integral

1 < Sl (52 i ;
= | DoeiSlel LAY LA 1 (AV2) b f I A K
Z|0] / e 25 g2° ’J:[) (iA+(AT)%)e ‘J:O i (3.23)

where we have identified the path integral in qg as Z[0]. We managed to compute a path
integral (!) and obtained A as the answer so let us have a closer look; it is a function of
two spacetime points x,y and defined to be an inverse as:

4 eta(z—y)
(0 —m?)(AJ)(z) = (—D—mQ)/d“yA(x,y)J(y) Az, y) =/(;Z:)4q2_mQ

15
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which is the propagator for a scalar field; all we had to do to ‘compute’ the path integral
is to invert the operator of the quadratic action (in (j))ﬁ

In our interpretation however this result should be connected to a transition proba-
bility between momentum eigenstates, first a Fourier transform yields

1 i5[¢] o |t )etpetivk
5 | ooty = Ak = [t [atyaiepe (3.21)

—H(QW)4(54(p + k) (3.25)
We can interpret this result if we flip one of the momenta k& — —k which is equivalent to
taking the particle outgoing; then this expression is only non-zero if the initial and final
momenta are the same which is what we can expect of a transition amplitude. There are
however extra factors which require an overall normalization for this to be interpreted as
a matrix element. This normalization involves the propagator itself as a more rigorous
consideration yields.

The derivation of this normalization can be found in books on QFT, e.g. section
7.2 of [4], here we borrow the result so we can finally connect momentum-space path
integrals with scattering processes. Let us denote the amplitude for a transition from
n; incoming particles to a final state with n, particles as the matrix element of the
scattering matrix S, Sy, n,, and N = n; + n,, our derivation leads us to: H

Sni e :z%o] ((iA)‘lﬁj>N Z[J]‘JZO - Z%O] <(iA)_ ZM) /p¢ezs o+[ o

1 4] S\ iy [6-AJ]
L 7 iSold) [ (iay-1 0 — 1 [ JAT+iSin[$—AT
0 /D(;Se <(2A) i5J> e

J=0

(3.26)

J=0

o N
_ 10] /D(;Sez‘So[M—;fJAJ <(iA)_1i;]> ¢Smt[0=AJ] 1 disconnected (3.27)

_ 1 isoldl (0 \" (0 \" iswlel 4 g
0 / Doe ) 5o e + disconnected (3.28)

The first line above is known as the Lehmann Symanzik Zimmermann reduction for-
mula [3] and there is a lot to unpack here. What we mean by disconnected is best
understood with a diagrammatic approach as in fig. [7} disconnected are processes in
which some particles travel freely and do not talk to the rest of particles which corre-
sponds to letting §/8J act on the free piece exp(—i [ JAJ/2). As for the derivation
we have used the same trick as for the propagator, introducing qg and using D¢ = Dqg
and in the last step we specify that the derivation is to be taken with respect to the
Fourier transformed field and and opposite sign-momentum transformed for incoming
and outgoing particles respectively ¢(z) = [ d*pe™* ¢(p).

4If you are acquainted with the cannonical formalism in QFT you have seen a propagator before,
yet here it acquires a new interpretation in terms of expectation values of fields, relevant in early-time
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p1 D3 P —m 3 p1 D3

D2 yo P2 ——— P4 D2 P4

Figure 7: First few terms in the S-matrix for a scalar A¢? interaction.

To get acquainted with this expression let us take the following interaction

A A . .
Sulol == [ oo =3 [ @[] [ d'nerotr)

4

A

=—5 [ / d4pigz5(p,;)] 2m)*s* (> i) (3.29)
i=1

and look into 2 to 2 particle scattering with incoming momenta ki, k2 and outgoing

momenta ks, ky. This means now taking the derivative that the out-states have flipped

momenta:

iSo[4)] 82 &2 iSint[d] — 15[l _; 4 —ka — 2
e 5¢(/€1)5¢(k2) (5¢(—k4)5¢(—k3)6 [ ( Z)\)(27T) 5(k‘1 + ko — k3 k‘4) + (9()\ )

the path integral on ¢ cancels out with the factor Z[0] in the denominator and we have
therefore obtained the (first order in A\) S matrix element. It is conventional to define
the invariant matrix element as

S =1 —i(2m)*(p; — pr) M (3.30)

with pr p the sum over initial and final momentum respectively. We found then —iM =
—iA; that was a lot of work for a simple result, lets look at a different process next and see
if the final answer is equally simple. Next say the case of proton with field P(z) scattering
off an electron e(x) via the electromagnetic interaction (D,P(x) = (0, + iQA,)P(x))

Sint = / d' (Qe(w)ue(x) A () — QP(2)y, Plz) A () (3.31)
so the & matrix element is computed from

. 55 5 5.
iSole,P,Au] _ iSint[e, P, Ay] 3.32
€ 3¢(p2) de(p1) 6P (ka) 0P (k1) (3:32)

—¢iSle.P A /d4xei(P1—p2)x[iQ,yu]AM(x) / d4yei(k1_k2)y[—iQ’)/y]Au(y) + O(Q4) (3.33)

—¢Sle, P Au]—iS0[AL] /d4$/d4yei(p1_p2)x(iQ'yu) [A“(x)A”(y)eiSO[A“]} ei(kl—]@)y(_iQ/yV)

Cosmology.
®This expression is valid to first order in our perturbative expansion, the next order (one-loop)
introduces a field renormalization factor, both here and in eq. (3.18), which we omit.
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we can perform the path integral in A, perturbatively (DA)A(x)A(y)e*ol4] which is
precisely the propagator

. d4q 7ieiq(ai—y) gH‘V .
2 [ g4 /d4 i(p1—p2)z / i(k1—k2)y y 34
Q / x y@ ’711 (27T)4 q2 € ’}/ (3 3 )
—iQ2 uv
=(2m)* / " (p1 —pa2 — q)d“qug(%)“fS‘*(kl — ko + @) (3.35)
_iQquy

=(2m)*6"(p1 — p2 — k2 + k1) u (3.36)

(p1 —p2)2 "
which again has an overall momentum conservation Dirac delta and ends up being sim-
pler than the derivation machinery might have suggested. To connect the above with the
S matrix one still has to contract with spinors u(p, s), @(p, s) which are the connection
between field and particle state. The ones we will need in these notes go only up to spin
1. They are

(0lp(z)|p) =e™* (plo(x)|0) = (3.37)

(Ol ()], p, 5) =u(p, s)e” " (¥, p, 5|4 (2)[0) =u(p, s)e’P (3.38)
<0|1,/_J(ac)\anti—w,g, s5) =v(p, s)e”"P* (anti—, p, s|¢(2)]0) =v(p, s)eipx (3.39)
(014, ()|, A) =eu(p, A)e™** (p, A A*(2)|0) =€, (p, A)e™* (3.40)

W @)W, p, ) =eu(p, e ™ (W, p, AW (2)0) =¢j(p, \)e'?®  (3.41)
OIW, (2)[W™,p,\) =eu(p, \)e " (W™, p, )\|Wj(m)|0) =¢,,(ps \)e'P? (3.42)

where W5 (x) is a complex spin one (= vector-boson) field and (W, (z))T = W, (),
(W, (2)T = Wi ().
This gives us for our electron-proton scattering —iM = —inﬂe’y“ueﬁpfy“uP /(p1 —

p2)?.

Feynman rules

Nevertheless the simplicity is indicative of a shortcut to the result which is simply a
collection of rules which one can gather after doing a number of computations like the
above. The directions for this shortcut are known as Feynman rules

(I) Interaction vertices To derive the Feynman rule for a given vertex take the
derivative of the interaction term in the Lagrangian with respect to fields until you
obtain a constant and put an 7 into it. Complex fields are treated as independent
fields. The vertex is represented diagrammatically by each of the fields being a
line joining in a point. We have seen a couple of examples

A \\\ ,/,’ .
Lyt = —Wﬁ‘l(a:) = X=X Lem = Qe(x)yue(x) A (z) = W<Z/Q%

4 N \
4 N
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(IT) For a initial/final state particle (a;,5\0> = [p, s)) with momentum p and spin s
one must supplement the derivative w.r.t. to the field with the field-state connec-
tion, this means a factor (z = uf4?)

1+, et (p, \) time — 1 e (p, )
. 1Ll\ , ;‘j

.
Scalar in. Vector-boson in. Scalar out. Vector-boson out.

U(p, S) \\ {)(pa S) \'\ / a(pa 5) / U(pa 5)
Fermion in. Anti-fermion in. Fermion out. Anti-fermion out.

(ITII) For internal lines which connect two vertices we put in the propagator iA, these

are:
Propagators
i : i i(p+m)
________ -5 o —> —0 ==
Scalar ® ® P—mZtie  Termion pHy, —mt-ie p?2—m2+ie
—igh” —i ( pv _ ppY )
Vector Boson Ptie Vector Boson PZ—m2tie g m2

(IV) For a given process draw all possible diagrams (to a given order in your perturba-
tive expansion) matching the external states. For each diagram write —iM with
the rules |(DH(III)| while imposing momentum conservation on each vertex to
fix the momenta of propagators as much as possible. Make sure —iM is a Lorentz
invariant by ensuring all Dirac and Lorentz indexes are added up, in particular
for Dirac indexes one can use matrix notation (where order matters) by starting
from the end of a fermion line and continuing up against the arrow. The final
result is the sum of —iM for each diagram.

It can be shown that all diagrams at first order (called tree level) in our perturbative
expansion have the momenta of propagators fixed in terms of the momenta of external
state. The next order does not and there’s internal momenta which we have to integrate
over (we call this loop momenta and loop integrals).

These are the rules, but one only really learns how to use them with examples which
is what we will do on the workshop.

