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What are the most elemental components of matter? Our answer to this question has
been evolving with time as our knowledge progressed finding appropriate descriptions at each
increasingly small scale. Here we zoom in to femto-metre (fm) distances to explore nuclear
structure; the forces, the components and the conservation laws that rule over this sub-atomic
world. We will develop the formalism in quantum mechanics and special relativity that allows us
to look deep into matter, learn about nuclear binding energies and transitions, and the models
that help us understand them.

These notes are self-contained but here’s a list of useful references

1 Particles and Nuclei - B. Povh, K. Rith, C. Scholz & F. Zetsche

L Nuclear Physics J. S. Lilley

DF Introduction to Nuclear and Particle Physics A. Das & T. Ferbel

fm

100 pm
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1 Introduction and units

What are these notes about? Nuclear Physics. Why would one learn about nuclear physics,
how is it relevant to us? In our everyday macroscopic life the inner workings of the nucleus
of atoms have seemingly little consequence. Gravity bounds us to earth, electromagnetism
rules the flow of electrons that power our appliances and the propagation of the few-hundred-
nanometre wavelength field through which we see our world; the role of nuclear forces is to
hold the positively charged component of the atom together, what could we possibly gain from
studying it? Well, a source of energy that supplies a sixth of the consumption in the UK, a
gateway to the more elemental description of nature that is Quantum Chromo-Dynamics and
an understanding of the range of chemical elements that make up our universe and allow for
carbon-based life forms to ask the question in the first place.

There seems to be then some motivation to learn about nuclear physics, but how do we
‘look’ into this sub-atomic world? We can only ‘see’ so far in the conventional sense; optical
microscopes resolve distances down to ∼ 100 nm. This limitation comes from the medium we
use to see itself; we cannot resolve details smaller the wavelength, λ, of the medium we are
using (you might have encountered this in solid state physics, looking at a crystal with the
naked eye you see a block, shine X-rays and you’ll be able to resolve the crystal structure from
diffraction patterns). Electron microscopes can zoom in 3 orders of magnitude more to 100 pm,
their resolution given again by wavelength, now estimated from the momentum as:

λ =
h

p
h = 6.626× 10−34kg m2 s−1 (1.1)

where h is Planck constant and this is de Broglie’s equation which puts on the same footing
photons and electrons through quantum mechanics. It also tells us that if we want a smaller
resolution we have to increase the momentum and with it, the energy. If we keep increasing the
energy we have that our probe into the subject of study might change it. In this case we end
up with a collision or scattering experiment where the initial and final states are different. This
type of experiment requires analysis; we are no longer taking ‘photos’ that we can look at and
immediately comprehend, we should look at it through the lens of quantum mechanics.

This is indeed the way we did probe the smallest scales known to date, not only in nuclear
physics but also in particle physics, descending to scales a thousand times smaller than a nucleon.
Let’s introduce then the basic elements of scattering experiments.

1.1 Scattering experiments

Consider a stream of particles directed to a target. The target has a characteristic area for
interaction with the incident particles; in classical mechanics and for neutral objects this is the
area of our object projected on the direction of the incoming projectiles e.g. πR2 for a billiard
ball of radius R. In general this area can be larger than the target size and we call it cross
section, denote it σ and measure it in units of barn (b) with 1b= 10−28 m2.

To estimate how many of the incident particles will get deflected or scattered one has to
calculate how many of them pass through the area σ around the target. More projectile particles,
more tightly packed or faster will result in more scatterings events; this is characterized by the
flux of particles

Flux =
Number of incoming particles

(Area) × ( time)
=

Nin

A× t
≡ F
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The number of deflections in a given time interval ∆t is then

Flux=
Nin

A · t
σ (1.2)

N scat =
Number of incident particles

(Area) × ( time)
× cross section× time interval = F × σ ×∆t

If you want to make sense of this formula in more familiar terms think of how many drops of
water would fall in your ∼ 0.5m2 umbrella in 5 min if it rains with a flux of 12 drops per squared
metre per second.

In practice our experiments have many targets to increase the observed dataset, in this case
one just sums over all targets, assuming they all see the same flux:

Nscat

∆t
= F ×Ntarg × σ ≡ L× σ

Where we have defined the luminosity L which is the generalization of flux for scattering
experiments, is measure in inverse barn per second b−1 s−1 and gives us the number of events
per unit time when multiplied by the cross section.

Whereas the luminosity characterizes our experiment, cross section can a priori be computed
from first principles which is what allows for testing our theories of Nature against Nature itself.

1.2 Natural units

In nuclear and specially in particle physics natural units are frequently used. In practice natural
units are not just just another system but it also involves a prescription. The reason for adopting
this system is measuring quantities in units given by the fundamental constants of nature, two
in particular

· speed of light c · Planck’s reduced constant ℏ = h/(2π)

So in these units a car travels at 0.0000001 c or an Olympian reaches 1035 ℏ in hammer throw
but an alpha particle from radioactive decay might have 0.01 c and an electron has spin ℏ/2.
What makes natural units less straightforward than other units is that one also omits c and ℏ.
Making them implicit has the advantage of simplifying our computations, since in practice it
means

Natural units c = 1 ℏ = 1 (1.3)

So some of the equations you know simplify:

iℏ
∂

∂t
|Ψ⟩ = E|Ψ⟩ ∆p∆x ≥ ℏ

2
E = mc2 (1.4)

i
∂

∂t
|Ψ⟩ = E|Ψ⟩ ∆p∆x ≥ 1

2
E = m (1.5)

From these equations one can also deduce that the units of time, space, mass and momentum
are all related to those of energy in natural units as

[t] =[E]−1 [m] = [E] [x] = [E]−1 [p] = [E] (1.6)
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PHYS3621 - Nuclear 1 INTRODUCTION AND UNITS

The choice for energy in natural units is electronvolt (eV) and time, space, momentum and
mass are given as powers of this basic unit.

