
PHYS4181 Particle Physics - Phenomenology

Rodrigo Alonso
IPPP OC307

rodrigo.alonso-de-pablo@durham.ac.uk

These are the notes for the third instalment of the 4th year course Particle Physics
PHYS4181. In a series of 12 lectures we will become familiar with the known spectrum
of elementary particles, their interactions and properties and how do we study them
in the laboratory. This course reaches till the edge of known physics and it stands on
previous necessary knowledge. The audience is presumed to have been introduced to
relativistic quantum mechanics and gauge theories. What one is expected to come out
of here with is knowledge of our present theory of elementary particles, the principles
it is based on, the symmetries and conservation laws it presents, and how to connect
it with experimental observations. In less lofty and more practical terms we will learn
about conserved charges, Feynman rules and phase space integrals.

These lectures are meant to be self-contained to a large extent but a useful short
bibliography is:

[2] Quarks & Leptons, M. Halzen & A. Martin

[5] Modern Particle Physics, M. Thomson

[1] Introduction to Elementary Particle Physics, D. Griffiths

[6] Elementary Particle Physics in a Nutshell, C. G. Tully

in addition to previous years materials available on DUO.
Self-assessed problems will be made periodically available and so will their solutions a

week later, you have ten days to work on them and send your self-assessment. The sched-
ule is at www.dur.ac.uk/resources/physics/students/level4weeklyproblems.pdf. Some of
these problems can be found on these notes as footnotes but they will be collected in
the problem sheets as well. In addition workshops will be held on Fridays to solve a
different set of problems and your queries about the self-assessed problems.

Both for the purposes of easing you into the subject and starting soundly anchored
in reality, we open with an historic review and look at the experiments that took us
where we are today.
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Outline of lectures

The approximate schedule for the lectures is,

� Lecture 1 Brief historical introduction to particle physics and overview of the
course material.

� Lecture 2 Collider characterization and kinematics. The CMS experiment as an
example of a particle physics detector.

� Lecture 3 Theory perspective, path integral and fundamental action. Review of
Feynman rules.

� Lecture 4 The Standard Model: particle content, fundamental Lagrangian and
conservation laws.

� Lecture 5 Quarks as constituents of the proton, deep inelastic scattering.

� Lecture 6 Hadronic and partonic cross section connection, parton distribution
functions.

� Lecture 7 Quantum Chromodynamics, SU(3)c. Asymptotic freedom.

� Lecture 8 The Electroweak interactions, SU(2)L × U(1)Y . Chirality. Mass vs
interaction eigenstates: bosons.

� Lecture 9 Electroweak gauge boson properties from collider experimental data.

� Lecture 10 Spontaneous symmetry breaking. Higgs boson properties from collider
physics.

� Lecture 11 Mass vs electroweak interaction eigenstates, fermions. Flavour Physics
of quarks and leptons.

� Lecture 12 Beyond the Standard Model.
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1 A brief history of particle physics

The history of particle physics is, as that of physics in general, not a straightforward
affair but full of twists and turns, dead ends and awe inspiring leaps in knowledge.
While this makes for an entertaining read, see for example the first chapter in ??, it can
also be misleading to the uninitiated looking to understand the established physics that
came out of the historical process. So here we will be rather selective in our choice of
discoveries and theoretical ideas to highlight so as to fit best our current simple picture
which describes nature, the Standard Model (SM). The purpose here is to acquire some
culture and familiarity with the particle spectrum and the observations that built it.

Figure 1: Spectrum of elementary particles,
all of the above have been detected except the
graviton

We start back in the late 1940s, the
scientific community has discovered that
atoms are made of electrons orbiting
around nuclei themselves made of pro-
tons and neutrons and the photon is
the building block of the electromagnetic
field, but further, the positron, discov-
ered in cosmic rays by Carl D. Ander-
sen, has been identified as the antipar-
ticle of the electron predicted in Dirac’s
equation. In 1947, where we start our
timeline in fig. 3, C. F. Powell and his
co-workers at Bristol cleared up the con-
fusion around the new particles seen in
the impact of cosmic rays (basically pro-
tons) with the atmosphere. Making use
of photographic emulsion they identified
two kinds of particles, muons (µ) and
pions (π). 1 While the pion had been
predicted as the mediator of nuclear in-
teractions by Hideki Yukawa, the muon was unexpected, (I.I. Rabi is quoted as saying
‘Who ordered that?’, if he only knew what was coming!). Cosmic rays were to bring
surprises in the form of new particles that same year, G. Rochester and C. Butler pub-
lished a cloud chamber photograph displaying a particle decaying into pions; the Kaon
had been found. The 50s saw a frenzy of new particle discoveries in what quickly grew
to be a long catalogue, η, ρ,Λ... see http://pdg.lbl.gov/ for our current list. Some of
these particles behaved like heavier pions and were termed mesons while other seemed
heavier versions of protons or neutrons and were called baryons.

To make sense of it, M. Gell-Mann and G. Zweig theorised the existence of quarks,

1Pions are more frequently seen the higher up and some of these emulsions were placed in the top
of mountains. Can you make sense of why muons make it further down the atmosphere than pions by
looking at their basic properties? You can assume they both are produced at the same rate and with
equal velocity. PDG site, pion PDG site, muon.
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three of them: up, down and strange, which both mesons and baryons (collectively
denominated hadrons) were made of. This interpretation put some order in the particle
zoo arranging them in multiplets of a symmetry group. It is interesting to remark from
this historical viewpoint that, like most of the theory milestones of fig. 3, in the inception
of the ideas that make up the Standard Model they were often not taken seriously, at
times by the authors themselves, and it took many years to develop them into their
present form. So despite the fact that deep inelastic scattering experimental data from
Stanford Linear Accelerator (SLAC) by the late 60s provided evidence for the proton
being composed of smaller objects, it would take another particle discovery for the
theory to take shape. The components of the proton were termed partons in R. P.
Feynman’s interpretation of deep inelastic scattering, which were later identified with
quarks and gluons. On the theory side the quark model was taken one step further
by M. Gell-Mann and H. Fritzsch with the formulation of what we now call quantum
chromodynamics (QCD), a gauge theory, while in 1973 D. Gross, D. Politzer and F.
Wilczek discovered the asymptotic freedom of the model.

Figure 2: Discovery of the Up-
silon and the 5th quark, taken
from this seminar

In November of 1974 the discovery of the J/Ψ
particle was announced simultaneously by collabora-
tions of experiments at SLAC, lead by B. Richter, and
Brookhaven National Laboratory (BNL), lead by S.
Ting. A hectic period in particle physics ensued out
of which the quark theory would emerge as the model
for hadrons. The new particle could be accounted for
with the addition of a fourth quark, charm, already pro-
posed in the work of S. Glashow, G. Iliopoulos and L.
Maiani in 1970. The addition of this quark implied not
only the presence of the J/Ψ but other particles which
were indeed found experimentally. A few years later in
1977 evidence for a fifth quark presented itself in the
discovery of the Upsilon by L. Lederman et al. at the
experiment E288 in Fermilab. Further evidence in sup-
port of the quark model and QCD came in 1979 from
three jet events at the TASSO experiment at PETRA
collider, in Deutsches Elektronen Synchrotron (DESY).
These events arise from the emission of a gluon, the me-
diator of the gauge interaction in QCD. The last quark

to join the ranks is the heaviest, the top quark, discovered at the TeVatron in Fermilab
in 1995.

The physics of leptons and the weak interactions developed in the same era but it
is conceptually useful to separate it from the history of strong interactions. The muon
was in the particle catalogue by 1950 but the electron neutrino was only detected in
1956 via inverse nuclear beta decay by C. L. Cowan and F. Reines at the Savanah River
nuclear reactor. The neutrino had been theorised by Pauli in the 30s to carry the missing
energy in beta decay but in another example of the growth of theories it had to wait 20
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1950 1960 1970 1980 1990 2000 2010

Kaon discovery

νe detection

νµ at BNL

J/Ψ at SLAC/BNL

τ at SLAC-LBL

Gluon at DESY

Υ at Fermilab

Z,W at CERN

Top at Fermilab

ντ at Fermilab

Higgs at CERN

Glashow: SU(2)× U(1)

Higgs, Brout, Englert

Gell-Mann, Zweig: quarks
Feynman: partons

Weinberg, Salam: W , Z mass

Gell-Mann Fritzsch: QCD

Figure 3: Timeline of milestones in particle physics history

years to be recognized as a real entity. As we know today the muon has its own partner
muon neutrino but in the late 1950s the presence of a single neutrino in nature was a
possibility. L. Lederman, M. Schwartz, J. Steinberger and collaborators at BNL found a
source of muon neutrinos from pion decay interacted with protons to produce muons but
no electrons. It was concluded that the partner neutrino of the muon was different from
the electron neutrino of beta decays and added to our elementary particles. History and
nature would repeat themselves when the tau lepton (τ), a heavier version of the muon
just like the muon is a heavier version of the electron, was discovered in the mid 70s at
experiments lead by M. L. Perl at SLAC and Lawrence Berkeley National Laboratory
(LBL) whereas the tau neutrino was detected by the DONUT collaboration at Fermilab
in the year 2000.

Beta decay as well as the decay of taus and muons into lighter particles was known
to be mediated by a ‘contact’ interaction distinct from the electromagnetic or strong
forces; it was described by E. Fermi’s theory of the 30s. This theory was known to be
incomplete at higher energies which lead Glashow and Weinberg and Salam to seminal
works during the 60s. These works accounted for the contact interaction by introducing
a vector boson mediator, the W boson, which originates from a gauge theory. These
models predicted not only the W particle producing charged currents interactions and
decays but also another massive gauge boson, the Z, which induced ‘neutral current’
interactions. These neutral current interactions were measured by the Gargamelle bubble
chamber at CERN in 1973. The electroweak theory, although supported by experiments,
did not have direct confirmation in the form of detection of the predicted W and Z
bosons. It was CERN again with the efforts lead by C. Rubbia and S. Van der Meer
in the experiments UA1,UA2 on the Super Proton Synchrotron (SPS) that announced
within months the discoveries of the W and the Z bosons in 1983.
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The weak interaction was therefore based on the same gauge principle as the strong
and electromagnetic interactions yet with the crucial difference that electro-weak bosons
were massive. This required a mechanism for the mass generation of elementary particles
in addition to the gauge principle or the theory would be inconsistent at higher energies.
A simple mechanism for mass generation was proposed in 1964 by P. Higgs, R. Brout
and F. Englert and G. Guralnik, C. R. Hagen and T. Kibble which took the name of the
former. The prediction of this mechanism was a scalar particle which coupled to the rest
of elementary particles proportionally to their masses. Corroboration of this idea clocks
in as the longest with almost fifty years between the seminal works and the discovery of
the Higgs boson at CERN in 2012.

N The spectrum of known particles and their properties fills a thick book, yet
they are all made up of a few elementary components as we will see in these
lectures.
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2 The LHC as a particle physics experiment

The experimental techniques and methods in particle physics have evolved throughout
the years and often had spin-off developments that helped shape society as we know it
today (e.g. the www was developed at CERN). Again we cannot do justice to it all but
simply give here a very simple sketch of a modern particle accelerator.

Both in photographic emulsions and cloud chambers used as particles detectors in
the 40s and 50s charged particles could be seen by the tracks of ionized material they
left when traversing the detector. These detectors in the infancy of particle physics used
cosmic rays as a source but with the advent of particle accelerators one could control
the production as well as detection. Linear and circular, fixed target and center of mass
accelerators have been built and together with ever-more-advanced detectors produced
the results that fueled particle physics. The basic physics of detection and production
however are not hard to grasp and here we jump to a current experiment to serve as
pedagogical example.

Colliders are characterized in simple terms by two quantities: center of mass energy√
s and luminosity L; let us start discussing s. Consider two free particles in collision

course with momenta

pµ1 = (Ep
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, p

1
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2
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What is the energy available in the collision to, for example, produce new particles? Part
of the total energy, E1 + E2, is translational and due to the system moving as a whole,
so a different observer moving at a relative speed v sees momenta:
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where vT is the transpose velocity (a row vector) and the projectors are explicitly P‖ =

vvT /v2 and P⊥ = 1 − P‖. To determine the energy available for the ‘reaction’ one can
do as in classical mechanics and sit on the center of mass frame. In order to do this we
find the Lorentz transformation, that is vC.M., such that the total 3-momentum vanishes
in the new frame p̃

1
+ p̃

2
= 0, then the total energy in this frame is the internal energy

available. This exercise leads to the CM energy which can be expressed in terms of the
original 4-momenta as2
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So no matter what rest frame we find ourselves in, we can find the center of mass energy
by the Lorentz contraction of (p1 +p2)µ, which is a Lorentz invariant3. Indeed whether a

2Derive this equation by finding the boost that takes to the center of mass frame, that is vC.M. =
vC.M.(p1, p2) solving p̃

1
+ p̃

2
= 0 and later substituting in Ẽp̃

1
+ Ẽp̃

2
.

3In a fixed target experiment a beam collides into a static target, for example take static protons and
Ee = 10TeV energy electrons; the center of mass energy is then s = m2

p +m2
e + 2mpEe ' (10GeV)2.
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collision of a positron and an electron can produce a muon and anti-muon is something
which all observers can agree on. The collider that will serve as example here is the
Large Hadron Collider (LHC) at CERN. The LHC accelerates two streams of protons
travelling in opposite directions (and so the laboratory frame is the center of mass frame)
in its 27 kilometre ring to an energy of 6.5 TeV= 6.5 × 1012eV each for a CM energy
of
√
s = 13TeV. When the two beams of protons meet some of them will interact and

possibly produce observable signals in the detectors. Let’s look at one of the protons in
one of the beams with momentum p1, the probability that this proton interacts with the
other beam when he traverses it during a time interval dt is

dP = σ × Fdt = σ × n2 |v1 − v2|dt (2.4)

where F is the flux of particles from beam 2 per unit time ([F]=m−2s−1), that is the
number density of particles n2 = N2/V times the relative velocity. The other factor, σ,
is the cross section and can be thought of as the area around a particle within which
particles going through will interact (but note that the cross section depends on what
particle we are scattering with). Then beam 1 has itself N1 protons so the probability
of some interaction or event to occur is

dNev

dt
= N1 × Fσ = Lσ (2.5)

where L is called the instantaneous luminosity, proportional to the flux and the number
of particles of each beam. This parameter we can control experimentally, as opposed to
the cross section, which is given by fundamental physics.