Finally, we can take the invariant matrix element —iM and give the cross section,
for two particles colliding with four-momenta p,, p, and producing n particles in the
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final state:

7= Vg vb|2E 2E, /( )>(27T)454 <pa +pp— sz) IM>  (3.43)

=1

where we recall v = p/E,. The terms inside the integral except for M constitute the
Lorentz invariant phase space sometimes just called LIPS, whereas the factors out front
are related to our normalization of states (p'|p). On the other hand a decay rate in the
particle’s rest frame is o

5 (2m)*s? 2 3.44
=5 [ g, 520 <pa Zp) M) (3.44)
with p, the four momenta of the decaying particle, p, = (M,,0). So at last our trip

from action to observables is done.

Completion relations
A number of useful relations for the square of the matrix elements when we sum over
spins are:

Z u(p, 8)u(p,s) =p+m Z v(p, s)v(p,s) =p—m (3.45)
Zau ENEEN =g D eulp NebpN) = 5 — g,
A

and since (7)1 =70, (7#)14" = 494#, we have e.g.
(@y"v)* = o' (") (1) u = vTy "y u = oyt (3.46)
Finally some relations for gamma matrices which will be useful are

Tr (y#9") = 4" Tr (V") = 4 (0P + nHon"P — nlPy") (3.47)
Tr (v#47v5) = 0 Tr (YY" Py ys) = dielPr (3.48)

@ The path-integral formulation in particle physics connects the Lagrangian
with observables while maintaining Lorentz covariance. Feynman rules |(I){(IV)]
gave a shortcut to compute the invariant matrix element —iM for the connection

of Lagrangian with scattering processes (3.303.43l13.44]). Completion relations for
sums over particle states were given [3.45| which we will use in our computations.
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4 Standard Model overview

Our last lecture took us all the way from Lagrangian to cross sections, so now that
we know the path let us present the starting point (Lagrangian) to the best of our
knowledge. This is the Lagrangian of the Standard Model, our description of nature at
its most elemental.

Gauge group

At the center of the Standard Model formulation sits the gauge principle. Here we
assume the reader has some familiarity with the principle and do not review it. We
start by specifying the SM group and the consequences that follow from its formulation.
The group is divided into colour, weak isospin and hypercharge, the latter two ‘contain’
electromagnetism in a way which we will make explicit later on. Invariance of space-time
dependent (gauge) transformations requires the introduction of gauge bosons: spin-1
massless particles, one for each generator. This means

color weak isospin hypercharge
group: SU(3). SU(2)L Ul)y
bosons: G, a=1,..,8 Wi, 1=1,2,3 B,
Y Gsp (3 x 3 traceless g (2 x2traceless /
Generators: 2 Ta = < hermitian ) 271 = < hermitian Qg

where I is the identity and g, g, g’ are the couplings of color, weak isospin and hyper-
charge respectively, the only three parameters of the gauge group. The matrices T, and
or can be taken as the Gell-Mann and Pauli matrices respectively with the normaliza-
tion Tr(T,Tp) = 204 and Tr(ojoy) = 207;. The field strengths for the gauge bosons
transform in the adjoint representation and are defined as:

— a a igs a b
G =0uGLT = ,GiTu + 5 [GuTa, GyTb] (4.1)
W E@MWVIUI — &,Gﬁal + % [Wim, W;]JJ] (4.2)
B, =0,B, —0,B, (4.3)

The way in which gauge bosons couple to matter is through the covariant derivative, for
example if it acts on a fundamental representation of color, weak isospin and hypercharge
Qy we have

g g .
Dy = Oy + i GiTo +i5 W01 +1ig'Qy By (4.4)

this would be the case for example of left handed quarks but more in general when the
covariant derivative acts on a field which is not charged under color the G, field would
be absent, if instead it is not charged under weak isospin W, would be absent, etc.
Therefore to know how the gauge bosons interact with the rest of particles, matter, we
have to specify their charges (representations).
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Matter

By matter here we understand fields charged under the SM gauge group, which means
fermions and the Higgs doublet. As we will see this distinction becomes a bit blurry
after electroweak symmetry breaking, but let’s not get ahead of ourselves.
To talk about fermions we have to revise first chirality. As you might know:
L =5 1+

75 = iv" %y PL=—0= Pp=— (4.5)
with Pr, g the left and right-handed projectors. They are projectors because Pr,+Pr = 1,
Pf = Py, PI% = Pgr, PrPr = 0. The usefulness of this projection is that it commutes

with Lorentz transformations, that is, because

[v55 [V V)] = 0O (4.6)

Pr, and Pr commute with the Lorentz group generators. This means that after a Lorentz
transformation a left-handed field stays a left-handed field and so does a right handed.
That is why we define

T+75
2

b =Py =1y VR =Pp = —2¢ (4.7)
which are irreducible representations of the Lorentz group, the ‘smallest’ fermion. You
are familiar with the electron which is made of a left-handed and a right-handed com-
ponent, but again to get there we must go through mass. For now we split our fermion
fields between LH and RH. In the Standard Model there is a total of 5 of them for the
first generation, qr, ug, dr, £;, and eg. Their charges are

| gz | ur | dr | €L |er
SUB).| 3 | 3 | 3 S -
su@.| 2 | - | - 2 | -
UQ)y |1/6|2/3 | -1/3| -1/2 | -1

where — means not charged and a 3,2 means a fundamental of SU(3) or SU(2),
that is a complex vector in 3 or 2 dimensions. This is a significant distinction with the
abelian and non-abelian cases, for the former the charge is a real number but for the
latter charge is a ‘representation’ and they are a discreet set. One can be explicit about
the 3,2 representations and write the ‘vectors’ out:

U(2)L\SU(3)c - b3
. (eR) (UI}%,UR,U%)2/3
- (di dp,dR) s (4.8)

o+ vr, uhul ol
21\ H e & dv |
0 /12 L /12 L>%L>%L /16
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where r,b,g stand for the three colors (red, blue, green) whereas for SU(2);, each com-
ponent of the two vector merits its own name, vz-e;, and uz-dy, and the subscript gives
the hypercharge. Above we have also included the Higgs doublet which as such has 2
complex components (4 real) inside it. So all in all the matter content is given in table

o | wr | dn | & |er| H
SUB3). | 3 | 3| 3 MR R
su2)y.,| 2 | - | - 2 | — | 2
Uy |1/6]2/3|—1/3|-1/2| -1 1/2

Figure 8: Charges of the matter content of the Standard Model

With this much information one can already write a large fraction of the action.

Lagrangian

As we’ve emphasized all throughout, the spacetime integral of the Lagrangian dictates
the evolution of our system and possible outcomes and is the central construction from
which we derive observables. One might think that if it controls and ‘knows’ about all
possible outcomes of say a collision, the Lagrangian of our theory of nature must be
a complicated object with many variables and many moving parts. With our present
knowledge we can say that is not the case, the Lagrangian of the Standard Model is
remarkably simple.

The two rules we follow when building our action are Lorentz and gauge invariance.
These symmetries imply conserved currents which we have tested to impressive accuracy;
e.g. electric charge is conserved in every process we know of; any non-gauge-invariant
term in our Lagrangian would contradict this fact.

The particle content we know of is in table 8] so we can start writing its free La-
grangian, m%aﬂw, ... but this is not gauge invariant, we have to promote 9, to D,, as
in eq. 4.4 which simultaneously tells us how matter and gauge bosons interact. Then we
write the part of the Lagrangian which we call Lga,ge including matter and gauge boson
kinetic terms :

1 1 1
Lgauge = — gTr(GW,G’“’) — gTr(WWWW) — ZBWB’“’

+ > Wy Dur + > WAt Dyg + DPHTD,H (4.9)
Y, YR

where the sum on fermions is over ¥ = qr,¢r, and ¥r = ur,dg, er and the extra 1/2
in the 1/8 in field strengths is related to the normalization for traces Tr(7,Tp) = 204
and Tr(oroy) = 207;. So for example from the above we can deduce that the quark
interaction with a gluon Gy, reads —igsy T /2.

There is one key aspect that the gauge Lagrangian does not account for: some par-
ticles are massive, including part of the gauge bosons. This seems in stark contradiction
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with the gauge principle so we have ourselves a conflict. The conflict is resolved by the
Higgs doublet and spontaneous symmetry breaking. In a nutshell this means that even
though our full theory possesses a symmetry, the vacuum state alone does not. We will
expand on this in a few lectures time but for now we want to write the part of the action
that will do this job. First a simple potential for the Higgs will give it a value in the
vacuum different from 0, (H'H) = v?/2:

V(H)=-—m%H H+ \H H)? (4.10)

and next the Lagrangian terms from which the mass of fermions originates, the Yukawa
interactions:

£Yukawa = - Z (YQZLHwR -+ Y@/_}Lf:le) + h.c. (411)
gaugeinv.
= — UQLE[UR—Yd(jLHdR—}/EZLHeR-Fh.C. (4.12)
where
H =ioyH* = ( _01 é >H (4.13)

which transforms as a 2 as well but with opposite hyper—chargeﬁ After electro-weak
symmetry breaking, the Yukawa terms will produce masses for fermions as m,, = vY)/ V2.
Let’s collect all the terms then in the SM Lagrangian

1 1 1
Lgm = — §Tr(GWGW) B éTr(W“”WW) = g BB

+ Y iy Dy + Y iy Do + D*HI D, H

YL YR
— qu]ZIuR — Y qr Hdp — YeELHeR + h.c.
+m4LHH — \(HTH)? (4.14)

This is it. Our Lagrangian for a single generation has 3 gauge couplings, 2 parameters
in the potential and three Yukawa couplings. This we fix after looking at experiment
and we have input for all of them at present.

g | 9 | g | v | X]| Y. | Y, | Y
1.2 | 0.65 | 0.36 | 246GeV | 0.13 | 1.4x107° | 2.9x107° | 3.0x10°°

Figure 9: Input values for the SM at an energy of ~ 100GeV, we have that mlzq = M.