Figure 4: The LHC tunnel, some
27km long. Credit home.cern

The beams at LHC are however not a contin-
uous but they are separated into bunches, some
Nb ∼ 3000 circulating in each direction. Per
bunch crossing then in formula (2.4) we obtain
the probability of a proton to interact substi-
tuting the time that it takes him to traverse
the other bunch dt = L/|v1 − v2|, taking the
bunch to be a cylinder of length L and volume
V = AL, so P = σN2/A. There are N1 protons
per bunch, the same on each beam (N1 ∼ N2),
and approximately N1 ∼ 1011 whereas given
that they travel at nearly the speed of light and
the LHC ring is 27km long, they go through
the interaction point with a frequency of f =
c/27km' 104 s−1. Altogether this yields a luminosity of L = N1N2Nbf/A, given that
the beams are squeezed via quadrupole magnets to an area of ∼ µm2 one can estimate
the LHC luminosity at around 20 nb−1s−1 were a barn (b) is a unit of area equal to
10−24cm2.

Luminosity is therefore measured in (length)−2× (time)−1 and the cumulative lumi-
nosity over time is called integrated luminosity, Lint. The LHC has collected in what
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is called run 2 (2015-2018) an integrated luminosity of around 140 inverse femto-barn
(fb−1). This represents a huge amount of data, some 10000 trillion collisions yet if we
are interested in a particular process, like Higgs production, we have a much smaller
data set. Let’s do an estimate of Higgs production, given the Higgs production cross
section σpp→h,

NHiggs = Lint σpp→h =

∫
Ldt σpp→h ' 140fb−1 4× 104fb = 5.6× 106 . (2.6)

These events are recorded in the detectors placed at the collision point. At LHC
there is not just one collision point but four, where the detectors ATLAS, CMS, LHCb
and ALICE are placed. ALICE studies heavy ion collisions and LHCb b-quark physics.

Figure 5: CMS transverse view

The two multi-purpose detectors are CMS and ATLAS and we describe here CMS as an
example. It is 21×15×15m in size and 14,000 tons heavy with most of its weight coming
from a superconducting solenoid (circling 18.500A!) that produces one of the strongest
magnetic fields ever manufactured. We can see a transverse view of the detector in fig. 5.
There are four main components in the detector each with different functionality.

(a) The inner part of the detector is the tracker where particles trajectories can be
identified and traced back to the vertex where they originated from. Since it has
a powerful background magnetic field, charged particles curve and their momenta
and charge can be measured.

(b) In the next encapsulating shell we find the electromagnetic calorimeter (ECAL)
which stops electrons and photons and measures their energy.
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(c) Surrounding the electromagnetic calorimeter the hadron calorimeter (HCAL) is
where hadrons (pions, kaons, protons etc) are stopped and their energy measured.
A given process produces a lot of hadrons in the direction of the original parton,
this is called a jet and they are the way in which we ‘see’ partons after collision.
At the same time it is designed to be as hermetic around the interaction region as
possible so as to identify missing energy events.

(d) Lastly muons make it through all the previous detectors and are identified in the
muon chamber which contains a strong magnetic field and where muon momenta
momenta and charge is measured.

With all the information collected from the detector we try to reconstruct as much as
possible the kinematics of the elementary interaction that mediated the scattering.

N The two characterizing parameters of a collider are center of mass energy√
s and luminosity L. The number of events is the cross section times luminosity

integrated over time Nevents =
∫

Lσdt =Lintσ with Lint the integrated luminosity.
We took CMS as an example of a particle detector with its main components being
tracker, electromagnetic calorimeter, hadron calorimeter and muon chamber and
we reviewed what type of particles we see where, (a)-(d).
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3 Path integral and Feynman rules

In this lecture we turn to the theory formulation in particle physics. The formalism
chosen here is based on the path integral; first we introduce this concept in quantum
mechanics to next apply it to Quantum Field Theory (QFT) and finally summarise our
results in the form of Feynman rules and formulae for observables.

The events in our collider of choice depend on cross sections which are given by phase-
space integrals of squared scattering amplitudes, themselves derived from a fundamental
action. The action S is the spacetime integral of the Lagrangian density L,

S(Φ) =

∫
dt

∫
d3xL(Φ(x)) (3.1)

where Φ denotes collectively the fields associated with particles one is studying, e.g. a
neutrino field νL(x). In particle theory models for nature are often discussed in terms of
their Lagrangian which, since the rise of QFT, has played a central role. The connection
between Lagrangian and cross sections and decay rates is not a simple one nonetheless;
here, rather than focus on rigour, we sketch the basics of the formulation (and the way
to sidestep it). To guide our intuition through the math, let us anticipate that the
action controls the evolution of a system and hence the range of possible outcomes in
our experiment.

Here are some of the questions that (perhaps) have occurred to you and we will
try to address. You are familiar with the Lagrangian from classical mechanics and the
derivation of equations of motion but how does it show up in quantum mechanics? And
why would we rather talk about Lagrangians over Hamiltonians as one does in quantum
mechanics? To answer these we use a path integral, which you might not have seen
before, so let us present it in its simplest realization.

Path integral in quantum mechanics

Take a canonically quantized system with operators Q̂, P̂ and eigenstates |Q〉, |P 〉, as
you are familiar with from quantum mechanics:

[Q̂, P̂ ] = i~ Q̂|Q〉 = Q|Q〉 (3.2)

〈Q|P 〉 = eiQP/~ P̂ |P 〉 = P |P 〉 (3.3)

You can think of Q and P as position and momentum in one dimension, but they could
be other conjugate variables of our system, and we will eventually take them to be field
Ψ and conjugate variable ∂tΨ. Take an initial state |QI〉 at some time t = 0, and let
us compute the possibility that it ends up in a different state |QF 〉 after a time T . The
time evolution is given by the Hamiltonian

i~
d

dt
|Q〉 = Ĥ|Q〉 Ĥ =

P̂ 2

2
+ V (Q̂) (3.4)
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where we assumed a time independent Hamiltonian and it can be thought of as kinetic
plus potential energy for a non-relativistic object moving in one dimension with unit
mass. The amplitude we are considering then has a simple expression:

〈QF |e−iĤT/~|QI〉 (3.5)

Next we break the time T in N + 1 intervals δt = T/(N + 1) and insert a number of
‘identities’ to evaluate the operators in terms of eigenvalues.

〈QF |e−iĤT/~|QI〉 = 〈QF |e−iĤδt/~e−iĤδt/~ · · · e−iĤδt/~e−iĤδt/~|QI〉 (3.6)

=

∫
〈QF |e−i

Ĥδt
~ |QN 〉〈QN |e−i

Ĥδt
~ |QN−1 〉· · · 〈Q2|e−i

Ĥδt
~ |Q1 〉〈Q1|e−i

Ĥδt
~ |QI〉

∏
i

dQi

Lets break it down to each of the pieces

〈Qj+1|e−i
Ĥδt
~ |Qj〉 =

∫
〈Qj+1|e−i

Ĥδt
~ |P 〉〈P |Qj〉

dP

2π
(3.7)

=

∫
〈Qj+1|P 〉e

−i δt~
(
P2

2
+V (i~ ∂

∂P )
)
〈P |Qj〉

dP

2π
(3.8)

=

∫
ei
Qj+1P

~ e
−i δt~

(
P2

2
+V (i~ ∂

∂P )
)
e−i

QjP

~
dP

2π
(3.9)

The argument of the exponential is

− iδt

~

(
P 2

2
− P

δt
(Qj+1 −Qj) + V (Qj)

)
(3.10)

=− iδt

~

(
1

2

(
P − Qj+1 −Qj

δt

)2

− (Qj+1 −Qj)2

2δt2
+ V (Qj)

)
(3.11)

We can carry out the integral in P since it is a Gaussian which we know gives in general∫
dze−

(z−b)2

2a2 =
√

2πa2 (3.12)

so that ∫
〈Qj+1|e−i

Ĥδt
~ |P 〉〈P |Qj〉

dP

2π
=

√
~

i2πδt
e
iδt
~

(
(Qj+1−Qj)2

2δt2
−V (Qj)

)
(3.13)

and the amplitude reads

〈QF |e−
i
~ ĤT |QI〉 =

(
−i~
2πδt

)N+1
2
∫ ∏

j

[
dQje

iδt
~

(
(Qj+1−Qj)2

2δt2
−V (Qj)

)]
e
iδt
~

(
(Q1−QI )2

2δt2
−V (QI)

)

with QN+1 = QF and where we can identify the finitesimal derivative of Q in (Qj+1 −
Qj)/δt and the Lagrangian in half its square minus the potential V (Q). This finitesi-
mal version of the Lagrangian is multiplied by the increment of time δt so taking the
infinitesimal limit we can write:
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[∫ ]N ×

QF

QI

δt

hdQ1

iδt

2δt

hdQ2

iδt

3δt

hdQ3

iδt

T − δt
hdQN
iδt

T − 2δt
hdQN−1

iδt

T − 3δt
hdQN−2

iδt

...

...

Figure 6: Three paths or functions Q(t) in green blue and red for our path integral
formulation of the amplitude

〈QF |e−iĤT/~|QI〉 =

∫ QF

QI

DQe
i
~S[Q] (3.14)

with

S[Q] =

∫ T

0
dtL(Q) =

∫ T

0
dt

(
Q̇2

2
− V (Q)

)
, DQ = lim

δt→0

(
−i~
2πδt

)N+1
2 ∏

i

dQi . (3.15)

The path integral takes a little getting used to. A given ‘point’ in the space we are
integrating over is given by the value of Q at the N = T/δt − 1 different times. One
can plot this as in fig. 6; with time on the horizontal axis and Q on the vertical axis, we
specify the ‘point’ by the values of Q in the vertical axis at each time. If we join these
values with a line, which must start and end at QI,F respectively, we have ourselves a
‘coarse-grained’ function Q(t) or a ‘path’ from QF to QI which in the δt→ 0 limit does
turn into a function. Well, there you go, the path integral is an integral over functions, or
in our physical interpretation paths from the initial to the final state, where we note that
these functions do not even have to be continuous or differentiable. The contribution of
different paths to the final outcome is dictated by the action which acts as a weighting
factor.

This integral is not possible to evaluate in general, but certain limits are somewhat
intuitive and of physical importance. Consider a neighbourhood around a given function
Q0 with a non-vanishing variation of the action (δS/δQ)[Q0] 6= 0; contributions around
this point can both increase and decrease the action and hence have phase factors that
tend to cancel out. By contrast around a configuration Qcl with (δS/δQ)[Qcl] = 0 the fist
contribution is given by the second variation, which for Qcl a minimum, gives a same-sign

13
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coherent contribution. But this configuration we know, its the solution to Lagrange’s
equations! This means that the classical path is a potential good point around which
one can expand the path integral. Whether it is a good expansion in practice depends on
our system but one can formally take the limit ~→ 0 to suppress all other contributions
and recover classical mechanics from the path integral.

In general nevertheless we sum over all paths and it is the action that determines the
final result, the evolution of the system. From here already one can see the importance of
the action and Lagrangian. Finding the fundamental action (or equivalently Lagrangian)
that describes the world at its most elemental is the key to predict and understand the
possible phenomena and outcomes in nature. This makes the case for the theorists
fixation with Lagrangians; there is the hope that the search for new phenomena and
particles will yield a complete description of Nature which will be specified by ‘The
Action’. At present we know that our current theory given by the Standard Model
action is incomplete. But lets come back down to the specific physics we are concerned
with here, smashing particles together, which is one of our ways to search.

Path Integral in Quantum Field Theory

The connection with particle physics and quantum field theory is obtainable by transla-
tion, take a scalar field φ(t, x) for example

[φ̂(x), ∂tφ̂(y)] = i~δ3(x− y) H =
(∂tφ̂)2

2
+

1

2
(∇φ̂)2 + V (φ̂) (3.16)

where the difference is now we have fields and hence another label on top of time: space
and so H is a Hamiltonian density. This H leads to an action

S[φ] =

∫
dtd3x

(
1

2
∂µφ∂

µφ− V (φ)

)
(3.17)

The main difference and where we require a bit more work is that the states |φ〉 are not
the final states we are looking at. Canonical quantization prescribes that the operator
φ̂ creates and annihilates particles, in particular

〈0|φ̂(x)|p〉 = e−ipx (3.18)

where |p〉 is a particle state with momentum p and hence the eigenstate of φ, |φ〉, is
a superposition of multiparticle states. It will also be convenient, given our focus on
scattering of momentum eigenstates, to Fourier-transform our fields to momentum-space.

Given orthogonality of momentum states (which we assume), eq. (3.18) tells us that
the insertion of φ creates a particle, made explicit in the decomposition of the field in
terms of creation a†p and annihilation operators ap which nonetheless we do not need

here. One has therefore that n insertions of the operator φ̂ in between the vacuum state
must be related to the transition probabilities involving n particles (some of coming in
some of them going out).

14



PHYS4181 - Phen 3 PATH INTEGRAL AND FEYNMAN RULES

This requires that in our path integral we also allow for powers of the field φ ‘down-
stairs’ DφeiS[φ]φn while the final and initial states are taken to be the vacuum. Instead
of computing the n possible path integrals separately here we borrow a method from
statistical mechanics and define the partition function Z[J ] starting from

Z[0] = 〈0|e−
i
~ ĤT |0〉T→∞ =

∫
DφeiS[φ] (3.19)

which would be the 0th order integral. The source J is introduced as an extra term in
the action

Z[J ] ≡
∫
DφeiS[φ]+i

∫
d4xφ(x)J(x) (3.20)

so that taking derivatives with respect to J we bring down φ’s which we interpret as
creating and annihilating particles and antiparticles.

If one knows how to perform the integral, the theory is solved, that is we can make
exact predictions. However in general one does not know how to solve this integral and
perturbation theory is our way to make progress. This is based on some basic integrals
which we do know how to perform, case study a Gaussian integral.