The one aspect we omitted here is the generational structure of matter. That
is a simple extension however, one can put an index in the fermions that runs from one

5Check that I:J transforms as a doublet, i.e. given the infinitesimal transformation in 6, H = iwlorH
substitute in 8, H = ioa(J,H)* to find 6, H = iw’o,H.
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to three so e.g. uly = (uk,u%,u%) = (ug, cr,tg). This introduces more parameters in
the Yukawa couplings which now are 3 x 3 matrices. This we will look into in lecture [IT]

Global symmetries and charges

This action was built to respect the gauge symmetries and so via the Noether theorem
electric charge is conserved in any process. In addition this theory has other symmetries
which are somewhat unintended. You might check yourself that if we give a phase to all
quarks (LH and RH and all generations) the Lagrangian in eq. stays unchanged.
This symmetry we call global because it is only conserved if we make it space-time
independent, as opposed to gauge symmetries. Nevertheless it implies a conserved
charge, baryon number which we define as

Qp(qr,ur,dr) = 1/3(qr, ur, dr) (4.15)

The above is meant to include all generations of quarks, so all u,c,t,d, s, b quarks have
Baryon number 1/3. Anti-quarks have opposite charge and the rest of elementary parti-
cles are neutral under baryon number. This charge is coming from an Abelian symmetry
which makes it easy to find the charge of composite objects as

Qplr" = (ud)] = (Qpu)d +u(Qpd) =0 4.16)
Qslp = (uud)] = (Qpu)ud + w(Qpu)d + uu(Qpd) = +1[p = (uud)] (4.17)

So mesons have 0 baryon number and baryons have baryon number 1. This charge is
conserved in all process which we have observed in nature, and we have been actively
looking for its failure. It also offers an easy check on whether a given process is allowed
in the Standard Model, for example, is p — 7eT v, allowed by baryon number?

About leptons we have a similar result, but stronger even. We can rotate the each
different generation with a different phase so we have three different charges: electron
lepton number, L,, muon lepton number and tau lepton number L., defined as

e (+1)e e 0 e 0
Le| n | = 0 Lyl v | =] D Ly | w | = 0
T 0 T 0 T (+1)7
(4.18)
Ve (+1)ve Ve 0 Ve 0
Le| vy | = 0 Lol vy | =1 (D), Ll vy | = 0
v, 0 v, 0 v, (+1)vr

whereas antiparticles have the opposite-sign charge. These charges, together with electric
charge (the other unbroken Abelian charge) offer a simple rule to check whether a given
process can happen in the standard model. Here are some for you to train:

2

p(uud) — n(udd) + et + 7, et +v RN p(uud) + n(add) + ve (4.19)
A°(uds) RN p(uud) + 7~ (du) ] K Vet Tete (4.20)
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A key question before moving on is why do we stop in just the terms of eq.
when writing our action. In our natural units the fields have dimensions of mass to some
power & ~ (Mass)3™(®) this power is, respectively

dim(¢) = 3/2 dim(H) =1 dim(D,) = 1 dim(F,) = 2 (4.21)

you can amuse yourself to find that all terms in the Lagrangian have, when adding
up the dimensions of the fields and derivatives, dim< 4. This fact which might seem
a coincidence out of the way in which we built our action is actually a very important
factor. Field theories which satisfy this condition are ‘closed’ under quantum corrections
and very predictive (in our jargon they are called renormalizable).

Finally this action cannot be complete because we have evidence of new phenomena,
e.g. neutrino have a mass (which imply that individual Lepton number is not conserved),
there is another type of matter out there (dark matter), the universe is in an accelerated
expansion phase (dark energy) and we have not included quantum gravity in our picture.

@ The Standard Model is organized around the strong and electro-weak in-
teractions SU(3). x SU(2)r, x U(1)y and the matter content in table The
full Lagrangian was given in the function of each part (gauge, Yukawa and
scalar potential) briefly described and the chiral nature fo the SM was introduced.
Global symmetries of this Lagrangian lead to conservation laws of Baryon number
and electron, muon and tau lepton number .
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5 Deep inelastic scattering and partons

Quarks and gluons (partons) are not observed as final states in our experiments yet we
said they are the components of mesons and baryons and hence nuclei. What is the
evidence we have of this being the case? Quite some, here let us discuss deep inelastic
scattering as one example which also has historical relevance.

Consider shooting electrons at protons at very high center of mass energy, in particu-
lar higher than the proton mass s > m%; ~GeV2. At this energies the electron can probe
the internal structure of the proton and ‘catch’ an unsuspecting parton which behaves
like a free particle. This parton receives a large momentum transfer and breaks away so
that the outcome, after hadronization, is that the proton has ‘broken’ into various other
hadrons.

e k'

e sk o

v, q%> >1GeV?
u,p,

To see how experimental data can tell us whether this picture is correct, let us start
computing the scattering at the partonic level, for concreteness let’s pick an u quark and
the scattering e + u — e + u. Let’s assume the v quark carries a fraction x of the total
momenta of the proton, then the partonic process is

i = e, (e (1) (—23) 2 1u(zp) (5.1)

with ¢ = k — k' = p’ — 2p and we use " to denote partonic quantities. Recall the formula
for the cross section, which in this case we can simplify a bit since we have relativistic
particles ( we take ¢ > m?)

1 dsgld?)kl

1
dé = =
7 T 220k p| 21K (2m) 32| (27)

S MPEr) o ap+k—p — K) (5.2)

If one works on the phase space for the final parton

dgp/ 27T
9 4 el N E 0 _ =
(G0 ep 0 = P) gy = ORI+l dlgr
S -6 (ac—i— ¢ ) =276 (2p-qx+q2) (5.3)
p-p 2p-q
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where ¢ = k — k/. The lepton phase space one can rewrite changing variables from |k,
cosf in the C.M. to ¢, p- q as

dE”  d(¢®)d(p-q)
(2m)32E,  4(2m)%p-k

(5.4)

where we also integrated over the angle ¢ € [0,27) (k = |k|(soce, 5654, co)) knowing that
the amplitude does not depend on it. For the matrix element, since we do not know the
spin of the the particles involved, we average over incoming and sum over outgoing as:

1 Coe 1 ) 22 2
92 Z Z MM = 1 Z Z te(K', s¢) [yuue (K, se)ﬁguu(p/,s;)’y“uu(:np, Su)
SesSu S/E,SL SesSu S/E,SL q
1 (2e2\? ,
=1 <3qg> Tr(yuaprp ) Tr(v By K)

2¢2 2
_ (3(]2) 8((xp- k)P - K)+ (zp-K)(p k)

2¢2\ 2 9 9
= <3q2> 8 ((acp k) + (zp- k) ) (5.5)
we put it together and find

. 2¢2 > 1 ! :
10~ (52) sy (-0 o ) S

. <2> (0 k) + (p- (k= q)?
T\ 3¢? 4r(p - k)?

5 (2ap-q+q*) d(q®)d(p - q) (5.6)

Now comes the part that we cannot compute; what is the probability of the photon
bumping into a parton with fraction of momentum z? This is a magnitude for whose
estimation perturbation theory does not work, yet that does not deter us, we just give
it a name: parton distribution function f,(z) and sum over it,

e2\2p. A ))2
do =dé f,(a)da = (;2) p4: <1+ (b (Z()"i k)‘j)) >d(p.q)xfu(x)dx (5.7)

2
—o 5 (%) ara-pharenas

where we used the Dirac delta to set x = —¢*/(2p - q), s = (p + k)? ~ 2p - k and found
appropriate to change variable from p-q to y = p-¢q/p- k. Finally we know it’s not only
the u quark in the proton but also the d so we add it up too

doupex = 51+ (1~ )y ((236>qu(1') +(F) fd<x>) w6
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where by eX in the final state we mean summing over all products of the collision, being
inclusive. Although we do not know a priori f, q(«) this is still a predictive result which
we can test against data.

The general cross section without assuming anything about the components of the
proton, only using eletromagnetic gauge invariance reads

45

e

dUeP—)eX = E} (xyzFl(x7 y) + (1 - y)FQ(J?, y)) dl‘dy (59)
With F o arbitrary functions of (z,y). Stare at egs. and for a minute. Even if
we start from arbitrary parton distribution function we cannot obtain arbitrary Fj o, for
one f only depends on z. Expressed in terms of Fj o the conditions that follow from our
quark description read

quark model Fy(x,y) =2xF(x) = Z Q*xfi(x) (5.10)

with @; the charge of the parton in units of e (2/3, —1/3 for u, d). This relation is known
as Callan-Gross equation. The fact that the functions Fj 2 depend only on z is known
as Bjorken scaling and a way to test it is to extract F 2 from experiment and plot them
for fixed x and varying y, if they do not change the Callan-Gross relation holds and the
quark model prediction is right. You can check how well this holds in fig.

05— T T T T T T -1
Q4 n
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l-'w-z
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v
ol 7
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Q 4 5] B

g% iGensc)® _

A
Figure 10: Figure from the paper by Kendall, Friedman, Taylor et al. from the early
70’s displaying Bjorken scaling. Converting to our notation vWs = Fy, w = 1/x and
they vary ¢? instead of y which are related by a change of variables. One can observe

that for = fixed F5 does not change. The authors were awarded the 1990 Nobel prize in
Physics.
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@ The proton is made of partons p which follow a distribution fy,(z) (called
parton distribution function) as a function of the momentum fraction z. Evi-
dence for this description is the experimental corroboration of Bjoken scaling and
the Callan-Gross relation in deep inelastic scattering of electrons off protons.

30




PHYS4181 - Phen 6 PDFS AND HADRONIC VS PARTONIC

6 PDFs and Hadronic vs Partonic

Our study of deep inelastic scattering showed that we can write the cross section for the
process, eP — eX with X meant to be anything that can be produced, as an integral
over the partonic process times a function f(x) of the fraction of momenta x

[ o = [ 3 fi@ydon i (6.1)

These functions f are called parton distribution functions and their extraction from
experiment (we cannot compute them) provides a window into the proton inner structure.
Let us refine our picture of the proton by contrasting with the pdf of the u quark displayed
on fig. [11] which we took from our own hepdata website at Durham.
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Figure 11: Parton distribution function for the up quark and the anti up quark. Taken
from hepdata

We see that the function z f(x) peaks around z = 1/3 but the most salient feature
is that at low z, zf(z) does not vanish. This means that the total probability [ f(z)dz
diverges since f(z) ~ 1/z at © — 0, what have we missed? We only considered the proton
as 3 quarks sitting still and not the interactions that keep them together, the plot in
figure [[1]is a stark reminder of how simplistic this view is. As we now know QCD is the
theory that describes the interactions and, although it this regime we cannot compute
using it, it still provides a description to make sense of the results.

In our starting picture each quark would carry one third of the momenta and so its
pdf would look like a peaked function around z = 1/3. Nevertheless quarks ‘talk’ to
each other exchanging gluons and hence momenta back and forth which means that they
do not have a precisely defined value of momenta and the width of the peaks broaden.
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In addition virtual processes occur like the emission of a gluon and his splitting into a
quark anti-quark pair. It could then be that our photon encounters this quark. This
we typically consider ‘unlikely’ since in perturbation theory this emission requires more
powers of the coupling g2 and is sub-leading. However, in this regime g, > 1! the logic
of perturbation theory does not apply and this is the mechanism that produces the rise
in f(z) for x — 0, we encounter up quarks popping out. These are called sea quarks
as opposed to valence quarks. A consequence of this picture nonetheless is that if the
low z w’s come out of a quark-anti-quark splitting, there should be antiquarks around
too. There are, and they have their pdf f; which we plot in fig Our intuition for the
component quarks then applies to the difference, since the sea quarks and anti-quarks
must have the same pdf

Fuu =Fule) — Jula) [ fulwris = (62)
o, =Fal) — fo(@) [ fata)ds =1 (63)
Another integral result is that the total momenta must be the sum over all parton pdfs

Single Dirac Three static Three interacting +higher orders
proton quarks quarks

—_—

qP(x) 4P (x) qP(x)

1X 1/3 ]X

times the fraction of momenta they carry, if we include strange quarks which are also
present, this means

/ 2 (ful@) + fol@) + fal@) + fal@) + ful@) + fo(@))de = 1 (6.4)

Well, we can do the integral on the RHS and, for example, at ¢ = 10 we find the result
is 1/2. There is something missing which the scattering of electrons off protons does not
see. A neutral parton...

That is right, the gluon, the gluon is the missing parton in our counting. One indeed
has the gluon pdf f,(z) and as we shall see it is the gluons that are responsible for most
of the production of Higgs bosons at LHC.

As you might remember, at LHC we collide protons and protons. How do we obtain
the hadronic or ‘real life’ cross section from the partonic process in this case? Well there
will be two pdfs involved now and a double sum over partons. So the total cross section
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reads.
o(s) = Z/dﬂﬁldmfi(l“l)fj(ZE2)5¢J’($1ZE2S) (6.5)

where ¢,j denote the different partons. We have made explicit the dependence of the
partonic cross section on the external CM energy s. Why do we evaluate the partonic
cross section at sxixa? Let’s work out the kinematics, the partonic CM energy is

Pk,

s=p+k)?=pP"+k+2p - k~2p -k (6.6)

$=(r1p+ xgk)2 = x%pz + :v%k2 + 2x129p - k ~ 1295

since at the LHC energies we can neglect to a very good approximation the mass of
partons p? = mfp ~GeV? vs 2k - p ~(10TeV)2. The center of mass energy then at the
elementary process is a fraction of the total energy. Given that at these energies the
pdfs peak to low x, it also explains why even if the LHC is nominally set at 13TeV very
little of the events carry the full energy.

@ Study of the parton distribution functions (pdfs) revealed a sea of quark anti-
quark pairs and gluons in the proton which completed our list of partons (partons
= quarks, anti-quarks and gluons). Observables for hadron processes are obtained
integrating the partonic magnitudes with the pdfs, as an example at LHC

o(s) = [ o(sx1z2) f(x1)f(z2)dri1drs with the kinematics of egs.
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7  Quantum chromodynamics

Thus far we have seen evidence for the proton made of quarks but also neutral partons
carrying a large share of momenta which we called gluons, as well as anti-quarks. This
gives us an inventory of elementary particles that make up hadrons, yet, how do they
interact is something we have not quite discerned yet.

Red blue and green

For starters how do we know it is SU(3).? Consider an experiment like that at PETRA
accelerator at DESY where positrons and electrons where made to collide. They can an-
nihilate and, at low energies through a virtual photon, create pairs of whatever particles
have electromagnetic charge and are available for production (i.e. v/s > 2m;). This has
the matrix element

—IM = ieveyHu Lgm/(—ie@-)ﬂw”v- (7.1)
(4 p2)? R '
Take the annihilation into a muon, this has a cross section, sitting in the C.M. frame
and approximating all particles to be massless as

( ) |7[+| |7#7|

6+$ — S#+S —

(7.2)

where we have used the fact that in the CM (p.- + p.+)” = (|p_.| + [p__],0,0,0) and
Ip+| = |p,_| = /s/2, we have averaged over initial-state spins and summed over final
states and we have that the muon has charge @, = —1 just like the electron.

We kept the charge explicitly however because we want to repeat the process for a
different particle pair production. If we now change the final state to a quark-antiquark
pair we would go through the same motions, now with @, = 2/3 or Q4 = —1/3 for up
or down but other than that the Feynman vertex is just the same. Then one squares
the modulus of M, averages over initial states and sums over final states. Quarks are
also spin 1/2 particles like muons, so that part of the computation is the same again,
any other difference between the two? Well, good you asked because quarks are strong
interacting particles and according to lecture [4 are fundamentals or ‘complex vectors’
in SU(3).. Then we have we sum over colour too

d3p d3p_

//Z S 3 IMPEm) S (per + P — Py — pq)(%)gﬁp |*2q’p| (7.3)

r,b,g  Sc+S.— Sq5q
Q2 4

127rs

(7.4)

34



PHYS4181 - Phen 7 QUANTUM CHROMODYNAMICS

LA s S s S S S S S B HA B B RS SN S L LA s S B I B
® Orsay

8- v w ® Frascati © CELLO —
T ® Novosibirsk X JADE
. x SLAC-LBL + MARKJ
© DASP ¥ PLUTO
s CLEO A TASSO |
1= i

& DHHM

= | ; }1 |
4—. iﬁl‘mw% §+ i}‘jl* % J\ IQ fﬁj{ f‘f‘jw n

W— 1 ( %T\ ' I e ]
&*'%’ utdtstetb N
2
‘ \uﬂi‘s

S ___ Noeoor |

! N S T S S S P HUP S N EE U R BRI
L 5 1 15 20 25 30 ES 40
Q (GeV)
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Figure 12: Ratio of cross sections R as a function of center of mass energy taken from [2].

One last step before looking at experiment is using quark-hadron duality which we have
been quietly taking for granted and now we acknowledge although we will not derive it.
It implies that, for an inclusive process, we can do computations at the partonic level i.e.
using QCD with quarks and gluons, and we will obtain the same results, to the order in
g2 we are working at, as for the inclusive hadronic process. We have that a quark anti-
quark pair will hadronize (turn into hadrons) after separating a distance ~ fm and it can
do so to any one of a multitude of states (e.g. dd — (7tn~ormTa 7nlor K*K~or...)
the probability to end up in any of these states is non-computable from first principles,
but the sum over all possible channels (i.e. inclusive) will return one. A justification of
this can be sketched for a cross section with insertions of the identity as a sum over all
possible states > |i)(i| yet we will not dig any deeper in these notes.

Then we have that the cross section for eTe™ — hadrons can be estimated as the
sum over quark-antiquark production and so

R = Oete——hadrons -3 Z QzQ + O(Oés) (75)
Octe——putpu— P

Now one can take a tour up in energies and start adding up quarks. In the beginning we

can only access up and down type for low energies and R = 5/3, but then at /s ~ 2my,

we have enough energy budget to buy a strange quark-antiquark pair and R = 2. A

little higher up there is the charm quark m. ~ 1.3 GeV and further up the bottom

myp ~ 4.2 GeV. You can amuse yourself to compute R in these last regimes and compare

with fig.

The gluon

Overlooking the peaks at specific energies which correspond to resonances in fig. the
prediction from SU(3). of 3 colors works but not to a very precise level. Indeed we
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should take this estimation with a grain of salt because corrections to it go with the
strong coupling constant g;. One example is the diagram in figure where there is
the emission of a gluon which appears in the final state and hence an extra factor of g
(remember the Feynman rule for the QCD vertex is —igs7%7,/2). In our inclusive sum
we should add this too and our formula gets corrected as

R= (32@?) (1 + 4952> +0(a?) = (32@?) (1 + O‘?) +0@2)  (76)

so as long as ay < 7w we have an expansion seemingly under control; for example at
Vs = 34GeV we have a; = 0.135 £ 0.05.

Figure 13: Three jet event as evidence for the gluon from the TASSO detector in the
PETRA accelerator, taken from fhere

This same process does not only mean we had to compute some more to get a good
estimate but it also offers another test of QCD. If the quark anti-quark and gluon are
energetic enough and are produced at angles sufficiently large with respect to each other,
we can reconstruct the kinematics of the partonic event. In this case hadronization will
occur after the partons separate a distance of ~fm as it always does, but the hadrons
produced out of each parton will travel roughly in the original direction. This means
we can expect the hadrons to be found around a ‘cone’ with axis in the original parton
direction and smaller radius (or more tightly packed hadrons) the larger the momentum.
This bunch of localized hadrons we call a jet.

A pair production of quark anti-quark at sufficient energy will then produce a pair
of jets, and the process in the LHS of fig. [L3| with the emission of an energetic gluon will
produce three jets. So far we had reviewed evidence for quarks inside the proton, found
that the ratio R pointed at 3 colours but now if we find 3 jet events it will give evidence
for the Gluon and an estimate of the coupling or dynamics, gs.