Let us illustrate this with the scalar action of eq. 3.17 and the two-point correlator,

δ2

iδJ(x)iδJ(y)

Z[J ]

Z[0]

∣∣∣∣∣
J=0

=
1

Z[0]

∫
Dφφ(x)φ(y)eiS[φ] (3.21)

where functional derivatives are defined by δJ(y)/δJ(x) = δ4(x − y). Let us rearrange
the action as∫

d4x

(
1

2
φ(−�−m2)φ+ φJ

)
=

∫
d4x

(
1

2
(φ+ ∆J)(−�−m2)(φ+ ∆J)− 1

2
J∆J

)
=

∫
d4x

(
1

2
φ̃(−�−m2)φ̃− 1

2
J∆J

)
(3.22)

where we used integration by parts, � = ∂µ∂µ, ∆ we define to satisfy (−�−m2)∆J = J
and a shift in the dummy integration variable φ has been used. This result back in the
path integral

1

Z[0]

∫
Dφ̃eiS[φ̃] δ2

i2δJ2
e−

i
2

∫
J∆J

∣∣∣
J=0

=
(
i∆ + (∆J)2

)
e
i
2

∫
J∆J

∣∣∣
J=0

= i∆ (3.23)

where we have identified the path integral in φ̃ as Z[0]. We managed to compute a path
integral (!) and obtained ∆ as the answer so let us have a closer look; it is a function of
two spacetime points x, y and defined to be an inverse as:

(−�−m2)(∆J)(x) = (−�−m2)

∫
d4y∆(x, y)J(y) ∆(x, y) =

∫
d4q

(2π)4

eiq(x−y)

q2 −m2

15
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which is the propagator for a scalar field; all we had to do to ‘compute’ the path integral
is to invert the operator of the quadratic action (in φ).4

In our interpretation however this result should be connected to a transition proba-
bility between momentum eigenstates, first a Fourier transform yields

1

Z[0]

∫
DφeiS[φ]φ(p)φ(k) = ∆(p, k) =

∫
d4x

∫
d4y∆(x, y)eipx+iyk (3.24)

=
1

p2 −m2
(2π)4δ4(p+ k) (3.25)

We can interpret this result if we flip one of the momenta k → −k which is equivalent to
taking the particle outgoing; then this expression is only non-zero if the initial and final
momenta are the same which is what we can expect of a transition amplitude. There are
however extra factors which require an overall normalization for this to be interpreted as
a matrix element. This normalization involves the propagator itself as a more rigorous
consideration yields.

The derivation of this normalization can be found in books on QFT, e.g. section
7.2 of [4], here we borrow the result so we can finally connect momentum-space path
integrals with scattering processes. Let us denote the amplitude for a transition from
ni incoming particles to a final state with no particles as the matrix element of the
scattering matrix S, Sni,no , and N = ni + no, our derivation leads us to: 5

Sni,no =
1

Z[0]

(
(i∆)−1 δ

iδJ

)N
Z[J ]

∣∣∣
J=0

=
1

Z[0]

(
(i∆)−1 δ

iδJ

)N ∫
DφeiS[φ]+

∫
Jφ

∣∣∣∣∣
J=0

=
1

Z[0]

∫
Dφ̃eiS0[φ̃]

(
(i∆)−1 δ

iδJ

)N
e−

i
2

∫
J∆J+iSint[φ̃−∆J ]

∣∣∣∣∣
J=0

(3.26)

=
1

Z[0]

∫
Dφ̃eiS0[φ̃]− i

2

∫
J∆J

(
(i∆)−1 δ

iδJ

)N
eiSint[φ̃−∆J ] + disconnected (3.27)

=
1

Z[0]

∫
DφeiS0[φ]

(
δ

δφ(p)

)ni ( δ

δφ(−p′)

)no
eiSint[φ] + disconnected (3.28)

The first line above is known as the Lehmann Symanzik Zimmermann reduction for-
mula [3] and there is a lot to unpack here. What we mean by disconnected is best
understood with a diagrammatic approach as in fig. 7, disconnected are processes in
which some particles travel freely and do not talk to the rest of particles which corre-
sponds to letting δ/δJ act on the free piece exp(−i

∫
J∆J/2). As for the derivation

we have used the same trick as for the propagator, introducing φ̃ and using Dφ = Dφ̃
and in the last step we specify that the derivation is to be taken with respect to the
Fourier transformed field and and opposite-sign-momentum transformed for incoming
and outgoing particles respectively φ(x) =

∫
d4peipxφ(p).

4If you are acquainted with the cannonical formalism in QFT you have seen a propagator before,
yet here it acquires a new interpretation in terms of expectation values of fields, relevant in early-time
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p1 p3

p2 p4

=

p1 p3

p2 p4

+

p1

p4p2

p3

λ +

Figure 7: First few terms in the S-matrix for a scalar λφ4 interaction.

To get acquainted with this expression let us take the following interaction

Sint[φ] =−
∫
d4x

λ

4!
φ(x)4 = − λ

4!

∫
d4x

4∏
i=1

∫
d4pie

ipixφ(pi)

=− λ

4!

4∏
i=1

[∫
d4piφ(pi)

]
(2π)4δ4(

∑
pi) (3.29)

and look into 2 to 2 particle scattering with incoming momenta k1, k2 and outgoing
momenta k3, k4. This means now taking the derivative that the out-states have flipped
momenta:

eiS0[φ] δ2

δφ(k1)δφ(k2)

δ2

δφ(−k4)δφ(−k3)
eiSint[φ] = eiS[φ](−iλ)(2π)4δ(k1 + k2 − k3 − k4) +O(λ2)

the path integral on eiS cancels out with the factor Z[0] in the denominator and we have
therefore obtained the (first order in λ) S matrix element. It is conventional to define
the invariant matrix element as

S = II− i(2π)4δ4(pI − pF )M (3.30)

with pI,F the sum over initial and final momentum respectively. We found then −iM =
−iλ; that was a lot of work for a simple result, lets look at a different process next and see
if the final answer is equally simple. Next say the case of proton with field P (x) scattering
off an electron e(x) via the electromagnetic interaction (DµP (x) = (∂µ + iQAµ)P (x))

Sint =

∫
d4x

(
Qē(x)γµe(x)Aµ(x)−QP̄ (x)γµP (x)Aµ(x)

)
(3.31)

so the S matrix element is computed from

eiS0[e,P,Aµ] δ

δē(p2)

δ

δe(p1)

δ

δP̄ (k2)

δ

δP (k1)
eiSint[e,P,Aµ] (3.32)

=eiS[e,P,Aµ]

∫
d4xei(p1−p2)x[iQγµ]Aµ(x)

∫
d4yei(k1−k2)y[−iQγν ]Aν(y) +O(Q4) (3.33)

=eiS[e,P,Aµ]−iS0[Aµ]

∫
d4x

∫
d4yei(p1−p2)x(iQγµ)

[
Aµ(x)Aν(y)eiS0[Aµ]

]
ei(k1−k2)y(−iQγν)

Cosmology.
5This expression is valid to first order in our perturbative expansion, the next order (one-loop)

introduces a field renormalization factor, both here and in eq. (3.18), which we omit.
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we can perform the path integral in Aµ perturbatively (DA)A(x)A(y)eiS0[A] which is
precisely the propagator

Q2

∫
d4x

∫
d4yei(p1−p2)xγµ

∫
d4q

(2π)4

−ieiq(x−y)gµν

q2
ei(k1−k2)yγν (3.34)

=(2π)4

∫
δ4(p1 − p2 − q)d4qγµ

−iQ2gµν

q2
(2π)4δ4(k1 − k2 + q)γν (3.35)

=(2π)4δ4(p1 − p2 − k2 + k1)γµ
−iQ2gµν

(p1 − p2)2
γν (3.36)

which again has an overall momentum conservation Dirac delta and ends up being sim-
pler than the derivation machinery might have suggested. To connect the above with the
S matrix one still has to contract with spinors u(p, s), ū(p, s) which are the connection
between field and particle state. The ones we will need in these notes go only up to spin
1. They are

〈0|φ(x)|p〉 =e−ipx 〈p|φ(x)|0〉 =eipx (3.37)

〈0|ψ(x)|ψ, p, s〉 =u(p, s)e−ipx 〈ψ, p, s|ψ̄(x)|0〉 =ū(p, s)eipx (3.38)

〈0|ψ̄(x)|anti−ψ, p, s〉 =v̄(p, s)e−ipx 〈anti−ψ, p, s|ψ(x)|0〉 =v(p, s)eipx (3.39)

〈0|Aµ(x)|p, λ〉 =εµ(p, λ)e−ipx 〈p, λ|Aµ(x)|0〉 =ε∗µ(p, λ)eipx (3.40)

〈0|W+
µ (x)|W+, p, λ〉 =εµ(p, λ)e−ipx 〈W+, p, λ|W−µ (x)|0〉 =ε∗µ(p, λ)eipx (3.41)

〈0|W−µ (x)|W−, p, λ〉 =εµ(p, λ)e−ipx 〈W−, p, λ|W+
µ (x)|0〉 =ε∗µ(p, λ)eipx (3.42)

where W+
µ (x) is a complex spin one (≡ vector-boson) field and (W+

µ (x))† = W−µ (x),

(W−µ (x))† = W+
µ (x).

This gives us for our electron-proton scattering −iM = −iQ2ūeγµueūPγ
µuP /(p1 −

p2)2.

Feynman rules

Nevertheless the simplicity is indicative of a shortcut to the result which is simply a
collection of rules which one can gather after doing a number of computations like the
above. The directions for this shortcut are known as Feynman rules

(I) Interaction vertices To derive the Feynman rule for a given vertex take the
derivative of the interaction term in the Lagrangian with respect to fields until you
obtain a constant and put an i into it. Complex fields are treated as independent
fields. The vertex is represented diagrammatically by each of the fields being a
line joining in a point. We have seen a couple of examples

Lφ4 = − λ
4!
φ4(x) ⇒ −iλ Lem = Qē(x)γµe(x)Aµ(x) ⇒ iQγµ

.
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(II) For a initial/final state particle (a†p,s|0〉 ≡ |p, s〉) with momentum p and spin s
one must supplement the derivative w.r.t. to the field with the field-state connec-
tion, this means a factor (ū = u†γ0)

time →1

Scalar in.

εµ(p, λ)

Vector-boson in. Scalar out.

1

Vector-boson out.

ε∗µ(p, λ)

u(p, s)

Fermion in.

v̄(p, s)

Anti-fermion in. Fermion out.

ū(p, s)

Anti-fermion out.

v(p, s)

(III) For internal lines which connect two vertices we put in the propagator i∆, these
are:

Propagators

Scalar
i

p2−m2+iε Fermion i
pµγµ−m+iε =

i(/p+m)

p2−m2+iε

Vector Boson
−igµν
p2+iε Vector Boson

−i
p2−m2+iε

(
gµν − pµpν

m2

)
(IV) For a given process draw all possible diagrams (to a given order in your perturba-

tive expansion) matching the external states. For each diagram write −iM with
the rules (I)-(III) while imposing momentum conservation on each vertex to
fix the momenta of propagators as much as possible. Make sure −iM is a Lorentz
invariant by ensuring all Dirac and Lorentz indexes are added up, in particular
for Dirac indexes one can use matrix notation (where order matters) by starting
from the end of a fermion line and continuing up against the arrow. The final
result is the sum of −iM for each diagram.

It can be shown that all diagrams at first order (called tree level) in our perturbative
expansion have the momenta of propagators fixed in terms of the momenta of external
state. The next order does not and there’s internal momenta which we have to integrate
over (we call this loop momenta and loop integrals).

These are the rules, but one only really learns how to use them with examples which
is what we will do on the workshop.

Finally, we can take the invariant matrix element −iM and give the cross section,
for two particles colliding with four-momenta pa, pb and producing n particles in the
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final state:

σ =
1

|va − vb|2Epa2Ep
b

∫ ( n∏
i=1

d3p
i

2Ep
i
(2π)3

)
(2π)4δ4

(
pa + pb −

n∑
i=1

pi

)
|M|2 (3.43)

where we recall v = p/Ep. The terms inside the integral except for M constitute the
Lorentz invariant phase space sometimes just called LIPS, whereas the factors out front
are related to our normalization of states 〈p′|p〉. On the other hand a decay rate in the
particle’s rest frame is

Γ =
1

2Ma

∫ ∏
i

d3p
i

2Ep
i
(2π)3

(2π)4δ4

(
pa −

n∑
i=1

pi

)
|M|2 (3.44)

with pa the four momenta of the decaying particle, pa = (Ma, 0). So at last our trip
from action to observables is done.

Completion relations
A number of useful relations for the square of the matrix elements when we sum over
spins are: ∑

s

u(p, s)ū(p, s) = /p+m
∑
s

v(p, s)v̄(p, s) = /p−m (3.45)

(m = 0)
∑
λ

εµ(p, λ)ε∗ν(p, λ) = −gµν
∑
λ

εµ(p, λ)ε∗ν(p, λ) =
pµpν
m2
− gµν

and since (γ0)† = γ0, (γµ)†γ0 = γ0γµ, we have e.g.

(ūγµv)∗ = v†(γµ)†(γ0)†u = v†γ0γµu = v̄γµu (3.46)

Finally some relations for gamma matrices which will be useful are

Tr (γµγν) = 4ηµν Tr (γµγνγργκ) = 4 (ηµνηρκ + ηµκηνρ − ηµρηνκ) (3.47)

Tr (γµγνγ5) = 0 Tr (γµγνγργκγ5) = 4iεµνρκ (3.48)

N The path-integral formulation in particle physics connects the Lagrangian
with observables while maintaining Lorentz covariance. Feynman rules (I)-(IV)
gave a shortcut to compute the invariant matrix element −iM for the connection
of Lagrangian with scattering processes (3.30,3.43,3.44). Completion relations for
sums over particle states were given 3.45 which we will use in our computations.
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4 Standard Model overview

Our last lecture took us all the way from Lagrangian to cross sections, so now that
we know the path let us present the starting point (Lagrangian) to the best of our
knowledge. This is the Lagrangian of the Standard Model, our description of nature at
its most elemental.

Gauge group

At the center of the Standard Model formulation sits the gauge principle. Here we
assume the reader has some familiarity with the principle and do not review it. We
start by specifying the SM group and the consequences that follow from its formulation.
The group is divided into colour, weak isospin and hypercharge, the latter two ‘contain’
electromagnetism in a way which we will make explicit later on. Invariance of space-time
dependent (gauge) transformations requires the introduction of gauge bosons: spin-1
massless particles, one for each generator. This means

color weak isospin hypercharge

group: SU(3)c SU(2)L U(1)Y

bosons : Gaµ , a = 1, .., 8 W I
µ , I = 1, 2, 3 Bµ

Generators :
gs
2
Ta =

(
3× 3 traceless

hermitian

)
g

2
σI =

(
2× 2 traceless

hermitian

)
QY g

′II

where II is the identity and gs, g, g
′ are the couplings of color, weak isospin and hyper-

charge respectively, the only three parameters of the gauge group. The matrices Ta and
σI can be taken as the Gell-Mann and Pauli matrices respectively with the normaliza-
tion Tr(TaTb) = 2δab and Tr(σIσJ) = 2δIJ . The field strengths for the gauge bosons
transform in the adjoint representation and are defined as:

Gµν ≡ ∂µGaνTa − ∂νGaµTa +
igs
2

[
GaµTa, G

b
νTb

]
(4.1)

Wµν ≡ ∂µW I
ν σI − ∂νGIµσI +

ig

2

[
W I
µσI ,W

J
ν σJ

]
(4.2)

Bµν ≡ ∂µBν − ∂νBµ (4.3)

The way in which gauge bosons couple to matter is through the covariant derivative, for
example if it acts on a fundamental representation of color, weak isospin and hypercharge
QY we have

Dµ ≡ ∂µ + i
gs
2
GaµTa + i

g

2
W I
µσI + ig′QYBµ (4.4)

this would be the case for example of left handed quarks but more in general when the
covariant derivative acts on a field which is not charged under color the Gµ field would
be absent, if instead it is not charged under weak isospin Wµ would be absent, etc.
Therefore to know how the gauge bosons interact with the rest of particles, matter, we
have to specify their charges (representations).

21



PHYS4181 - Phen 4 STANDARD MODEL OVERVIEW

Matter

By matter here we understand fields charged under the SM gauge group, which means
fermions and the Higgs doublet. As we will see this distinction becomes a bit blurry
after electroweak symmetry breaking, but let’s not get ahead of ourselves.

To talk about fermions we have to revise first chirality. As you might know:

γ5 = iγ0γ1γ2γ3 PL ≡
1− γ5

2
PR ≡

1 + γ5

2
(4.5)

with PL,R the left and right-handed projectors. They are projectors because PL+PR = 1,
P 2
L = PL, P 2

R = PR, PLPR = 0. The usefulness of this projection is that it commutes
with Lorentz transformations, that is, because

[γ5, [γµ, γν ]] = 0 (4.6)

PL and PR commute with the Lorentz group generators. This means that after a Lorentz
transformation a left-handed field stays a left-handed field and so does a right handed.
That is why we define

ψL ≡PLψ =
1− γ5

2
ψ ψR ≡PRψ =

1 + γ5

2
ψ (4.7)

which are irreducible representations of the Lorentz group, the ‘smallest’ fermion. You
are familiar with the electron which is made of a left-handed and a right-handed com-
ponent, but again to get there we must go through mass. For now we split our fermion
fields between LH and RH. In the Standard Model there is a total of 5 of them for the
first generation, qL, uR, dR, `L and eR. Their charges are

qL uR dR `L eR
SU(3)c 3 3 3 − −
SU(2)L 2 − − 2 −
U(1)Y 1/6 2/3 −1/3 −1/2 −1

where − means not charged and a 3,2 means a fundamental of SU(3) or SU(2),
that is a complex vector in 3 or 2 dimensions. This is a significant distinction with the
abelian and non-abelian cases, for the former the charge is a real number but for the
latter charge is a ‘representation’ and they are a discreet set. One can be explicit about
the 3,2 representations and write the ‘vectors’ out:

SU(2)L\SU(3)c − 3

− (eR)−1

(
ur
R , u

b
R , u

g
R

)
2/3(

dr
R , d

b
R , d

g
R

)
−1/3

2

(
H+

H0

)
1/2

,

(
νL
eL

)
−1/2

(
ur
L , u

b
L , u

g
L

dr
L , d

b
L , d

g
L

)
1/6

(4.8)
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where r,b,g stand for the three colors (red, blue, green) whereas for SU(2)L each com-
ponent of the two vector merits its own name, νL-eL and uL-dL and the subscript gives
the hypercharge. Above we have also included the Higgs doublet which as such has 2
complex components (4 real) inside it. So all in all the matter content is given in table 8.

qL uR dR `L eR H

SU(3)c 3 3 3 − − −
SU(2)L 2 − − 2 − 2
U(1)Y 1/6 2/3 −1/3 −1/2 −1 1/2

Figure 8: Charges of the matter content of the Standard Model

With this much information one can already write a large fraction of the action.

Lagrangian

As we’ve emphasized all throughout, the spacetime integral of the Lagrangian dictates
the evolution of our system and possible outcomes and is the central construction from
which we derive observables. One might think that if it controls and ‘knows’ about all
possible outcomes of say a collision, the Lagrangian of our theory of nature must be
a complicated object with many variables and many moving parts. With our present
knowledge we can say that is not the case, the Lagrangian of the Standard Model is
remarkably simple.

The two rules we follow when building our action are Lorentz and gauge invariance.
These symmetries imply conserved currents which we have tested to impressive accuracy;
e.g. electric charge is conserved in every process we know of; any non-gauge-invariant
term in our Lagrangian would contradict this fact.

The particle content we know of is in table 8, so we can start writing its free La-
grangian, iψ̄γµ∂

µψ, ... but this is not gauge invariant, we have to promote ∂µ to Dµ as
in eq. 4.4 which simultaneously tells us how matter and gauge bosons interact. Then we
write the part of the Lagrangian which we call Lgauge including matter and gauge boson
kinetic terms :

Lgauge =− 1

8
Tr(GµνG

µν)− 1

8
Tr(WµνW

µν)− 1

4
BµνB

µν

+
∑
ψL

iψ̄γµDµψL +
∑
ψR

iψ̄γµDµψR +DµH†DµH (4.9)

where the sum on fermions is over ψL = qL, `L and ψR = uR, dR, eR and the extra 1/2
in the 1/8 in field strengths is related to the normalization for traces Tr(TaTb) = 2δab
and Tr(σIσJ) = 2δIJ . So for example from the above we can deduce that the quark
interaction with a gluon Gaµ reads −igsγµT a/2.

There is one key aspect that the gauge Lagrangian does not account for: some par-
ticles are massive, including part of the gauge bosons. This seems in stark contradiction
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with the gauge principle so we have ourselves a conflict. The conflict is resolved by the
Higgs doublet and spontaneous symmetry breaking. In a nutshell this means that even
though our full theory possesses a symmetry, the vacuum state alone does not. We will
expand on this in a few lectures time but for now we want to write the part of the action
that will do this job. First a simple potential for the Higgs will give it a value in the
vacuum different from 0, 〈H†H〉 = v2/2:

V (H) = −m2
HH

†H + λ(H†H)2 (4.10)

and next the Lagrangian terms from which the mass of fermions originates, the Yukawa
interactions:

LYukawa =−
∑

gauge inv.

(
Y ψ̄LHψR + Y ψ̄LH̃ψR

)
+ h.c. (4.11)

=− Yuq̄LH̃uR − Ydq̄LHdR − Ye ¯̀
LHeR + h.c. (4.12)

where

H̃ = iσ2H
∗ =

(
0 1
−1 0

)
H∗ (4.13)

which transforms as a 2 as well but with opposite hyper-charge6. After electro-weak
symmetry breaking, the Yukawa terms will produce masses for fermions as mψ = vY/

√
2.

Let’s collect all the terms then in the SM Lagrangian

LSM =− 1

8
Tr(GµνG

µν)− 1

8
Tr(WµνW

µν)− 1

4
BµνB

µν

+
∑
ψL

iψ̄γµDµψL +
∑
ψR

iψ̄γµDµψR +DµH†DµH

− Yuq̄LH̃uR − Ydq̄LHdR − Ye ¯̀
LHeR + h.c.

+m2
HH

†H − λ(H†H)2 (4.14)

This is it. Our Lagrangian for a single generation has 3 gauge couplings, 2 parameters
in the potential and three Yukawa couplings. This we fix after looking at experiment
and we have input for all of them at present.

gs g g′ v λ Yu Yd Ye
1.2 0.65 0.36 246GeV 0.13 1.4×10−5 2.9×10−5 3.0×10−6

Figure 9: Input values for the SM at an energy of ∼ 100GeV, we have that m2
H = λv2.

The one aspect we omitted here is the generational structure of matter. That
is a simple extension however, one can put an index in the fermions that runs from one

6Check that H̃ transforms as a doublet, i.e. given the infinitesimal transformation in δωH = iωIσIH
substitute in δωH̃ = iσ2(δωH)∗ to find δωH̃ = iωIσIH̃.
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to three so e.g. uiR = (u1
R, u

2
R, u

3
R) = (uR, cR, tR). This introduces more parameters in

the Yukawa couplings which now are 3×3 matrices. This we will look into in lecture 11.

Global symmetries and charges
This action was built to respect the gauge symmetries and so via the Noether theorem

electric charge is conserved in any process. In addition this theory has other symmetries
which are somewhat unintended. You might check yourself that if we give a phase to all
quarks (LH and RH and all generations) the Lagrangian in eq. 4.14 stays unchanged.
This symmetry we call global because it is only conserved if we make it space-time
independent, as opposed to gauge symmetries. Nevertheless it implies a conserved
charge, baryon number which we define as

QB(qL, uR, dR) = 1/3(qL, uR, dR) (4.15)

The above is meant to include all generations of quarks, so all u, c, t, d, s, b quarks have
Baryon number 1/3. Anti-quarks have opposite charge and the rest of elementary parti-
cles are neutral under baryon number. This charge is coming from an Abelian symmetry
which makes it easy to find the charge of composite objects as

QB[π+ = (ud̄)] = (QBu)d̄+ u(QB d̄) = 0 (4.16)

QB[p = (uud)] = (QBu)ud+ u(QBu)d+ uu(QBd) = +1[p = (uud)] (4.17)

So mesons have 0 baryon number and baryons have baryon number 1. This charge is
conserved in all process which we have observed in nature, and we have been actively
looking for its failure. It also offers an easy check on whether a given process is allowed
in the Standard Model, for example, is p→ π0e+νe allowed by baryon number?

About leptons we have a similar result, but stronger even. We can rotate the each
different generation with a different phase so we have three different charges: electron
lepton number, Lµ, muon lepton number and tau lepton number Lτ , defined as

Le

 e
µ
τ

 =

 (+1)e
0
0

 Lµ

 e
µ
τ

 =

 0
(+1)µ

0

 Lτ

 e
µ
τ

 =

 0
0

(+1)τ


(4.18)

Le

 νe
νµ
ντ

 =

 (+1)νe
0
0

 Lµ

 νe
νµ
ντ

 =

 0
(+1)νµ

0

 Lτ

 νe
νµ
ντ

 =

 0
0

(+1)ντ


whereas antiparticles have the opposite-sign charge. These charges, together with electric
charge (the other unbroken Abelian charge) offer a simple rule to check whether a given
process can happen in the standard model. Here are some for you to train:

p(uud)
?→ n(udd) + e+ + ν̄e e+ + γ

?→ p(uud) + n̄(ūd̄d̄) + νe (4.19)

Λ0(uds)
?→ p(uud) + π−(dū) µ

?→ νe + ν̄e + e (4.20)
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A key question before moving on is why do we stop in just the terms of eq. 4.14
when writing our action. In our natural units the fields have dimensions of mass to some
power Φ ∼ (Mass)dim(Φ), this power is, respectively

dim(ψ) = 3/2 dim(H) = 1 dim(Dµ) = 1 dim(Fµν) = 2 (4.21)

you can amuse yourself to find that all terms in the Lagrangian have, when adding
up the dimensions of the fields and derivatives, dim≤ 4. This fact which might seem
a coincidence out of the way in which we built our action is actually a very important
factor. Field theories which satisfy this condition are ‘closed’ under quantum corrections
and very predictive (in our jargon they are called renormalizable).

Finally this action cannot be complete because we have evidence of new phenomena,
e.g. neutrino have a mass (which imply that individual Lepton number is not conserved),
there is another type of matter out there (dark matter), the universe is in an accelerated
expansion phase (dark energy) and we have not included quantum gravity in our picture.

N The Standard Model is organized around the strong and electro-weak in-
teractions SU(3)c × SU(2)L × U(1)Y and the matter content in table 8. The
full Lagrangian was given in 4.14, the function of each part (gauge, Yukawa and
scalar potential) briefly described and the chiral nature fo the SM was introduced.
Global symmetries of this Lagrangian lead to conservation laws of Baryon number
and electron, muon and tau lepton number (4.15-4.18).
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5 Deep inelastic scattering and partons

Quarks and gluons (partons) are not observed as final states in our experiments yet we
said they are the components of mesons and baryons and hence nuclei. What is the
evidence we have of this being the case? Quite some, here let us discuss deep inelastic
scattering as one example which also has historical relevance.