Three jet events were observed at PETRA as the one on the RHS of fig. [[3] and the
rate of this events provided an estimate for the coupling in QCD in another milestone
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in the corroboration of our model of strong interactions.

Running coupling constants

In these lectures we should not step outside of tree level realm but we should be made
aware that every process receives extra contributions from what is sometimes called
radiative corrections, quantum corrections or in general loop corrections. Here we just
want to review an important consequence of these loop effects, the running of coupling
constants.

A force is produced by the exchange of a mediator so let us look at corrections of the
gluon and photon propagators. Remember that what we call tree level processes have all
internal line momenta fixed by 4-momentum conservation to be linear combinations of in
and out states momenta. At this level the propagator of a gauge boson diagrammatically
is just a wavy line from one point to another. At the one loop level, with the interactions
of QED and QCD, i.e. three point (matter-matter-gauge boson) and in the case of QCD
also (gauge boson)? and (gauge boson)* we can build the diagrams in fig. [14] In these
diagrams the momenta of the propagator is not fixed by 4 momentum conservation,
if they have momenta ¢ 2 and the external momenta is ¢ we have ¢ = ¢ + ¢2, and
q1 + g2 = ¢, which we can solve with ¢y = ¢ — [ and g3 = [ with arbitrary loop momenta
[*. This momenta we integrate over, with the two propagators we have something like;

d*l g°
| e (7.7

This integral we won’t do but we note that for very large [ it goes as dl/l and will
produce a logarithm (divergent actually). To make sense of this contribution we have to
renormalise our theory (i.e. make sure that in the S matrix decomposition S = 1—iM - - -
the 1 stays a 1) but after the dust settles and we get the final result what this divergence
is doing is to remind us that we have to input the parameters of our theory at a certain
scale \/s0. Explicitly we have with a = g?/4m:

B o s
= ——a”l — .
a(s) = afs0) ~ -a*log (= (7.8)
where [ is called the beta function and encodes the particulars of our theory, for QED
and QCD we have

4

2
BQED = ~3 Bocp = 11 — qu (7.9)

where NN, is the number of quarks. The beta function in QED is negative, which back
into eq. means that for higher energy, s+ 4+, the coupling grows larger, a+ +. QCD
on the other hand has the extra contribution, the ‘11°, which comes from the gluon
diagrams and given that N, = 6 (u,c,t,d, s,b) we have Sgcp > 0. Therefore the non-
abelian character of QCD makes it get weaker with higher energy. This is what we call

"There is one missing diagram for QCD, can you draw it? [Hint there’s a 4 gluon vertex in QCD]
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Figure 14: One loop corrections to gauge boson propagators

asymptotic freedom and the reason we can trust partonic computations with quarks and
gluons for high enough energy in QCD. You can see a plot of how the QCD coupling
changes in fig.

Sept. 2013

o ( ) 79?, v T decays (N3LO)
(Q % ® Lattice QCD (NNLO)
& DIS jets (NLO)
03 0 Heavy Quarkonia (NLO)

o e'e jets & shapes (res. NNLO)
® Z pole fit (N*LO)
v Pp —> jets (NLO)

= QCD ag(M,) = 0.1185 £ 0.0006
10 Q[GeV] 100 1000

Figure 15: Running or variation of the strong coupling with energy (Q ~ +/s)

@ Quarks come in three colours as the experimental measurement of the ratio R
in eq. shows and the existence of gluons and value of g is evidenced in three
jet events. The coupling, due to quantum corrections, changes with the energy at
which it is measured and this is controlled by the beta function § in eq. [7.§ In
QCD (Bgep > 0) the coupling decreases as we increase the energy which leads to
confinement at low energies and asymptotic freedom at high energies.
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8 Electroweak interactions

The most prominent feature of the electroweak interactions is that the gauge symmetry
is hidden at low energies. Not all of it however, out of the ‘breaking’ a part of if comes
out intact, and that is electromagnetism. This lecture will work out how this comes
about and the consequences of the breaking.

As we understand it nowadays, the
vacuum expectation value (vev) of the
scalar in our matter content H is non-
zero. In particular

(0|H\O>E<H}E< 0 ) (8.1)
V2

with v = 246GeV. This is actually not
hard to explain with the potential we
wrote

V(H) =—-m%H H+XNHH)*> (8.2)

so the configuration that minimizes the energy is that for which dV (H)/dH =0

2 2
V/(H) = —m% H' + 2\(H H)H (HUH) = % - % (8.3)

where we note that we are assuming m%l > 0 otherwise the minimum will sit at v =0
and there would be no electroweak symmetry breaking (and the world would have looked
very different for example hydrogen does not form for massless electrons).

With this much input one can now look at the consequences by simply going around
the Lagrangian for the Standard Model and substituting the Higgs doublet for its vacuum

value, (H) in eq.
Masses for gauge bosons

We look at the gauge sector first. Gauge bosons will get a mass which will come out of
simply substituting the vev in DLH DHH. First let us do

D, (H) =i EBut+ Wi (W =W 0 :“)( §(WE — Wi )
g YW +iW2) §B, - 4w 2\ 4B, gw
then the kinetic term for the vev of the Higgs is just the modulus of this 2-vector as:

Dy Dy = L (S — w2 iw ) + (L, - wdpe - Lw
a 2 \ 4 # # PR ) 2

(8.4)
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It is customary to define complex W bosons as
1
+ 1 T2 - _
W, —\/é(WM—zWM) w, =7

Whereas we note that only the combination of bosons gW? — ¢’ B appears in eq. SO
let’s give it a name:

Gys _9'p VI +3" 9 ys__9 g
27 27" 2 /242 " JiZ+g? "

/2 /2 /42 12
_974_9 (cos Hij’ — sin HMBH) = 97%—92

= 9 2 "

(W, +iW}7) (8.5)

(8.6)

where we have defined both Z and the weak angle ,,, tan 6, = ¢’/g. All these definitions

backﬁ into eq.

DAV DAY = & (L g 8.7
u(H) <>2<2u +460829wu) (8.7)

comparing with mass terms for vector bosons in the Lagrangian
1
L, = MWW + QMEZMZ“ (8.8)

one can extract the expression for the masses

_9v

My =2 = 80GeV My gv

~ 2cos O

= 91GeV (8.9)

How about the other gauge boson out of the 4 in SU(2)r, x U(1)y? With our definition
of Z comes the orthogonal combination

: 3
Z, _ Cf)S 0, —sinb, Wu (8.10)
A, sinf,, cosb, B,
which we can invert and use to substitute everywhere we find a W3, B for Z, A. In
particular they show up in covariant derivatives so we can write with generality

K
V2

D, =0, + EUJFT/VM+ +

V2

oW, + i%d:a(cewz + 80, Au) + 19’ Qy (=0, Z,, + co, Ay)

g g . . (g (9
=0, + =0 "W 4+ =0~ W ( —d ) Z <7 ! )A
b+ \/§J .+ \/§J .t 20'3691“ gQyse, | Z,+1 259wo’3 +9'Qvcey, ) Ay
_ g ot W9 g (03 2 2 ) : (03 )
=0, + —=0" W —— o~ W (= — A = A
n VoA - VoA * o, \ 2 €, — Qvsh, ) Zu+ 1950, 2 * @v) A

(8.11)

8Can you derive this yourself? You’ll need 6,,’s definition.
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where ¢g,, (sg,,) is short for cos,(sinf,) and we have used the definition of the weak
angleﬂ and o are ladder operators 207 = o' +i0?, 0~ = (o+)!. With this expression for
covariant derivative in terms of mass states W*, Z, A we can recast the field strengths
and their squares in the Lagrangian W, WH*" and B, B*”. One can use the relation

{ .
5 Wi +i9'Qy By = (D, D, (8.12)

to find W, and B,,, in terms of W, Z, A using eq. The fact that we define our
mass states with an orthogonal definition (eq. [8.10) means they will stay cannonically
normalized, but in addition the non-abelian character of SU(2)r, will bring vector boson
self interactions like those in fig. [I6] In these lectures we won’t derive their form but
note that the photon couples to the W* linearly as it should cause the W is charged.

W+

W
Figure 16: Electroweak bosons self-interactions

We turn next to the coupling of electro-weak bosons to fermions. The electromag-
netic coupling is defined as and the combination o3/2 + Qy in the last
line of eq. should give us the charge for each field, let’s see

03
Yr ng:?—f_Q% VYR Qfm:Q}Ii
o
Qo = (5 +QF) PL+Qf Pr (8.13)
where we have used chi-
ral projectors to condensate qr, = (up,dp) fp = (vp,er) ug dp eRr
notation. Qy : 1/6 —1/2 2/3 —-1/3 -1

You can amuse yourself ["Q T 53/2 + Qy 03/24+Qy Qv Qy Qy
to fill up table [I7] and find = () ()

that this actually gives the
charges we know of, e.g Figure 17: Electric charge in terms of SU(2) x U(1)

charges. The last line is for you to fill up.
o3 1> )
L

2 2

B ( ((—%—%I)j; )

9Can you derive line 3 from 2 in . You’ll need 6,,’s definition.

41



PHYS4181 - Phen 8 ELECTROWEAK INTERACTIONS

In particular electromagnetism is not chiral, which means QL R and no 5 in

the coupling of the photon to fermions. For the W and Z bosons however the chiral
nature of the Standard Model will leave an imprint. This is clearest in the interactions
of the W boson which only couples to left-handed fields. To interpret what these types
of couplings imply we turn to chirality next.

Chirality

Chirality and handedness is not a good quantum number for Dirac fermions, that is,
they are not in a specific chirality state Pru(p, s) # fu(p, s) but rather a superposition.
The reason for this is that a Dirac mass term mixes left and right fields. This we can
see explicitly in the SM after substitution of (H) in the Yukawa couplings

Ly =— qLYu(H)ug — @ Ya(H)dg — (Y. (H)er + h.c. (8.14)

:—ﬂLYuLuR—CZLYdeR—Y;éL%ER—Fh.C. (8.15)

V2 V2
and so we have that the Higgs also gives masses to the fermions with m = Yv/v/2. The
exception are neutrinos which are massless in the SM (but not in nature).

One has nonetheless that in situations in which the mass of the fermion can be
neglected, chirality does have a simple physical interpretation, it’s helicity:

: . . S-p -
m — 0 right handed fermion < helicity = ﬁ =+1/2 (;*) P
p
S S
. . . . 2P f—
m — 0 left handed fermion < helicity = ﬁ =-1/2 —P
p

with helicity h being spin projection on the three-momenta direction. In this
way the W couples to helicity —1/2 neutrinos and as for helicity +1/2 neutrinos we do
not even know if they exist because is a different field vg!

Let’s use neutrinos to exemplify how chiral interactions couple differently to spin and
violate parity in the process.

h=—-1/2 S =1/2z2 S =1/2z h=1/2
— — — —
A 5 v + + v
=+Z L . ?
€ €’ Not in Nature!
N
Parity

Figure 18: Polarized W decay into two configurations, one of which does not occur.

Assume we can prepare a W boson with spin A = +1 in the z direction and assume
it decays into positron and a neutrino traveling in the original W spin direction, Z and
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in a given helicity state. Momentum conservation fixes the spins of the two fermions
to be aligned in the Z direction which, depending on which way the neutrino is going,
means different helicity.

Let’s first take the neutrino going backwards,
then it has helicity —1/2 and we have a LH neu-
trino. The neutrino going the other way we can
obtain with a parity transformation, parity flips
sign in z and hence p = ymdz/dt but spin has
two components S = z A p and doesn’t flip. In
resume (parity)(z, p)=(—z, —p) whereas for spin
(parity)S = S and helicity (parity)S - p/|p|[=-S -
p/|p|. This is easier to sketch than to say, and so
does fig. [T8} The parity transformation brings us
then to a helicity +1/2 neutrino and such a parti-
cle (if it exists) does not couple to the W boson.
So we have that weak interactions distinguish he-
licities and violate parity; positrons are only shot forwards!.

Although this was an idealized scenario, it translates to more realistic ones mediated
by the weak interaction. As a relevant example Chien-Shiung Wu showed experimentally
that in the decay of polarized $2Co to $INi and an electron and anti-neutrino, the
electrons were only going one way. This discovery lead to Tsung-Dao Lee and Chen-Ning
Yang winning the 1957 Nobel prize in physics while she was awarded the first Wolf prize
in 1978.

Figure 19: Chien Shiung-Wu, de-
signer of the Wu experiment.

Z,W couplings to fermions

One has then that the charged W= boson retain the left handed character of the SU(2),
group, while for the Z boson we rewrite the covariant derivative, using the Py, r projec-
tors, as

D=0, + Zur (k- Qb ) Pu— Qfish, el
g (0 J P+ ieQemA
7 Wﬁ 0 L + ZeQem 1 (816)
o i 0 wr .
_a + 7gZ [(?3 - em5§w> Qemse PR] } < W* OM ) Pr, +ieQemA
‘ 0 wr :
—8 + EZ [%PL - Qemsgw} + % < W Ou > PL + Zec.?ernAA
o

where we have used the relations for Qé{lR in eq. [8.13| to substitute hypercharges and
Pr, + Pr = 1. We see then that the Z boson retains part of the left-handedness but also
has a vector coupling proportional to the electromagnetic charge of the given fermion.
Before moving on let us put this covariant derivative in the action for quarks to write
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explicitly:
iqry" Dyuqr, + itgy" Dyur + idpy" Dydp

—iuy" (au + TaGZ> u+ idy" <au + 2 TaGg> d— L aytPraw;} - %JWPLUW;

2 2 V2 V2
_ 9 g lp_g2 7 _ 9 g _}p 1 dz
con <2 O N R R R R
9 _
- gaquﬂ + gdfy“dAM (8.17)

So finally we have written interactions in terms of mass eigenstates W+, Z, A, which are
the ones we see in experiment, starting from the original SU(2)r x U(1)y gauge bosons
W1, B,. The pattern of breaking can then be summarized as SU(2);, x U(1)y — U(1)em
and leaves behind massive W=, Z bosons which we cannot produce at low energies where
we only ‘see’ the familiar photon A, with the charges that derive from a combination of
hypercharge and weak isospin.

7~

@ Expanding the Higgs doublet around its vev the symmetry breaking SU(2), x
U(1)y — U(1)em is realized and one obtains the usual couplings of the photon but
also the heavy vector bosons. The relation between W3, B and Z, A is a rotation
given by the weak angle 6,, and the W Z retain chiral couplings different for left
and right handed fermions. Chirality coincides with helicity when the mass of
fermions can be neglected.
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9 Elecroweak Bosons properties

Discovery of the W, Z bosons, theorised in the 60s, had to wait till the 80’s and the
Super Proton Synchrotron (SPS) at CERN. The SPS is a synchrotron accelerator with
6.9km of circumference and capacity to accelerate protons & anti-protons electrons &
positrons. For the discovery of the electroweak bosons it operated as a proton-antiproton
collider for the UA1 and UA2 detectors. In order to study the W, Z properties to an
accuracy of permile level, the SPS was used as an injector for a bigger collider, the Large
Electron-Positron collider (LEP). Electron and positrons accelerated at the SPS were

AN

later transferred to LEP in a 27 km circular tunnel (which nowadays hosts the LHC) and
were accelerated to initially ~ 45GeV (s = 90GeV) and in a second stage to 100GeV
(s ~ 200GeV).

From the covariant derivative we derived in eq. we see that the Z couples to
the electron field with an interaction that could mediate electron-positron annihilation
into a Z boson. Consider for example a process like ete™ — Z — p*u™ which has an
invariant matrix element

ZZ

. 'p pl/
: P —ig +i%5 P
YV I N T A 7 .
iIM = . Vey ( 5 + Sew) Ue - M% e ( C@w) U=y ( 5 + 59, Uyt

(9.1)

with s = (p+ + p.—)?. As mentioned above LEP initially ran at s ~ 90 where the prop-
agator in the formula above seemingly blows up! Indeed when the particle is produced
on resonance (s = M?) one has to reconsider the process at hand. In this regime the
particle is no longer virtual but the centre of mass energy is just right to produce it. If
the particle were stable, this ‘blowing up’ or discontinuity of the amplitude would be
telling us that eTe™ — Z is itself a possible process on its own and Z can be a final
state. If instead the particle is unstable, and in particular with a a short lifetime so that
it decays within our experiment one has to modify the particle propagator, which is to
say how the particle evolves with time.

The easiest way to do this from the formula above is to substitute the mass in the
denominator as My — My — i’z /2 with 'z the total decay width of the Z boson (the
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decay width is the inverse of the lifetime 7, = 1/T'z). This extra imaginary part in the
action for the particle gives a time evolution for the wave-function, in the rest frame,
as e {M=L'z/2)7 and hence the probability (—wavefunction—2) decays exponentially as
eI, The resulting propagator and cross section will scale as

1 1

- (9.2)

do
\S—M%—HTZMZ—IQZ/ZLP (s—M%—FQZ/AL)?—i—FZZM%

This is called a Breit-Wigner distribution and looks like a peak at s ~ M% sharper
the smaller ' /M. In the jargon of particle physics we call I'z /My small a narrow
resonance and I'y /My large a broad resonance.

10 E \\\\\‘ 1 | T T T 1 UL

—_
o
T IHIHIl T 11T

\

%

(V]
T IHHH‘ T HHHW

—_
o
T H\Hw T HHlHI

10 L] L L] ! L]
2
1 10 10

Figure 20: Cross section for ete™ annihilation where the different resonances are dis-
cernible.

In the case of a well defined peak (I'/M < 1) the narrow width approximation applies
and we can compute the cross section as the exchange of an on-shell Z which implies
production and decay are factorized™| which reads for the cross section

127sT(Z = ete \I(Z — p—u™)
M G- MDY

ON.W.A. = (9.3)

This allows for the computation to be broken down into smaller pieces and for our
experiment to look for all different decays and reconstruct the couplings of the Z boson.
Let us focus on one in particular for a sample computation, ete™ — Z — v and
the decay Z — vv. The interaction term we can derive from the original Standard
Model Lagrangian by focusing on the neutrino field in the lepton doublet ¢;, and it reads

10T his is true when one computes total cross sections integrating over angles and averaging over spins,
if one considers differential rates some entanglement of initial and final states remains.
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Lint =1 (ZL’}/MD!LKL) (9.4)
e
=i Y o <(03)11PL — sstgm) v+... (Z < —
cosg,, 2
Z
=— g—”ﬁfy“PLl/ +... (9.5)
2c¢g,,

so for neutrinos we have that the Z boson

preserves the chiral character of SU(2), and  Figure 21: Z — vv in the Z rest frame
couples only to LH fields. This is also one

of the reasons why we have no evidence of

RH neutrinos since as we will see the W cou-

ples as well to LH fields and neutrinos have

no other known interactions. The invariant

matrix element is

. N )
7ZMZ‘)I7V = 8#(BZ’ )\)Uu(gya Su)ﬁVMPLUV(BDa 517) (96)

If we are computing the rate we average over initial states which could be any of the
three polarizations A = £1,0 and we sum over all possible final states, that is:

1 . _1g .
32 2 MM =515 3 Y e Puod PLONT e (07)
A SuSp Ow X susp
1 g o w o p
:§Q z/\: Z eue,uy" vy Pru (9.8)
w SySp

1 g <p’2ppz

_§4C§w M% _ n“p> Tr (’yMPLpl_/’prpr) (99)

we now use the fact that we can bring one Py, towards the other and P? = Py, and thenlﬂ
the relation

Tr(YuYa VY8 Pr) = 2 (nﬂanpﬁ P — el 4 z‘e“apﬁ) (9.10)
to find
1 g% (o
s (i ) v Curin o, (9.1)
9> (v
== |~ ((pﬂ)u(pu)p + (P9)p(Po) — 17D - o + i€PP (pp)a(pu)ﬁ)
600w M7
2
9> (.pz- DDz Do
= 2 " Do 9.12
5, ( T pu> (9.12)

ll’YuPL?l;'YpPLlljl, = 'YHPEPR'Y/)PL?V = 'Yu}%'YpPgliju = Wu?l—,'YpPLl’)l, = 'YMPLPL—,'YPR,PR
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where given that ¢**P? is fully antisymmetric the contraction with the averaged ec*
cancels.