Consider shooting electrons at protons at very high center of mass energy, in particu-
lar higher than the proton mass s� m2

P ∼GeV2. At this energies the electron can probe
the internal structure of the proton and ‘catch’ an unsuspecting parton which behaves
like a free particle. This parton receives a large momentum transfer and breaks away so
that the outcome, after hadronization, is that the proton has ‘broken’ into various other
hadrons.

e−, kµ

u, p′µ

e−, k′µ

u , xpµ

P, pµ

γ, q2 >1GeV2

To see how experimental data can tell us whether this picture is correct, let us start
computing the scattering at the partonic level, for concreteness let’s pick an u quark and
the scattering e+ u→ e+ u. Let’s assume the u quark carries a fraction x of the total
momenta of the proton, then the partonic process is

−iM̂ = ieūe(k
′)γµue(k)

−igµν

q2

(
−i2e

3

)
ūu(p′)γνuu(xp) (5.1)

with q = k − k′ = p′ − xp and we useˆto denote partonic quantities. Recall the formula
for the cross section, which in this case we can simplify a bit since we have relativistic
particles ( we take q2 � m2

i )

dσ̂ =
1

2

1

2|k|2x|p|
d3p′d3k′

2|k′|(2π)32|p′|(2π)3
|M̂|2(2π)4δ4(xp+ k − p′ − k′) (5.2)

If one works on the phase space for the final parton

(2π)4δ4(xp+ q − p′)
d3p′

(2π)32|p′|
= δ(x|p|+ q0 − |xp+ q|) 2π

2|xp+ q|

=
π

p · p′
δ

(
x+

q2

2p · q

)
= 2πδ

(
2p · qx+ q2

)
(5.3)
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where q = k − k′. The lepton phase space one can rewrite changing variables from |k|,
cos θ in the C.M. to q2, p · q as

dk′3

(2π)32Ek′
=
d(q2)d(p · q)
4(2π)2p · k

(5.4)

where we also integrated over the angle φ ∈ [0, 2π) (k = |k|(sθcφ, sθsφ, cθ)) knowing that
the amplitude does not depend on it. For the matrix element, since we do not know the
spin of the the particles involved, we average over incoming and sum over outgoing as:

1

22

∑
se,su

∑
s′e,s
′
u

M̂M̂† =
1

4

∑
se,su

∑
s′e,s
′
u

∣∣∣∣ūe(k′, s′e)|γµue(k, se)e2

q2

2

3
ūu(p′, s′u)γµuu(xp, su)

∣∣∣∣2

=
1

4

(
2e2

3q2

)2

Tr(γµx/pγν/p
′)Tr(γµ/kγν/k

′
)

=

(
2e2

3q2

)2

8
(
(xp · k)(p′ · k′) + (xp · k′)(p′ · k)

)
=

(
2e2

3q2

)2

8
(
(xp · k)2 + (xp · k′)2

)
(5.5)

we put it together and find

dσ̂ =

(
2e2

3q2

)2
1

2(2xp0)(2k0)
8
(
(xp · k)2 + (xp · k′)2

) d(q2)d(p · q)
4(2π)2p · k

2πδ
(
2xp · q + q2

)
=x

(
2e2

3q2

)2
(p · k)2 + (p · (k − q))2

4π(p · k)2
δ
(
2xp · q + q2

)
d(q2)d(p · q) (5.6)

Now comes the part that we cannot compute; what is the probability of the photon
bumping into a parton with fraction of momentum x? This is a magnitude for whose
estimation perturbation theory does not work, yet that does not deter us, we just give
it a name: parton distribution function fu(x) and sum over it,

dσ =dσ̂ fu(x)dx =

(
2e2

3q2

)2
p · k
4π

(
1 +

(p · (k − q))2

(p · k)2

)
d(p · q)xfu(x)dx (5.7)

=
e2

8π

s

q4

(
2e

3

)2

(1 + (1− y)2)dy xfu(x)dx

where we used the Dirac delta to set x = −q2/(2p · q), s = (p + k)2 ' 2p · k and found
appropriate to change variable from p · q to y ≡ p · q/p · k. Finally we know it’s not only
the u quark in the proton but also the d so we add it up too

dσeP→eX =
e2

8π

s

q4
(1 + (1− y)2)dy

((
2e

3

)2

fu(x) +

(
−e
3

)2

fd(x)

)
dx (5.8)
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where by eX in the final state we mean summing over all products of the collision, being
inclusive. Although we do not know a priori fu,d(x) this is still a predictive result which
we can test against data.

The general cross section without assuming anything about the components of the
proton, only using eletromagnetic gauge invariance reads

dσeP→eX =
e4

4π

s

q4

(
xy2F1(x, y) + (1− y)F2(x, y)

)
dxdy (5.9)

With F1,2 arbitrary functions of (x, y). Stare at eqs. 5.8 and 5.9 for a minute. Even if
we start from arbitrary parton distribution function we cannot obtain arbitrary F1,2, for
one f only depends on x. Expressed in terms of F1,2 the conditions that follow from our
quark description read

quark model F2(x, y) =2xF1(x) =
∑
i

Q2
ixfi(x) (5.10)

with Qi the charge of the parton in units of e (2/3,−1/3 for u, d). This relation is known
as Callan-Gross equation. The fact that the functions F1,2 depend only on x is known
as Bjorken scaling and a way to test it is to extract F1,2 from experiment and plot them
for fixed x and varying y, if they do not change the Callan-Gross relation holds and the
quark model prediction is right. You can check how well this holds in fig. 10.

Figure 10: Figure from the paper by Kendall, Friedman, Taylor et al. from the early
70’s displaying Bjorken scaling. Converting to our notation νW2 = F2, ω = 1/x and
they vary q2 instead of y which are related by a change of variables. One can observe
that for x fixed F2 does not change. The authors were awarded the 1990 Nobel prize in
Physics.
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N The proton is made of partons p which follow a distribution fp(x) (called
parton distribution function) as a function of the momentum fraction x. Evi-
dence for this description is the experimental corroboration of Bjoken scaling and
the Callan-Gross relation in deep inelastic scattering of electrons off protons.
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6 PDFs and Hadronic vs Partonic

Our study of deep inelastic scattering showed that we can write the cross section for the
process, eP → eX with X meant to be anything that can be produced, as an integral
over the partonic process times a function f(x) of the fraction of momenta x∫

dσeP→eX =

∫ ∑
i

fi(x)dσ̂e i→e idx (6.1)

These functions f are called parton distribution functions and their extraction from
experiment (we cannot compute them) provides a window into the proton inner structure.
Let us refine our picture of the proton by contrasting with the pdf of the u quark displayed
on fig. 11 which we took from our own hepdata website at Durham.

Figure 11: Parton distribution function for the up quark and the anti up quark. Taken
from hepdata

We see that the function xf(x) peaks around x = 1/3 but the most salient feature
is that at low x, xf(x) does not vanish. This means that the total probability

∫
f(x)dx

diverges since f(x) ∼ 1/x at x→ 0, what have we missed? We only considered the proton
as 3 quarks sitting still and not the interactions that keep them together, the plot in
figure 11 is a stark reminder of how simplistic this view is. As we now know QCD is the
theory that describes the interactions and, although it this regime we cannot compute
using it, it still provides a description to make sense of the results.

In our starting picture each quark would carry one third of the momenta and so its
pdf would look like a peaked function around x = 1/3. Nevertheless quarks ‘talk’ to
each other exchanging gluons and hence momenta back and forth which means that they
do not have a precisely defined value of momenta and the width of the peaks broaden.
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In addition virtual processes occur like the emission of a gluon and his splitting into a
quark anti-quark pair. It could then be that our photon encounters this quark. This
we typically consider ‘unlikely’ since in perturbation theory this emission requires more
powers of the coupling g2

s and is sub-leading. However, in this regime gs > 1! the logic
of perturbation theory does not apply and this is the mechanism that produces the rise
in f(x) for x → 0, we encounter up quarks popping out. These are called sea quarks
as opposed to valence quarks. A consequence of this picture nonetheless is that if the
low x u’s come out of a quark-anti-quark splitting, there should be antiquarks around
too. There are, and they have their pdf fū which we plot in fig 11. Our intuition for the
component quarks then applies to the difference, since the sea quarks and anti-quarks
must have the same pdf

fuv ≡fu(x)− fū(x)

∫
fuv(x)dx = 2 (6.2)

fdv ≡fd(x)− fd̄(x)

∫
fdv(x)dx = 1 (6.3)

Another integral result is that the total momenta must be the sum over all parton pdfs

times the fraction of momenta they carry, if we include strange quarks which are also
present, this means∫

x (fu(x) + fū(x) + fd(x) + fd̄(x) + fs(x) + fs̄(x)) dx
?
= 1 (6.4)

Well, we can do the integral on the RHS and, for example, at q2 = 10 we find the result
is 1/2. There is something missing which the scattering of electrons off protons does not
see. A neutral parton...

That is right, the gluon, the gluon is the missing parton in our counting. One indeed
has the gluon pdf fg(x) and as we shall see it is the gluons that are responsible for most
of the production of Higgs bosons at LHC.

As you might remember, at LHC we collide protons and protons. How do we obtain
the hadronic or ‘real life’ cross section from the partonic process in this case? Well there
will be two pdfs involved now and a double sum over partons. So the total cross section
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reads.

σ(s) =
∑
ij

∫
dx1dx2fi(x1)fj(x2)σ̂ij(x1x2s) (6.5)

where i, j denote the different partons. We have made explicit the dependence of the
partonic cross section on the external CM energy s. Why do we evaluate the partonic
cross section at sx1x2? Let’s work out the kinematics, the partonic CM energy is

P, kµ

u, p′µ

u, k′µ

u, x1pµ

u, x2kµ

P, pµ

s = (p+ k)2 = p2 + k2 + 2p · k ' 2p · k (6.6)

ŝ = (x1p+ x2k)2 = x2
1p

2 + x2
2k

2 + 2x1x2p · k ' x1x2s (6.7)

since at the LHC energies we can neglect to a very good approximation the mass of
partons p2 = m2

P ∼GeV2 vs 2k · p ∼(10TeV)2. The center of mass energy then at the
elementary process is a fraction of the total energy. Given that at these energies the
pdfs peak to low x, it also explains why even if the LHC is nominally set at 13TeV very
little of the events carry the full energy.

N Study of the parton distribution functions (pdfs) revealed a sea of quark anti-
quark pairs and gluons in the proton which completed our list of partons (partons
= quarks, anti-quarks and gluons). Observables for hadron processes are obtained
integrating the partonic magnitudes with the pdfs, as an example at LHC
σ(s) =

∫
σ̂(sx1x2)f(x1)f(x2)dx1dx2 with the kinematics of eqs. 6.6-6.7.
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7 Quantum chromodynamics

Thus far we have seen evidence for the proton made of quarks but also neutral partons
carrying a large share of momenta which we called gluons, as well as anti-quarks. This
gives us an inventory of elementary particles that make up hadrons, yet, how do they
interact is something we have not quite discerned yet.

Red blue and green

For starters how do we know it is SU(3)c? Consider an experiment like that at PETRA
accelerator at DESY where positrons and electrons where made to collide. They can an-
nihilate and, at low energies through a virtual photon, create pairs of whatever particles
have electromagnetic charge and are available for production (i.e.

√
s > 2mi). This has

the matrix element

−iM = iev̄eγ
µue

−igµν

(p1 + p2)2
(−ieQi)ūiγνvi (7.1)

Take the annihilation into a muon, this has a cross section, sitting in the C.M. frame
and approximating all particles to be massless as

σ =
1

2s

∫
1

4

∑
se+se−

∑
sµ+sµ−

|M|2(2π)4δ4(pe+ + pe− − pµ+ − pµ−)
d3p

µ−
d3p

µ+

(2π)62|p
µ+ |2|pµ− |

= Q2
µ

e4

12πs
(7.2)

where we have used the fact that in the CM (pe− + pe+)ν = (|p
e+
| + |p

e−
|, 0, 0, 0) and

|p
e+
| = |p

e−
| =
√
s/2, we have averaged over initial-state spins and summed over final

states and we have that the muon has charge Qµ = −1 just like the electron.
We kept the charge explicitly however because we want to repeat the process for a

different particle pair production. If we now change the final state to a quark-antiquark
pair we would go through the same motions, now with Qu = 2/3 or Qd = −1/3 for up
or down but other than that the Feynman vertex is just the same. Then one squares
the modulus of M, averages over initial states and sums over final states. Quarks are
also spin 1/2 particles like muons, so that part of the computation is the same again,
any other difference between the two? Well, good you asked because quarks are strong
interacting particles and according to lecture 4, are fundamentals or ‘complex vectors’
in SU(3)c. Then we have we sum over colour too

σ =
1

2s

∫ ∫ ∑
r,b,g

1

4

∑
se+se−

∑
sqsq̄

|M|2(2π)4δ4(pe+ + pe− − pq − pq̄)
d3p

q
d3p

q̄

(2π)62|p
q
|2|p

q̄
|

(7.3)

= 3
Q2
qe

4

12πs
(7.4)
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Figure 12: Ratio of cross sections R as a function of center of mass energy taken from [2].

One last step before looking at experiment is using quark-hadron duality which we have
been quietly taking for granted and now we acknowledge although we will not derive it.
It implies that, for an inclusive process, we can do computations at the partonic level i.e.
using QCD with quarks and gluons, and we will obtain the same results, to the order in
g2
s we are working at, as for the inclusive hadronic process. We have that a quark anti-

quark pair will hadronize (turn into hadrons) after separating a distance ∼ fm and it can
do so to any one of a multitude of states (e.g. dd̄ → (π+π− orπ+π−π0 orK+K− or ... )
the probability to end up in any of these states is non-computable from first principles,
but the sum over all possible channels (i.e. inclusive) will return one. A justification of
this can be sketched for a cross section with insertions of the identity as a sum over all
possible states

∑
|i〉〈i| yet we will not dig any deeper in these notes.

Then we have that the cross section for e+e− → hadrons can be estimated as the
sum over quark-antiquark production and so

R =
σe+e−→hadrons
σe+e−→µ+µ−

= 3
∑
i

Q2
i +O(αs) (7.5)

Now one can take a tour up in energies and start adding up quarks. In the beginning we
can only access up and down type for low energies and R = 5/3, but then at

√
s ∼ 2ms,

we have enough energy budget to buy a strange quark-antiquark pair and R = 2. A
little higher up there is the charm quark mc ' 1.3 GeV and further up the bottom
mb ' 4.2 GeV. You can amuse yourself to compute R in these last regimes and compare
with fig. 12.

The gluon

Overlooking the peaks at specific energies which correspond to resonances in fig. 12, the
prediction from SU(3)c of 3 colors works but not to a very precise level. Indeed we
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should take this estimation with a grain of salt because corrections to it go with the
strong coupling constant gs. One example is the diagram in figure 13 where there is
the emission of a gluon which appears in the final state and hence an extra factor of gs
(remember the Feynman rule for the QCD vertex is −igsT aγµ/2). In our inclusive sum
we should add this too and our formula gets corrected as

R =

(
3
∑
i

Q2
i

)(
1 +

g2
s

4π2

)
+O(α2

s) =

(
3
∑
i

Q2
i

)(
1 +

αs
π

)
+O(α2

s) (7.6)

so as long as αs ≤ π we have an expansion seemingly under control; for example at√
s = 34GeV we have αs = 0.135± 0.05.

e−

e+

q

q̄

G

Figure 13: Three jet event as evidence for the gluon from the TASSO detector in the
PETRA accelerator, taken from here

This same process does not only mean we had to compute some more to get a good
estimate but it also offers another test of QCD. If the quark anti-quark and gluon are
energetic enough and are produced at angles sufficiently large with respect to each other,
we can reconstruct the kinematics of the partonic event. In this case hadronization will
occur after the partons separate a distance of ∼fm as it always does, but the hadrons
produced out of each parton will travel roughly in the original direction. This means
we can expect the hadrons to be found around a ‘cone’ with axis in the original parton
direction and smaller radius (or more tightly packed hadrons) the larger the momentum.
This bunch of localized hadrons we call a jet.

A pair production of quark anti-quark at sufficient energy will then produce a pair
of jets, and the process in the LHS of fig. 13 with the emission of an energetic gluon will
produce three jets. So far we had reviewed evidence for quarks inside the proton, found
that the ratio R pointed at 3 colours but now if we find 3 jet events it will give evidence
for the Gluon and an estimate of the coupling or dynamics, gs.

Three jet events were observed at PETRA as the one on the RHS of fig. 13 and the
rate of this events provided an estimate for the coupling in QCD in another milestone
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in the corroboration of our model of strong interactions.

Running coupling constants

In these lectures we should not step outside of tree level realm but we should be made
aware that every process receives extra contributions from what is sometimes called
radiative corrections, quantum corrections or in general loop corrections. Here we just
want to review an important consequence of these loop effects, the running of coupling
constants.

A force is produced by the exchange of a mediator so let us look at corrections of the
gluon and photon propagators. Remember that what we call tree level processes have all
internal line momenta fixed by 4-momentum conservation to be linear combinations of in
and out states momenta. At this level the propagator of a gauge boson diagrammatically
is just a wavy line from one point to another. At the one loop level, with the interactions
of QED and QCD, i.e. three point (matter-matter-gauge boson) and in the case of QCD
also (gauge boson)3 and (gauge boson)4 we can build the diagrams in fig. 147. In these
diagrams the momenta of the propagator is not fixed by 4 momentum conservation,
if they have momenta q1,2 and the external momenta is q we have q = q1 + q2, and
q1 + q2 = q, which we can solve with q1 = q − l and q2 = l with arbitrary loop momenta
lµ. This momenta we integrate over, with the two propagators we have something like;∫

d4l

(2π)4

g2

(q − l)2l2
(7.7)

This integral we won’t do but we note that for very large l it goes as dl/l and will
produce a logarithm (divergent actually). To make sense of this contribution we have to
renormalise our theory (i.e. make sure that in the S matrix decomposition S = 1−iM· · ·
the 1 stays a 1) but after the dust settles and we get the final result what this divergence
is doing is to remind us that we have to input the parameters of our theory at a certain
scale

√
s0. Explicitly we have with α = g2/4π:

α(s) = α(s0)− β

4π
α2 log

(
s

s0

)
(7.8)

where β is called the beta function and encodes the particulars of our theory, for QED
and QCD we have

βQED = −4

3
βQCD = 11− 2

3
Nq (7.9)

where Nq is the number of quarks. The beta function in QED is negative, which back
into eq. 7.8 means that for higher energy, s+ +, the coupling grows larger, α+ +. QCD
on the other hand has the extra contribution, the ‘11’, which comes from the gluon
diagrams and given that Nq = 6 (u, c, t, d, s, b) we have βQCD > 0. Therefore the non-
abelian character of QCD makes it get weaker with higher energy. This is what we call

7There is one missing diagram for QCD, can you draw it? [Hint there’s a 4 gluon vertex in QCD]
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q − l l

Figure 14: One loop corrections to gauge boson propagators

asymptotic freedom and the reason we can trust partonic computations with quarks and
gluons for high enough energy in QCD. You can see a plot of how the QCD coupling
changes in fig. 15.

Figure 15: Running or variation of the strong coupling with energy (Q ∼
√
s)

N Quarks come in three colours as the experimental measurement of the ratio R
in eq. 7.5 shows and the existence of gluons and value of gs is evidenced in three
jet events. The coupling, due to quantum corrections, changes with the energy at
which it is measured and this is controlled by the beta function β in eq. 7.8. In
QCD (βQCD > 0) the coupling decreases as we increase the energy which leads to
confinement at low energies and asymptotic freedom at high energies.
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8 Electroweak interactions

The most prominent feature of the electroweak interactions is that the gauge symmetry
is hidden at low energies. Not all of it however, out of the ‘breaking’ a part of if comes
out intact, and that is electromagnetism. This lecture will work out how this comes
about and the consequences of the breaking.

As we understand it nowadays, the
vacuum expectation value (vev) of the
scalar in our matter content H is non-
zero. In particular

〈0|H|0〉 ≡ 〈H〉 ≡

(
0
v√
2

)
(8.1)

with v = 246GeV. This is actually not
hard to explain with the potential we
wrote

V (H) =−m2
HH

†H + λ(H†H)2 (8.2)

so the configuration that minimizes the energy is that for which dV (H)/dH = 0

V ′(H) = −m2
HH

† + 2λ(H†H)H† 〈H†H〉 =
v2

2
=
m2
H

2λ
(8.3)

where we note that we are assuming m2
H ≥ 0 otherwise the minimum will sit at v = 0

and there would be no electroweak symmetry breaking (and the world would have looked
very different for example hydrogen does not form for massless electrons).

With this much input one can now look at the consequences by simply going around
the Lagrangian for the Standard Model and substituting the Higgs doublet for its vacuum
value, 〈H〉 in eq. 8.1.

Masses for gauge bosons

We look at the gauge sector first. Gauge bosons will get a mass which will come out of
simply substituting the vev in D†µHDµH. First let us do

Dµ〈H〉 = i

(
g′

2 Bµ + g
2W

3
µ

g
2(W 1 − iW 2

µ)
g
2(W 1 + iW 2

µ) g′

2 Bµ −
g
2W

3
µ

)(
0
v√
2

)
=

iv√
2

( g
2(W 1 − iW 2

µ)
g′

2 Bµ −
g
2W

3
µ

)
then the kinetic term for the vev of the Higgs is just the modulus of this 2-vector as:

Dµ〈H〉†Dµ〈H〉 =
v2

2

(
g2

4
(W 1

µ − iW 2
µ)(W 1µ + iW 2µ) + (

g′

2
Bµ −

g

2
W 3
µ)(

g′

2
Bµ − g

2
W 3µ)

)
(8.4)
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It is customary to define complex W bosons as

W+
µ =

1√
2

(
W 1
µ − iW 2

µ

)
W−µ =

1√
2

(
W 1
µ + iW 2

µ

)
(8.5)

Whereas we note that only the combination of bosons gW 3 − g′B appears in eq. 8.4, so
let’s give it a name:

g

2
W 3
µ −

g′

2
Bµ =

√
g2 + g′2

2

(
g√

g2 + g′2
W 3
µ −

g′√
g2 + g′2

Bµ

)
(8.6)

≡
√
g2 + g′2

2

(
cos θwW

3
µ − sin θwBµ

)
≡
√
g2 + g′2

2
Zµ

where we have defined both Z and the weak angle θw, tan θw = g′/g. All these definitions
back8 into eq. 8.4

Dµ〈H〉†Dµ〈H〉 =
v2

2

(
g2

2
W+
µ W

−µ +
g2

4 cos2 θw
ZµZ

µ

)
(8.7)

comparing with mass terms for vector bosons in the Lagrangian

LMV
= M2

WW
+
µ W

−µ +
1

2
M2
ZZµZ

µ (8.8)

one can extract the expression for the masses

MW =
gv

2
= 80GeV MZ =

gv

2 cos θw
= 91GeV (8.9)

How about the other gauge boson out of the 4 in SU(2)L ×U(1)Y ? With our definition
of Z comes the orthogonal combination(

Zµ
Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
W 3
µ

Bµ

)
(8.10)

which we can invert and use to substitute everywhere we find a W 3, B for Z, A. In
particular they show up in covariant derivatives so we can write with generality

Dµ =∂µ +
ig√

2
σ+W+

µ +
ig√

2
σ−W−µ + i

g

2
σ3(cθwZ + sθwAµ) + ig′QY (−sθwZµ + cθwAµ)

=∂µ +
ig√

2
σ+W+

µ +
ig√

2
σ−W−µ + i

(g
2
σ3cθw − g′QY sθw

)
Zµ + i

(g
2
sθwσ3 + g′QY cθw

)
Aµ

=∂µ +
ig√

2
σ+W+

µ +
ig√

2
σ−W−µ +

ig

cθw

(σ3

2
c2
θw −QY s

2
θw

)
Zµ + igsθw

(σ3

2
+QY

)
Aµ

(8.11)

8Can you derive this yourself? You’ll need θw’s definition.

40



PHYS4181 - Phen 8 ELECTROWEAK INTERACTIONS

where cθw(sθw) is short for cos θw(sin θw) and we have used the definition of the weak
angle9 and σ± are ladder operators 2σ+ = σ1+iσ2, σ− = (σ+)†. With this expression for
covariant derivative in terms of mass states W±, Z, A we can recast the field strengths
and their squares in the Lagrangian WµνW

µν and BµνB
µν . One can use the relation

ig

2
Wµν + ig′QYBµν = [Dµ, Dν ] (8.12)

to find Wµν and Bµν in terms of W±, Z,A using eq. 8.11. The fact that we define our
mass states with an orthogonal definition (eq. 8.10) means they will stay cannonically
normalized, but in addition the non-abelian character of SU(2)L will bring vector boson
self interactions like those in fig. 16. In these lectures we won’t derive their form but
note that the photon couples to the W± linearly as it should cause the W is charged.

A,Z

W+

W−

Figure 16: Electroweak bosons self-interactions

We turn next to the coupling of electro-weak bosons to fermions. The electromag-
netic coupling is defined as e = g sin θw and the combination σ3/2 + QY in the last
line of eq. 8.11 should give us the charge for each field, let’s see

ψL : QLem =
σ3

2
+QLY ψR : QRem = QRY

Qem =
(σ3

2
+QLY

)
PL +QRY PR (8.13)

qL = (uL, dL) `L = (νL, eL) uR dR eR
QY : 1/6 −1/2 2/3 −1/3 −1

Qem σ3/2 +QY σ3/2 +QY QY QY QY
= ( , ) ( , )

Figure 17: Electric charge in terms of SU(2) × U(1)
charges. The last line is for you to fill up.

where we have used chi-
ral projectors to condensate
notation.

You can amuse yourself
to fill up table 17 and find
that this actually gives the
charges we know of, e.g

Qem`L =

(
σ3

2
− 1

2

)
`L

=

(
(1

2 −
1
2)νL

(−1
2 −

1
2)eL

)
9Can you derive line 3 from 2 in 8.11? You’ll need θw’s definition.
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In particular electromagnetism is not chiral, which means QLem = QRem and no γ5 in
the coupling of the photon to fermions. For the W and Z bosons however the chiral
nature of the Standard Model will leave an imprint. This is clearest in the interactions
of the W boson which only couples to left-handed fields. To interpret what these types
of couplings imply we turn to chirality next.

Chirality

Chirality and handedness is not a good quantum number for Dirac fermions, that is,
they are not in a specific chirality state PLu(p, s) 6= ±u(p, s) but rather a superposition.
The reason for this is that a Dirac mass term mixes left and right fields. This we can
see explicitly in the SM after substitution of 〈H〉 in the Yukawa couplings

LY =− q̄LYu〈H̃〉uR − q̄LYd〈H〉dR − ¯̀
LYe〈H̃〉eR + h.c. (8.14)

=− ūLYu
v√
2
uR − d̄LYd

v√
2
dR − YeēL

v√
2
eR + h.c. (8.15)

and so we have that the Higgs also gives masses to the fermions with m = Y v/
√

2. The
exception are neutrinos which are massless in the SM (but not in nature).

One has nonetheless that in situations in which the mass of the fermion can be
neglected, chirality does have a simple physical interpretation, it’s helicity:

m→ 0 right handed fermion↔ helicity =
S · p
|p|

= +1/2 p
S

m→ 0 left handed fermion↔ helicity =
S · p
|p|

= −1/2 p
S

with helicity ĥ being spin projection on the three-momenta direction. In this
way the W couples to helicity −1/2 neutrinos and as for helicity +1/2 neutrinos we do
not even know if they exist because is a different field νR!

Let’s use neutrinos to exemplify how chiral interactions couple differently to spin and
violate parity in the process.

λ = +ẑ
W+

νL e+

S = 1/2ẑĥ = −1/2

↔
Parity

e+ ν?

ĥ = 1/2S = 1/2ẑ

Not in Nature!

Figure 18: Polarized W decay into two configurations, one of which does not occur.

Assume we can prepare a W+ boson with spin λ = +1 in the z direction and assume
it decays into positron and a neutrino traveling in the original W spin direction, ẑ and
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in a given helicity state. Momentum conservation fixes the spins of the two fermions
to be aligned in the ẑ direction which, depending on which way the neutrino is going,
means different helicity.

Figure 19: Chien Shiung-Wu, de-
signer of the Wu experiment.

Let’s first take the neutrino going backwards,
then it has helicity −1/2 and we have a LH neu-
trino. The neutrino going the other way we can
obtain with a parity transformation, parity flips
sign in x and hence p = γmdx/dt but spin has
two components S = x ∧ p and doesn’t flip. In
resume (parity)(x, p)=(−x,−p) whereas for spin
(parity)S = S and helicity (parity)S · p/|p|=−S ·
p/|p|. This is easier to sketch than to say, and so
does fig. 18. The parity transformation brings us
then to a helicity +1/2 neutrino and such a parti-
cle (if it exists) does not couple to the W boson.
So we have that weak interactions distinguish he-
licities and violate parity; positrons are only shot forwards!.

Although this was an idealized scenario, it translates to more realistic ones mediated
by the weak interaction. As a relevant example Chien-Shiung Wu showed experimentally
that in the decay of polarized 60

27Co to 60
28Ni and an electron and anti-neutrino, the

electrons were only going one way. This discovery lead to Tsung-Dao Lee and Chen-Ning
Yang winning the 1957 Nobel prize in physics while she was awarded the first Wolf prize
in 1978.

Z,W couplings to fermions

One has then that the charged W± boson retain the left handed character of the SU(2)L
group, while for the Z boson we rewrite the covariant derivative, using the PL,R projec-
tors, as

Dµ =∂µ + Zµ
ig

cθw

[(σ3

2
c2
θw −Q

L
Y s

2
θw

)
PL −QRY s2

θwPR

]
+

ig√
2

(
0 W+

µ

W−µ 0

)
PL + ieQemAµ (8.16)

=∂µ +
ig

cθw
Zµ

[(σ3

2
−Qems

2
θw

)
PL −Qems

2
θwPR

]
+

ig√
2

(
0 W+

µ

W−µ 0

)
PL + ieQemAµ

=∂µ +
ig

cθw
Zµ

[σ3

2
PL −Qems

2
θw

]
+

ig√
2

(
0 W+

µ

W−µ 0

)
PL + ieQemAµ

where we have used the relations for QL,Rem in eq. 8.13 to substitute hypercharges and
PL +PR = 1. We see then that the Z boson retains part of the left-handedness but also
has a vector coupling proportional to the electromagnetic charge of the given fermion.
Before moving on let us put this covariant derivative in the action for quarks to write
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explicitly:

iq̄Lγ
µDµqL + iūRγ

µDµuR + id̄Rγ
µDµdR

=iūγµ
(
∂µ +

igs
2
TaG

a
µ

)
u+ id̄γµ

(
∂µ +

igs
2
TaG

a
µ

)
d− g√

2
ūγµPLdW

+
µ −

g√
2
d̄γµPLuW

−
µ

− g

cθw
ūγµ

(
1

2
PL −

2

3
s2
θw

)
uZµ −

g

cθw
d̄γµ

(
−1

2
PL +

1

3
s2
θw

)
dZµ

− 2e

3
ūγµuAµ +

e

3
d̄γµdAµ (8.17)

So finally we have written interactions in terms of mass eigenstates W±, Z,A, which are
the ones we see in experiment, starting from the original SU(2)L×U(1)Y gauge bosons
W I , Bµ. The pattern of breaking can then be summarized as SU(2)L×U(1)Y → U(1)em

and leaves behind massive W±, Z bosons which we cannot produce at low energies where
we only ‘see’ the familiar photon Aµ with the charges that derive from a combination of
hypercharge and weak isospin.