Now let us work on the phase space and the invariant contraction of momenta, for
simplicity we sit on the CM frame

3

d?’gyd:"gp d°p

B o py — py — o) = ——2_§(My — pu] — Ipy

sin OdOd¢ sin 8dfd¢

_SmIbAD s v, — 2 e 1
4(271')2 5( Z |By‘)d‘ﬂy‘ 8(27’()2 (9 3)

this also means that the functions of momenta p; in the invariant matrix element squared
read:

M?2 M2
Py Do = \QVHQD!—BV'BDZQ\QVP:TZ pv-pz=Mzlp | = TZ (9.14)
where we have used 4 momentum conservation and in particular the fact that neutrinos
share the Z mass, [p | = Mz/2. Finally, all together:

r 1 / dgpydgpp (2 )45( )1 Z Z MM* (9 15)
vp = — — s — Fv — Pr)S .
2o =ony | 2y, J2lp,|mp ) O T g 2L 2.

1 1 ¢ 5  ¢*My

2My8n6c} 7 96w (9-16)
One last thing we forgot is, how many
neutrinos are there? Say N,, then Mz(GeV) I'z(GeV)
92N, My 91.1876 4+ 0.0021 2.4952 + 0.0023
Lzosim = W (9.17) decay products /Ty

Y ete” (3.3632 + 0.0042)%
One can then compare with experiment to urp (3.3662 £ 0.0066) %
test the theory. As it turns out we did not Trr— (3.3696 + 0.0083)%
pick an observable easy to extract from ex- invisible (20.000 % 0.055)%
periment; neutrinos escape the detector un- hadrons (69.911 £ 0.0056) %

seen. There is a way to get around this how-
ever; from a cross section plot like in fig.
one can extract the total width I'z. Then
from the visible Z decays we can reconstruct partial widths to charged leptons, hadrons;
the difference between the total and the sum of all this visible channels must be neutri-
nos, or as commonly refereed to, invisible. One can then contrast this difference with
eq. and, provided we know My, 0,, and g, determine N,. What one finds is

Figure 22: Z boson properties

N, = 2.9840 = 0.0082 (9.18)

which is a pretty good ‘determination’ of the number 3.
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You can see a summary of the Z boson My, (GeV) Ty (GeV)
'propert‘ies as extrac't from LEP in ﬁg @ and 80.379 4 0.012 2.085 4 0.042
in particular th? dlffgrent branching ratios decay products T, /T
I';/Tz or how likely is the Z boson to de- = (1071 £ 0.16)%
cay to the given final state. For complete- +y, (10'63 N 0'15)(;
ness the properties of the charged W boson ,u+y (11‘38 i 0‘21)(70
are given in table The W boson can- haTdrons ( 67' g O' 27)(70

. . 0

not be produced like the Z boson, that is
‘in the s channel’ of eTe™ collisions but one
can produce WTW ™ pairs via for example
ete™ — v — WTW™ or also via the Z boson itself ete™ — Z — WTW ™. The condi-
tion for this to occur is having a center of mass energy high enough, i.e. s > 2Myy as we
had in the second run of LEP. Not listed here but of relevance are angular-dependence
studies of Z, W decays which offer light on the chiral structure of the couplings (you will
get to see it in the workshops).

Finally one other prediction of the SM is the ratio of masses for W,Z. If one inde-
pendently determines 6,, from for example g and the electromagnetic coupling constant
e = gsin(f,,) with the values of W, Z masses we can construct a ratio which is predicted
to be 1 in the Standard Model. This ratio is found to be experimentally,

Figure 23: W boson properties

2

M
S =1.0010 =+ 0.0050
5. M7

(9.19)

In another confirmation of the Standard Model of particle physics.

@ The couplings for the massive electroweak bosons, dictated by g and 6,
determine their properties, among them their possible decays (we computed one
of them, eq. , which we can probe in colliders. The description of a
heavy and unstable particle follows the Breit-Wigner distribution which gives the
characteristic peak of resonances.

49



PHYS4181 - Phen 10 THE HIGGS BOSON

10 The Higgs boson

The Higgs boson corresponds to the radial component of the potential in[8] As opposed
to the angular component along which one can move at no cost in energy, the radial
direction has curvature. This means that when we expand around the vacuum v + h the
potential has

H = ( L > V(H)=-—m%(H'H) + \(HTH)? (10.1)
V2
5 (v+h)? /\(v+h)4
A 4

where given that v? = m%[ /), the term linear in h cancels. The next term, h?, associated
with the curvature at the minimum, will produce a mass for the Higgs. We now know
this mass to be my, = 125GeV|E

To find how this boson couples to matter we can do the same as we did to observe
electroweak-symmetry breaking in |8 in play and substitute H as in equation [10.1] in
our Lagrangian. Instead of doing this all over again, a shortcut is simply to take the
formulas we obtained and substitute v — v + h. This means that the Higgs will couple
proportionally to elementary particle masses, with propotionality constant v~!. Let us
then write the linear couplings of the Higgs at tree level

h h h -
Lrxx = ME2=W, WH™ + M2—2,7" — - 10.2
XX w2 W + Mz o on 21/,: my Y (10.2)
- g Y o 7
= gMyhW W+ ——MzhZ, 7" — “—=h 10.3
gMyhW, + 5ep MzhZ %jﬂww (10.3)
where we omit higher powers of h, i.e. h%, h3,... One can translate the above Lagrangian
into Feynman rules for the vertexes as
Z 1% G
----- igMz/co, ----- ig My ----= —imy /v
Z w (G

Rather than me telling you once more let’s try to figure out how the discovery of this
particle came about in terms of Feynman diagrams. As you might know, LHC collides
protons against protons, which in terms of the initial elementary particle states means
we have quarks, antiquarks and gluons at our disposal. So the problem we lay out first
is how to produce a Higgs particle from these states, something like we have in fig.
There might be different ways to produce a Higgs and it might come with extra particles,

!2Note that this is not mpg; the curvature at the local maximum (m?%) and minimum (m3}) are
different. Can you figure out the connection mg,mp?
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but among all these possibilities we are interested in those which are the most likely. For
this we should focus on what does the Higgs couple more strongly to. The process need
not even be a tree-level process, one loop level processes have an extra (coupling?/1672)
suppression, for your estimates. One final consideration is how much of each inital state
is there in the proton, an information contained in the parton distribution functions. I
don’t expect you know these quantitatively so take a guess from their shape.

N

N Lﬂ{{& - )
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S
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Figure 24: How do we produce a Higgs boson at LHC?

Okay so give yourself some time and draw diagrams which you think can do the
job, not writing the matrix element. Put in just for an estimate though the couplings

involved, yy ~ my /v, g,e,9s. When you think you're ready turn the page to find the
answer.
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Higgs production

Although there are quarks and antiquarks in the proton, they are predominantly the
first few generations and they couple very weakly to the Higgs due to their light masses,
e.g. Yu,Yq ~ 107°. What happens more often is that a quark anti-quark annihilate
into a W, Z vector boson, to which they couple with strength g and then this elec-
troweak boson emits a Higgs, this is called Higgstralung or vector boson associa-
tive production and is diagram (c). One can have instead, using the same vertexes,
two vector bosons emitted from quarks or antiquarks, which increases the number of
contributing initial states, annihilating into a Higgs. This process has one more cou-
pling g w.r.t. to the previous but this is made up for in density of initial states so
that this is a more probable production mechanism. This is shown below, and is
called vector boson fusion. Another initial state available in abundance are gluons

Vector boson

(a) gluon fusion

fusion

N\
N
N
S

which however are massless and do not couple directly to the Higgs. They do couple
to the top, and this is the particle that couples the strongest to the Higgs with y; ~ 1.
One can then have two gluons producing a
) top anti-top pair out of which a Higgs is emit-
o(pp — H + X) [pb] ] ted. This comes at a higher energy cost since
VE=14Tev | we have to produce not only the Higgs which
”[:Iibll%/ghcl;;)\, ‘costs” my, but also the top pair which re-
' quires an extra 2m; ~ 350GeV. This is called
associative t¢ production and is diagram
(d). Finally we can avoid having tops in the
final state if we have them annihilate back af-
ter they emit the Higgs. This implies a closed
fermionic line and it is a loop process, com-
pared to the previous gives an extra factor
1/1672. This nonetheless is made up for in
phase space and pdfs and this process (a) is

100 My [GeV] 10 called gluon fusion. The cross sections for
each of this processes can be seen in fig. 25
Next it’s Higgs decay. Try & sketch dia-
grams for its decay before turning the page.

Hag
WH -,

ZH . ™
| HH N

0.1

Figure 25: Cross section in (pb) vs my,
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Higgs decay

The diagrams for Higgs production do actually give a good idea of how could it decay

by just turning back time.

The main difference is however that
for the Higgs to decay to a given state
there must be enough phase space or in
simpler terms enough energy. This pre-
cludes decays to the particles that cou-
ple the strongest to the Higgs, that is
h — tt, W W~ , ZZ which require respec-
tively some 350, 160 & 180 GeV. Next in
line therefore are b quarks, whose coupling
is considerably small y, = 4.2/174 ~ 1/40

g Y

but given the Higgs mass of 125 is the main decay mode (a). It is followed by the decay
into a W and a pair of fermions via a virtual W, like we said we cannot have the decay

to two W’s but given the
strength of the coupling to

(a) (¢) weak bosons this second or-
der in g decay is the sec-

___________________ ond source in relevance .
Note that in fig. 26]the WV

\ mode means actually W ff

for mp < 160. Next is
the inverse of Gluon fusion,

which is h — GG and is a loop process with virtual tops which would be observed as

two jets in the detector (c).

This is followed by h — Zff and h —
77, h — cc. Finally, although much less
likely, the Higgs can decay to two photons
(h — vv) (d) via the loop diagram similar
to gluon fusion but now with tops and W
in the loop (the eletromagnetically charged
particles that couple the strongest to h) or
Higgs to photon Z (h — vZ). These decays
leave a clear signal in the detector and were
an essential part of the Higgs discovery.

The respective branching ratios are
shown in figure Note that given the
Higgs mass we have predictions for all of
them so we can test once more the SM
against data. At present the couplings
agree with the SM but the experimental
precision is at the 10% level.
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Figure 26: Higgs branching ratios
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@ One can find the couplings of the Higgs boson tracing the origin of masses
for elementary particles in the vev v. It therefore couples the strongest to the
heaviest particles. The process to produce it at LHC is however not so straight
forward, with the main production mechanism being a loop process, Gluon fusion,
followed by vector boson fusion. Its decays on the other hand are mostly to bb
and W ff. Decays and production are summarized in tabs
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Figure 27: Elementary fermion mass spectrum

11 Flavour

In this lecture we will outline the flavour structure and phenomenology of the Standard
Model. For a while now we have been setting the flavour structure aside, either focusing
on the first family or ‘hiding’ flavour indices which are summed over, e.g. when we say
the down-type quarks couple to the photon as A“de/ 3 we mean all of them couple
the same Audiyudi/3 with a sum on i = 1,2,3 and (d',d?,d*) = (d, s,b). Indeed, as far
as the photon is concerned, all down-type are the same. The one property that allows
us to distinguish between them is their mass, and as we have seen mass comes from the
coupling to the the Higgs, the Yukawas:

Ly = — @y (Ya)ij(H)ul, — a3, (Ya)ij (H)dp — Cp(Yo)is(H)el + he. (1L1)
v v v
=— —urY,up — —=dpYqdr — —=eérY.er + h.c. 11.2
where in the second line we restored matrix notation and the mass matrices are my, =
vYy/ V2. In this language, the Yukawa couplings are a complex 3 x 3 matrix for each

up, down and lepton type. One has that any complex matrix can be diagonalized by a
unitary rotation from the left and one from the right. That means

Y, = Uty (Up)! Yy = Ulya(UR)! Y, =Ufy.(UR)!  (11.3)
v v v

—yu = diag(my, me, m

with U}j g unitary U fU = 1. The masses are displayed in fig. as you can see, the
spread in masses over many orders of magnitude means the entries of these diagonal
matrices have a strong relative hierarchy.

yvaq = diag(mg, ms, my) Ve = diag(me, my, m;)

Just like we did for electro-weak gauge bosons we now rotate to the mass basis
up, = Uk, dp = Udd, er, =Use], (11.4)

and equivalently for the RH fields so that the mass terms originated from Yukawa inter-
actions are diagonalized

apYyug = ar Uy, (Ur)Tur = a7 (US) ULy (Up) Uiy = @) yauly (11.5)
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What is important to realize now is which parts of our action ‘care’ about this rotation.
As we said the only couplings that had flavour structure are the Yukawas (mass terms)
which we diagonalize with the rotation above. Because the Higgs couples proportional
to mass, this also means that the Higgs couplings will be diagonalized. The remaining
couplings of fermions are then to gauge bosons.

In matrix notation, the couplings to e.g. the photon are proportional to the identity in
flavour space d'v,d’ which means that a unitary rotation of d = Ud’ (and so d = d'U )
leaves the couplings the same d'UTU~,d" = d'y,d'. The rotations however are chiral,
different for LH and RH, does this argument still hold then?

Let’s take a general current and prove that it only couples LH to LH and RH to RH:

(v + ays)y

()" (v + avs) (Pr + Pr)v (11.6)
(WT’YOW(V +av5)Prvr + ()17, (v + avs) Prajy,

()Y PLyu(v + avs)vor + ()Y Pryu(v + avs)ir

(¢)TPR'Y Yu(V + av5)Yr + (Y )TPL’Y Yu(V + ays)Yr

=(Pr)) "0y (v + avs) ¥R + (PLib) 7y, (v + ays )L

=YrVu(V + ay5)r + YLy (v + avs)yr

where in the second line we used PE = P;. All of the gauge boson couplings are of the
form above, so it looks like the unitary rotations might cancel out. Just to make sure
we look at the Z couplings and do it carefully

Z P 2 1
_9%u fL’yM—Lu — fusg u— d’yu—d + 50 dy,d (11.7)
o, 2 3
9Z, 1 2 - 1 1 - -
i =7, (TLL’Y“2UL — gsgw (@ryuur + RV UR) — dL’Yu§dL + gsgw (dryudr + dR’Y;ﬂR))

Z 1 2
= = T U UG — 35h, (WL UE) U+ e (UR) (UE)

w

1
ﬂummwwﬁ+ga@am%M;+wwmm%%ﬂ

zZ P 2 Pr,
= gc—“ <ﬂ Y 2Lu - gu 33 u —dy —d’ 739 d’*yud'> (11.8)
0

w

Indeed the unitary rotations disappear. So would happen for the photon couplings, but
we have that the case of the W, which couples to different-charge fermions, is different,

gWIji i gW;: gW i gWwit

apydy, — vpyter = — L (UM AU, By (UY) ~FUS e,

\/5 Ly ar \/5 LY €L ﬂ L( L) yvrar — \/5 ( L) Lér
Wi ;9

=— U Vi dy — v (U tef 11.9
/2 LY VCKMGp, \/5 LY ( PMNS) L ( )

Where we have defined the Cabibbo-Kobayashi-Maskawa and Pontecorvo-Maki-Nakagawa-
Sakata unitary mixing matrices. For leptons we have not defined a mass term in the
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neutrino sector but we assume they have a masﬁ and get rotated to the masss basis
also. If we were to stick strictly to the Standard Model, neutrinos would be massless
and we can choose Uy = Uy to eliminate the mixing and restore e, u, 7 lepton number
conservation.

These couplings to the W, if the mixing matrices have off-diagonal components, are
the only place to ‘jump’ from one generation to another. Indeed the ‘charged currents’
or couplings to the W are the source of decay of heavier generations to lighter ones. The
shape of this mixing matrices we have determined experimentally although not in full
yet for leptons.

The mixing matrix for quarks is close to the identity, and we can parametrize it with
4 variables and an expansion around 1 as

1-X2/2 A AN(p—in) N0
VoM = e 1— )2 AN? + O\Y ) ~oqe (1110)
3(1 — p— 3 A2 ~ 0.
AXN(1 —p—in) —AN 1 0~ 0.36

whereas on the other hand the mixing matrix for leptons has larger angles and it is not
close to the identity. In this case it conventional to use Euler angles as

C612C013 56012C013 89136715
UpnmNs = | —5015C0,5 — 091259235913¢i(S CO12CO23 — 5912892359136i§ $023C013
56012C023 — 09120923891362 —C012C023 — 3912092389136Z C823C013
Sp, ~ 030 sp.~044  s5. ~0.020 (11.11)
The presence of complex
coefficients in these ma- CKM PMNS
trices signals CP viola-
tion, which has been ob- d s b Vi V2 V3
served in quarks (n # 0)
but not yet in leptons u o ' Ve . "
(6 =7). In addition if
neutrinos are Majorana c W . v D .
particles two extra Majo- .

rana phases appear, but
this also is not known t : . V, D .
yet. The relative size of

entries in these matrices i 98 Visualizati fth lati itude of mixi
is depicted in ﬁg. To- igure 28: Visualization of the relative magnitude of mixing

gether with fig this elements for quarks and leptons

gives the flavour struc-
ture for the elementary particles, as to why it is what it is, it is an open question.

7‘13~The neutrinos could be Dirac-like and have a mass & (v, H z/é or Majorana and have instead
(L1 H)C;5(¢5 H); in both cases we would have to rotate the neutrinos vy, by Uyf.
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The fact that the only source of flavour or possible generational jump appears in
couplings to the W boson is referred to as no flavour changing neutral currents (FCNC)
at tree level. This has consequences for phenomenology since it means that certain
decays are not allowed at tree level. For example DT (cd) — 7%(dd)u* v, occurs at tree
level mediated by a charged current (¢ — W*d — (utv,)d).

On the other hand D" — 7" u*u~ cannot ocur at tree level and the same goes for
e.g. KO — v or yu — ey. These processes occur at the one loop level as shown in fig.
and are mediated by the W couplings and the mixing elements. This means that the
invariant matrix elements for each process will scale with the mixing and masses of the
internal particles as respectively

2 T T
MFCNC 0 2Vdjm Vis Vu]md V gQUejm?,jUju (11.12)
Mo (4m)2 M3, (471')2M5V (4m)2 M3,

were I do not want you to take in the specifics but just the sense that, because of the
loop suppression 1/1672 and small mixing elements (for quarks) and or small mass ratio
(quarks and leptons) these effects are much more rare. Let me be clear, except for lepton
flavour violation, they occur in the SM as opposed to e.g. baryon number violation, only
not too frequently. Which also means these processes are good places to look for other
physics beyond the Standard Model.

C wt
7 2 © w-— v
N
d———— e

Figure 29: Flavour changing neutral current processes

@ Every fermion with different SU(3). x SU(2); x U(1)y charge appears in
three copies, called generations of families. Their masses spread across 6 orders
of magnitude for charged leptons or 12 if we include neutrinos and mixing angles
are small for quarks and large for leptons. Flavour-full couplings appear in the
standard model in the W couplings to quarks and leptons (for massive neutrinos)
and mediate flavour changing neutral currents at the loop level.
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