N Expanding the Higgs doublet around its vev the symmetry breaking SU(2)L×
U(1)Y → U(1)em is realized and one obtains the usual couplings of the photon but
also the heavy vector bosons. The relation between W 3, B and Z,A is a rotation
given by the weak angle θw and the W Z retain chiral couplings different for left
and right handed fermions. Chirality coincides with helicity when the mass of
fermions can be neglected.
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9 Elecroweak Bosons properties

Discovery of the W,Z bosons, theorised in the 60s, had to wait till the 80’s and the
Super Proton Synchrotron (SPS) at CERN. The SPS is a synchrotron accelerator with
6.9km of circumference and capacity to accelerate protons & anti-protons electrons &
positrons. For the discovery of the electroweak bosons it operated as a proton-antiproton
collider for the UA1 and UA2 detectors. In order to study the W,Z properties to an
accuracy of permile level, the SPS was used as an injector for a bigger collider, the Large
Electron-Positron collider (LEP). Electron and positrons accelerated at the SPS were

e−

e+

f

f̄

Z

later transferred to LEP in a 27 km circular tunnel (which nowadays hosts the LHC) and
were accelerated to initially ∼ 45GeV (s = 90GeV) and in a second stage to 100GeV
(s ∼ 200GeV).

From the covariant derivative we derived in eq. 8.16 we see that the Z couples to
the electron field with an interaction that could mediate electron-positron annihilation
into a Z boson. Consider for example a process like e+e− → Z → µ+µ+ which has an
invariant matrix element

−iM = − ig

cθw
v̄eγ

ρ

(
−PL

2
+ s2

θw

)
ue
−igρν + i

pZρ p
Z
ν

M2
Z

s−M2
Z + iε

(
− ig

cθw

)
ūµ−γ

ν

(
−PL

2
+ s2

θw

)
vµ+

(9.1)

with s = (pe+ + pe−)2. As mentioned above LEP initially ran at s ∼ 90 where the prop-
agator in the formula above seemingly blows up! Indeed when the particle is produced
on resonance (s = M2) one has to reconsider the process at hand. In this regime the
particle is no longer virtual but the centre of mass energy is just right to produce it. If
the particle were stable, this ‘blowing up’ or discontinuity of the amplitude would be
telling us that e+e− → Z is itself a possible process on its own and Z can be a final
state. If instead the particle is unstable, and in particular with a a short lifetime so that
it decays within our experiment one has to modify the particle propagator, which is to
say how the particle evolves with time.

The easiest way to do this from the formula above is to substitute the mass in the
denominator as MZ →MZ − iΓZ/2 with ΓZ the total decay width of the Z boson (the
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decay width is the inverse of the lifetime τZ = 1/ΓZ). This extra imaginary part in the
action for the particle gives a time evolution for the wave-function, in the rest frame,
as e−i(M−iΓZ/2)τ and hence the probability (—wavefunction—2) decays exponentially as
e−Γτ . The resulting propagator and cross section will scale as

dσ ∝ 1

|s−M2
Z + iΓZMZ − Γ2

Z/4|2
=

1

(s−M2
Z − Γ2

Z/4)2 + Γ2
ZM

2
Z

(9.2)

This is called a Breit-Wigner distribution and looks like a peak at s ' M2
Z sharper

the smaller ΓZ/MZ . In the jargon of particle physics we call ΓZ/MZ small a narrow
resonance and ΓZ/MZ large a broad resonance.

Figure 20: Cross section for e+e− annihilation where the different resonances are dis-
cernible.

In the case of a well defined peak (Γ/M � 1) the narrow width approximation applies
and we can compute the cross section as the exchange of an on-shell Z which implies
production and decay are factorized10 which reads for the cross section

σN.W.A. =
12πs

M2
Z

Γ(Z → e+e−)Γ(Z → µ−µ+)

(s−M2
Z)2 +M2

ZΓ2
Z

(9.3)

This allows for the computation to be broken down into smaller pieces and for our
experiment to look for all different decays and reconstruct the couplings of the Z boson.
Let us focus on one in particular for a sample computation, e+e− → Z → ν̄ν and
the decay Z → ν̄ν. The interaction term we can derive from the original Standard
Model Lagrangian by focusing on the neutrino field in the lepton doublet `L and it reads

10This is true when one computes total cross sections integrating over angles and averaging over spins,
if one considers differential rates some entanglement of initial and final states remains.
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Z →

ν, p
ν

ν̄, p
ν̄

θ

Figure 21: Z → νν in the Z rest frame

Lint =i
(
¯̀
Lγ

µDµ`L
)

(9.4)

=iν̄
igZµ

cosθw
γµ

(
(σ3)11

2
PL − s2

θwQ
ν
em

)
ν + . . .

=− gZµ
2cθw

ν̄γµPLν + . . . (9.5)

so for neutrinos we have that the Z boson
preserves the chiral character of SU(2)L and
couples only to LH fields. This is also one
of the reasons why we have no evidence of
RH neutrinos since as we will see the W cou-
ples as well to LH fields and neutrinos have
no other known interactions. The invariant
matrix element is

−iMZ→ν̄ν = εµ(p
Z
, λ)ūν(p

ν
, sν)

−ig
2cθw

γµPLvν(p
ν̄
, sν̄) (9.6)

If we are computing the rate we average over initial states which could be any of the
three polarizations λ = ±1, 0 and we sum over all possible final states, that is:

1

3

∑
λ

∑
sνsν̄

MM∗ =
1

3

g2

4c2
θw

∑
λ

∑
sνsν̄

εµε
∗
ρūγ

µPLvv
†P †L(γρ)†(γ0)†u (9.7)

=
1

3

g2

4c2
θw

∑
λ

∑
sνsν̄

εµε
∗
ρūγ

µvv̄γρPLu (9.8)

=
1

3

g2

4c2
θw

(
pµZp

ρ
Z

M2
Z

− ηµρ
)

Tr
(
γµPL/pν̄γρPL/pν

)
(9.9)

we now use the fact that we can bring one PL towards the other and P 2
L = PL and then11

the relation

Tr(γµγαγργβPR) = 2
(
ηµαηρβ + ηµβηρβ − ηρµηαβ + iεµαρβ

)
(9.10)

to find

1

3

g2

4c2
θw

(
pµZp

ρ
Z

M2
Z

− ηµρ
)

Tr
(
γµPL/pν̄γρPL/pν

)
(9.11)

=
g2

6c2
θw

(
pµZp

ρ
Z

M2
Z

− ηµρ
)(

(pν̄)µ(pν)ρ + (pν̄)ρ(pν)µ − ηρµpν̄ · pν + iεµαρβ(pν̄)α(pν)β

)
=
g2

6c2
θ2

(
2
pZ · pνpZ · pν̄

M2
Z

+ pν · pν̄
)

(9.12)

11γµPL/pν̄γρPL/pν = γµ/pν̄PRγρPL/pν = γµ/pν̄γρP
2
L/pν = γµ/pν̄γρPL/pν = γµPL/pν̄γρ/pνPR
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where given that εµνρσ is fully antisymmetric the contraction with the averaged εε∗

cancels.
Now let us work on the phase space and the invariant contraction of momenta, for

simplicity we sit on the CM frame

d3p
ν
d3p

ν̄

2|p
ν
|2|p

ν̄
|(2π)6

(2π)4δ4(pZ − pν − pν̄) =
d3p

ν

4|p
ν
|2(2π)2

δ(MZ − |pν | − |pν |)

=
sin θdθdφ

4(2π)2
δ(MZ − 2|p

ν
|)d|p

ν
| = sin θdθdφ

8(2π)2
(9.13)

this also means that the functions of momenta pi in the invariant matrix element squared
read:

pν · pν̄ = |p
ν
||p

ν̄
| − p

ν
· p
ν̄

= 2|p
ν
|2 =

M2
Z

2
pν · pZ = MZ |pν | =

M2
Z

2
(9.14)

where we have used 4 momentum conservation and in particular the fact that neutrinos
share the Z mass, |p

ν
| = MZ/2. Finally, all together:

ΓZ→νν̄ =
1

2MZ

∫
d3p

ν
d3p

ν̄

2|p
ν
|2|p

ν̄
|(2π)6

(2π)4δ(pZ − pν − pν̄)
1

3

∑
λ

∑
sνsν̄

MM∗ (9.15)

=
1

2MZ

1

8π

g2

6c2
θw

M2
Z =

g2MZ

96πc2
θw

(9.16)

MZ(GeV) ΓZ(GeV)

91.1876± 0.0021 2.4952± 0.0023

decay products Γi/ΓZ
e+e− (3.3632± 0.0042)%
µ+µ− (3.3662± 0.0066)%
τ+τ− (3.3696± 0.0083)%

invisible (20.000± 0.055)%
hadrons (69.911± 0.0056)%

Figure 22: Z boson properties

One last thing we forgot is, how many
neutrinos are there? Say Nν , then

ΓZ→Σiν̄iνi =
g2NνMZ

96πc2
θw

(9.17)

One can then compare with experiment to
test the theory. As it turns out we did not
pick an observable easy to extract from ex-
periment; neutrinos escape the detector un-
seen. There is a way to get around this how-
ever; from a cross section plot like in fig. 20
one can extract the total width ΓZ . Then
from the visible Z decays we can reconstruct partial widths to charged leptons, hadrons;
the difference between the total and the sum of all this visible channels must be neutri-
nos, or as commonly refereed to, invisible. One can then contrast this difference with
eq. 9.17 and, provided we know MZ , θw and g, determine Nν . What one finds is

Nν = 2.9840± 0.0082 (9.18)

which is a pretty good ‘determination’ of the number 3.
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MW (GeV) ΓW (GeV)

80.379± 0.012 2.085± 0.042

decay products Γi/ΓW
e+ν (10.71± 0.16)%
µ+ν (10.63± 0.15)%
τ+ν (11.38± 0.21)%

hadrons (67.41± 0.27)%

Figure 23: W boson properties

You can see a summary of the Z boson
properties as extract from LEP in fig 22 and
in particular the different branching ratios
Γi/ΓZ or how likely is the Z boson to de-
cay to the given final state. For complete-
ness the properties of the charged W boson
are given in table 23. The W boson can-
not be produced like the Z boson, that is
‘in the s channel’ of e+e− collisions but one
can produce W+W− pairs via for example
e+e− → γ → W+W− or also via the Z boson itself e+e− → Z → W+W−. The condi-
tion for this to occur is having a center of mass energy high enough, i.e. s > 2MW as we
had in the second run of LEP. Not listed here but of relevance are angular-dependence
studies of Z,W decays which offer light on the chiral structure of the couplings (you will
get to see it in the workshops).

Finally one other prediction of the SM is the ratio of masses for W ,Z. If one inde-
pendently determines θw from for example g and the electromagnetic coupling constant
e = g sin(θw) with the values of W,Z masses we can construct a ratio which is predicted
to be 1 in the Standard Model. This ratio is found to be experimentally,

M2
W

c2
θw
M2
Z

= 1.0010± 0.0050 (9.19)

In another confirmation of the Standard Model of particle physics.

N The couplings for the massive electroweak bosons, dictated by g and θw,
determine their properties, among them their possible decays (we computed one
of them, eq. 9.15,9.17), which we can probe in colliders. The description of a
heavy and unstable particle follows the Breit-Wigner distribution which gives the
characteristic peak of resonances.
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10 The Higgs boson

The Higgs boson corresponds to the radial component of the potential in 8. As opposed
to the angular component along which one can move at no cost in energy, the radial
direction has curvature. This means that when we expand around the vacuum v+h the
potential has

H =

(
0
v+h√

2

)
V (H) = −m2

H(H†H) + λ(H†H)2 (10.1)

= −m2
H

(v + h)2

2
+ λ

(v + h)4

4

where given that v2 = m2
H/λ, the term linear in h cancels. The next term, h2, associated

with the curvature at the minimum, will produce a mass for the Higgs. We now know
this mass to be mh = 125GeV12.

To find how this boson couples to matter we can do the same as we did to observe
electroweak-symmetry breaking in 8 in play and substitute H as in equation 10.1 in
our Lagrangian. Instead of doing this all over again, a shortcut is simply to take the
formulas we obtained and substitute v → v + h. This means that the Higgs will couple
proportionally to elementary particle masses, with propotionality constant v−1. Let us
then write the linear couplings of the Higgs at tree level

LhXX = M2
W 2

h

v
W+
µ W

µ− +M2
Z

h

v
ZµZ

µ −
∑
ψ

mψ
h

v
ψ̄ψ (10.2)

= gMWhW
+
µ W

µ− +
g

2cθw
MZhZµZ

µ −
∑
ψ

yψ√
2
hψ̄ψ (10.3)

where we omit higher powers of h, i.e. h2, h3, . . . One can translate the above Lagrangian
into Feynman rules for the vertexes as

Z

Z

igMZ/cθw

W

W

igMW

ψ

ψ

−imψ/v

Rather than me telling you once more let’s try to figure out how the discovery of this
particle came about in terms of Feynman diagrams. As you might know, LHC collides
protons against protons, which in terms of the initial elementary particle states means
we have quarks, antiquarks and gluons at our disposal. So the problem we lay out first
is how to produce a Higgs particle from these states, something like we have in fig. 24.
There might be different ways to produce a Higgs and it might come with extra particles,

12Note that this is not mH ; the curvature at the local maximum (m2
H) and minimum (m2

h) are
different. Can you figure out the connection mH ,mh?
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but among all these possibilities we are interested in those which are the most likely. For
this we should focus on what does the Higgs couple more strongly to. The process need
not even be a tree-level process, one loop level processes have an extra (coupling2/16π2)
suppression, for your estimates. One final consideration is how much of each inital state
is there in the proton, an information contained in the parton distribution functions. I
don’t expect you know these quantitatively so take a guess from their shape.

Figure 24: How do we produce a Higgs boson at LHC?

Okay so give yourself some time and draw diagrams which you think can do the
job, not writing the matrix element. Put in just for an estimate though the couplings
involved, yψ ∼ mψ/v, g, e, gs. When you think you’re ready turn the page to find the
answer.
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Higgs production

Although there are quarks and antiquarks in the proton, they are predominantly the
first few generations and they couple very weakly to the Higgs due to their light masses,
e.g. yu, yd ∼ 10−5. What happens more often is that a quark anti-quark annihilate
into a W,Z vector boson, to which they couple with strength g and then this elec-
troweak boson emits a Higgs, this is called Higgstralung or vector boson associa-
tive production and is diagram (c). One can have instead, using the same vertexes,
two vector bosons emitted from quarks or antiquarks, which increases the number of
contributing initial states, annihilating into a Higgs. This process has one more cou-
pling g w.r.t. to the previous but this is made up for in density of initial states so
that this is a more probable production mechanism. This is shown below, (b) and is
called vector boson fusion. Another initial state available in abundance are gluons

(a) gluon

fusion

(b) Vector boson
fusion

(c) W,Z associative

(d) tt̄h

which however are massless and do not couple directly to the Higgs. They do couple
to the top, and this is the particle that couples the strongest to the Higgs with yt ∼ 1.

Figure 25: Cross section in (pb) vs mh

One can then have two gluons producing a
top anti-top pair out of which a Higgs is emit-
ted. This comes at a higher energy cost since
we have to produce not only the Higgs which
‘costs’ mh but also the top pair which re-
quires an extra 2mt ∼ 350GeV. This is called
associative tt̄ production and is diagram
(d). Finally we can avoid having tops in the
final state if we have them annihilate back af-
ter they emit the Higgs. This implies a closed
fermionic line and it is a loop process, com-
pared to the previous gives an extra factor
1/16π2. This nonetheless is made up for in
phase space and pdfs and this process (a) is
called gluon fusion. The cross sections for
each of this processes can be seen in fig. 25.

Next it’s Higgs decay. Try & sketch dia-
grams for its decay before turning the page.
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Higgs decay

The diagrams for Higgs production do actually give a good idea of how could it decay
by just turning back time.

(d)
γ

γ

t
+

γ

γ

W

The main difference is however that
for the Higgs to decay to a given state
there must be enough phase space or in
simpler terms enough energy. This pre-
cludes decays to the particles that cou-
ple the strongest to the Higgs, that is
h→ tt̄,W+W−, ZZ which require respec-
tively some 350, 160 & 180 GeV. Next in
line therefore are b quarks, whose coupling
is considerably small yb = 4.2/174 ∼ 1/40
but given the Higgs mass of 125 is the main decay mode (a). It is followed by the decay
into a W and a pair of fermions via a virtual W , like we said we cannot have the decay

(a) (b) (c)

to two W ’s but given the
strength of the coupling to
weak bosons this second or-
der in g decay is the sec-
ond source in relevance (b).
Note that in fig. 26 the WW
mode means actually Wf̄f
for mh < 160. Next is
the inverse of Gluon fusion,

which is h → GG and is a loop process with virtual tops which would be observed as
two jets in the detector (c).

Figure 26: Higgs branching ratios

This is followed by h → Zff̄ and h →
τ τ̄ , h → cc̄. Finally, although much less
likely, the Higgs can decay to two photons
(h → γγ) (d) via the loop diagram similar
to gluon fusion but now with tops and W
in the loop (the eletromagnetically charged
particles that couple the strongest to h) or
Higgs to photon Z (h→ γZ). These decays
leave a clear signal in the detector and were
an essential part of the Higgs discovery.

The respective branching ratios are
shown in figure 26. Note that given the
Higgs mass we have predictions for all of
them so we can test once more the SM
against data. At present the couplings
agree with the SM but the experimental
precision is at the 10% level.
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N One can find the couplings of the Higgs boson tracing the origin of masses
for elementary particles in the vev v. It therefore couples the strongest to the
heaviest particles. The process to produce it at LHC is however not so straight
forward, with the main production mechanism being a loop process, Gluon fusion,
followed by vector boson fusion. Its decays on the other hand are mostly to bb̄
and Wf̄f . Decays and production are summarized in tabs 25, 26.
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Figure 27: Elementary fermion mass spectrum

11 Flavour

In this lecture we will outline the flavour structure and phenomenology of the Standard
Model. For a while now we have been setting the flavour structure aside, either focusing
on the first family or ‘hiding’ flavour indices which are summed over, e.g. when we say
the down-type quarks couple to the photon as Aµd̄γµd/3 we mean all of them couple
the same Aµd̄

iγµd
i/3 with a sum on i = 1, 2, 3 and (d1, d2, d3) = (d, s, b). Indeed, as far

as the photon is concerned, all down-type are the same. The one property that allows
us to distinguish between them is their mass, and as we have seen mass comes from the
coupling to the the Higgs, the Yukawas:

LY =− q̄iL(Yu)ij〈H̃〉ujR − q̄
i
L(Yd)ij〈H〉djR − ¯̀i

L(Ye)ij〈H〉ejR + h.c. (11.1)

=− v√
2
ūLYuuR −

v√
2
d̄LYddR −

v√
2
ēLYeeR + h.c. (11.2)

where in the second line we restored matrix notation and the mass matrices are mψ =
vYψ/

√
2. In this language, the Yukawa couplings are a complex 3 × 3 matrix for each

up, down and lepton type. One has that any complex matrix can be diagonalized by a
unitary rotation from the left and one from the right. That means

Yu = UuLyu(UuR)† Yd = UdLyd(U
d
R)† Ye = U eLye(U

e
R)† (11.3)

v√
2
yu = diag(mu,mc,mt)

v√
2
yd = diag(md,ms,mb)

v√
2
ye = diag(me,mµ,mτ )

with UfL,R unitary U †U = 1. The masses are displayed in fig. 27, as you can see, the
spread in masses over many orders of magnitude means the entries of these diagonal
matrices have a strong relative hierarchy.

Just like we did for electro-weak gauge bosons we now rotate to the mass basis

uL = UuLu
′
L dL = UdLd

′
L eL =U eLe

′
L (11.4)

and equivalently for the RH fields so that the mass terms originated from Yukawa inter-
actions are diagonalized

ūLYuuR = ūLU
u
Lyu(UR)†uR = ū′L(UuL)†UuLyu(UuR)†UuRu

′
R = ū′Lyuu

′
R (11.5)
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What is important to realize now is which parts of our action ‘care’ about this rotation.
As we said the only couplings that had flavour structure are the Yukawas (mass terms)
which we diagonalize with the rotation above. Because the Higgs couples proportional
to mass, this also means that the Higgs couplings will be diagonalized. The remaining
couplings of fermions are then to gauge bosons.

In matrix notation, the couplings to e.g. the photon are proportional to the identity in
flavour space d̄iγµd

i which means that a unitary rotation of d = Ud′ (and so d̄ = d̄′U †)
leaves the couplings the same d̄′U †Uγµd

′ = d̄′γµd
′. The rotations however are chiral,

different for LH and RH, does this argument still hold then?
Let’s take a general current and prove that it only couples LH to LH and RH to RH:

ψ̄γµ(v + aγ5)ψ =(ψ)†γ0γµ(v + aγ5)(PL + PR)ψ (11.6)

=(ψ)†γ0γµ(v + aγ5)PRψR + (ψ)†γ0γµ(v + aγ5)PLψL

=(ψ)†γ0PLγµ(v + aγ5)ψR + (ψ)†γ0PRγµ(v + aγ5)ψL

=(ψ)†PRγ
0γµ(v + aγ5)ψR + (ψ)†PLγ

0γµ(v + aγ5)ψL

=(PRψ)†γ0γµ(v + aγ5)ψR + (PLψ)†γ0γµ(v + aγ5)ψL

=ψ̄Rγµ(v + aγ5)ψR + ψ̄Lγµ(v + aγ5)ψL

where in the second line we used P 2
L = PL. All of the gauge boson couplings are of the

form above, so it looks like the unitary rotations might cancel out. Just to make sure
we look at the Z couplings and do it carefully

− gZµ
cθw

(
ūγµ

PL
2
u− 2

3
ūs2

θwu− d̄γµ
PL
2
d+

1

3
s2
θw d̄γµd

)
(11.7)

=− gZµ
cθw

Zµ

(
ūLγ

µ 1

2
uL −

2

3
s2
θw (ūLγµuL + ūRγµuR)− d̄Lγµ

1

2
dL +

1

3
s2
θw

(
d̄LγµdL + d̄RγµdR

))
=− gZµ

cθw

[
ū′L(UuL)†γµ

1

2
UuLu

′
L −

2

3
s2
θw

(
ū′L(UuL)†γµU

u
Lu
′
L + ū′R(UuR)†γµ(UuL)†u′R

)
− d̄′L(UdL)†γµ

1

2
UdLd

′
L +

1

3
s2
θw

(
d̄′L(UdL)†γµU

d
Ld
′
L + d̄′R(UdR)†γµU

d
Rd
′
R

) ]
=− gZµ

cθw

(
ū′γµ

PL
2
u′ − 2

3
ū′s2

θwu
′ − d̄′γµ

PL
2
d′ +

1

3
s2
θw d̄
′γµd

′
)

(11.8)

Indeed the unitary rotations disappear. So would happen for the photon couplings, but
we have that the case of the W , which couples to different-charge fermions, is different,

−
gW+

µ√
2
ūLγ

µdL −
gW+

µ√
2
ν̄Lγ

µeL = −
gW+

µ√
2
ū′L(UuL)†γµUdLd

′
L −

gW+
µ√
2
ν̄ ′L(UνL)†γµU eLe

′
L

≡−
gW+

µ√
2
ū′Lγ

µVCKMd
′
L −

gW+
µ√
2
ν̄ ′Lγ

µ(UPMNS)†e′L (11.9)

Where we have defined the Cabibbo-Kobayashi-Maskawa and Pontecorvo-Maki-Nakagawa-
Sakata unitary mixing matrices. For leptons we have not defined a mass term in the
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neutrino sector but we assume they have a mass13 and get rotated to the masss basis
also. If we were to stick strictly to the Standard Model, neutrinos would be massless
and we can choose UνL = U eL to eliminate the mixing and restore e, µ, τ lepton number
conservation.

These couplings to the W , if the mixing matrices have off-diagonal components, are
the only place to ‘jump’ from one generation to another. Indeed the ‘charged currents’
or couplings to the W are the source of decay of heavier generations to lighter ones. The
shape of this mixing matrices we have determined experimentally although not in full
yet for leptons.

The mixing matrix for quarks is close to the identity, and we can parametrize it with
4 variables and an expansion around 1 as

VCKM =

 1− λ2
c/2 λc Aλ3

c(ρ− iη)
−λc 1− λ2

c Aλ2
c

Aλ3
c(1− ρ− iη) −Aλ2

c 1

+O(λ4
c)

λc ' 0.23
A ' 0.84
ρ ' 0.12
η ' 0.36

(11.10)

whereas on the other hand the mixing matrix for leptons has larger angles and it is not
close to the identity. In this case it conventional to use Euler angles as

UPMNS =

 cθ12cθ13 sθ12cθ13 sθ13e
−iδ

−sθ12cθ23 − cθ12sθ23sθ13e
iδ cθ12cθ23 − sθ12sθ23sθ13e

iδ sθ23cθ13

sθ12cθ23 − cθ12cθ23sθ13e
iδ −cθ12cθ23 − sθ12cθ23sθ13e

iδ cθ23cθ13


s2
θ12
' 0.30 s2

θ23
' 0.44 s2

θ13
' 0.020 (11.11)

Figure 28: Visualization of the relative magnitude of mixing
elements for quarks and leptons

The presence of complex
coefficients in these ma-
trices signals CP viola-
tion, which has been ob-
served in quarks (η 6= 0)
but not yet in leptons
(δ =?). In addition if
neutrinos are Majorana
particles two extra Majo-
rana phases appear, but
this also is not known
yet. The relative size of
entries in these matrices
is depicted in fig. 28. To-
gether with fig. 27 this
gives the flavour struc-
ture for the elementary particles, as to why it is what it is, it is an open question.

13The neutrinos could be Dirac-like and have a mass ¯̀i
L(Yν)ijH̃ν

j
R or Majorana and have instead

(¯̀i
LH̃)Cij(¯̀j

LH̃); in both cases we would have to rotate the neutrinos νL by UνL.
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The fact that the only source of flavour or possible generational jump appears in
couplings to the W boson is referred to as no flavour changing neutral currents (FCNC)
at tree level. This has consequences for phenomenology since it means that certain
decays are not allowed at tree level. For example D+(cd̄)→ π0(dd̄)µ+νµ occurs at tree
level mediated by a charged current (c→W+d→ (µ+νµ)d).

On the other hand D+ → π+µ+µ− cannot ocur at tree level and the same goes for
e.g. K0 → ν̄ν or µ→ eγ. These processes occur at the one loop level as shown in fig. 29
and are mediated by the W couplings and the mixing elements. This means that the
invariant matrix elements for each process will scale with the mixing and masses of the
internal particles as respectively

MFCNC

MCC
∼ (a)

g2V †djm
2
ujVjs

(4π)2M2
W

(b)
g2Vujm

2
dj
V †jc

(4π)2M2
W

(c)
g2Uejm

2
νjU

†
jµ

(4π)2M2
W

(11.12)

were I do not want you to take in the specifics but just the sense that, because of the
loop suppression 1/16π2 and small mixing elements (for quarks) and or small mass ratio
(quarks and leptons) these effects are much more rare. Let me be clear, except for lepton
flavour violation, they occur in the SM as opposed to e.g. baryon number violation, only
not too frequently. Which also means these processes are good places to look for other
physics beyond the Standard Model.

(a)

W−

W+

s

d̄

ν

ν̄

(b)

W+

Z

c

u

µ

µ

d̄

(c)

W−µ

e

γ

Figure 29: Flavour changing neutral current processes

N Every fermion with different SU(3)c × SU(2)L × U(1)Y charge appears in
three copies, called generations of families. Their masses spread across 6 orders
of magnitude for charged leptons or 12 if we include neutrinos and mixing angles
are small for quarks and large for leptons. Flavour-full couplings appear in the
standard model in the W couplings to quarks and leptons (for massive neutrinos)
and mediate flavour changing neutral currents at the loop level.
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12 Beyond the Standard Model
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