In summary, if somebody gives you speed or angular momentum in natural units, multiply
by c or ℏ respectively to convert to other system and for time, space, mass or a composite of
these use powers of ℏ, c as in table 1.

Magnitude S.I. N.U. conversion

Speed m/s (N.U.)× c = (N.U.) 3.00 · 108m s−1

Angular momentum J s (N.U.)× ℏ = (N.U.) 1.05× 10−34 J s
Energy J eV (N.U./eV) eV= (N.U.) 1.60× 10−19J eV−1

Mass kg eV (N.U./eV) eV c−2 =(N.U.) 1.78× 10−36kg eV−1

Distance m eV−1 (N.U. eV) ℏ c eV−1 = (N.U.) 197 fm MeV
Time s eV−1 (N.U. eV) ℏ eV−1 = (N.U.) 6.58× 10−16 eV s

Figure 1: Conversion between N.U. and S.I.

As an example a length L of 0.005 eV−1 in N.U. is

N.U. L = 5× 10−3eV−1 S.I. L× 197MeV fm ≃ nm (1.7)

A useful reference for fundamental constants and conversion factors is the p.d.g.

N In a nutshell

• Scattering experiments, our means to look deep within matter, are characterized
by luminosity L and cross section σ.

• In natural units mass, space and momentum are given in terms of powers of the
energy unit: eV. We convert to other units with powers of ℏ, c as in table 1.
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2 Relativistic Kinematics

The relation between energy and mass for a particle at rest is one of the most publicized
equations in science and here we will find use for it. First however, the actual relation for a
particle with speed v is:

E =
mc2√

1− (v/c)2
=

m√
1− v2

(2.1)

where the second line is in natural units. A small velocity expansion returns the familiar kinetic
energy (it is a good exercise to do this explicitly). This equation also tells us that the energy is
different for different observers, in particular higher the larger relative speed and always larger
than the energy in the rest frame. Similarly, although not evidently so, an event with a given
duration on its rest frame will appear to last longer for another observer. This time dilation is
the same factor as the ratio of the energy and mass, let’s see why.

This observation follows from special relativity, which in its rather minimal formulation,
groups together different magnitudes together in 4-vectors. These four-vectors are represented
by a letter with an index which in our convention will be a Greek letter

xµ =


t
x
y
z

 =

(
t
x

)
, pµ =


E
px
py
pz

 =

(
E
p

)
. (2.2)

The reason this is not a purely aesthetical arrangement is that magnitudes within a four-vector
get mixed up for different observers.

Consider this situation, you are sitting down in your frame with coordinates xµ and an
observer O′ moving at a relative speed v (β = v/c) along the x axis and towards x = ∞ passes
you by at t = 0. Her/his coordinates are x′µ, to translate them into yours we do

t
x
y
z

 =


γ βγ
βγ γ

1
1




t′

x′

y′

z′

 γ =
1√

1− β2
(2.3)

This means that an event at rest in the original frame which takes t′e seconds, i.e. x′µe =
(t′e, 0, 0, 0), seems to take te = γt′e for you, that is it takes a factor γ longer. Equivalently a
particle at rest for O′ has energy m and no momentum, p′µ = (m, 0, 0, 0), whereas you measure
a 4-momentum

pµ = (γm, vγm, 0, 0)T

and we recover the expression for the energy 2.1. The non-relativistic limit gives us the usual
expression for momentum and energy but we see here that it breaks down when velocities are
close to c and (γ − 1) ∼ 1.

In our scattering experiments we express kinematics in terms of 3-momentum p rather than
speed; according to our derivation the connection is p = γmv, but then how do we write the
energy in terms of momentum? Direct substitution would do it but here let us instead use the
invariant scalar product of a four vector, defined as

p2 ≡pµηµνpν = pµp
µ = pµpµ = E2 − p2 ηµν =


1

−1
−1

−1

 (2.4)
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where we used Einstein’s convention i.e. repeated indexes are summed over. The use of this
scalar product is that every observer will measure the same magnitude and the simplest frame
to compute it is the particle’s rest frame where (p′)2 = (p′0)

2 = m2, but we can explicitly check
that we get the same in our frame

p2 =γ2(1− v2)m2 = m2 (2.4)
= E2 − p2 E =

√
m2 + p2 , v =

p

E
. (2.5)

This is the relation between momentum and energy that we will employ in the following.
The grouping of energy and momentum into a 4-vector also makes the conservation laws for

energy and momentum more compact. Take for example a particle with momentum p decaying
to two particles A and B with momentum kA, kB. We have

pµ = kµA + kµB

If we take the square on both sides we will obtain an invariant magnitude as:

m2 = m2
A +m2

B + 2kA · kB kA · kB =
m2 −m2

A −m2
B

2

which is the same quantity in all frames; that is, take the energy of particle A times the energy
of particle 2, subtract the product of their 3-momenta and the magnitude you get is, regardless
of your relative velocity, (m2 −m2

A −m2
B)/2.

N In a nutshell

• For a free particle energy, momentum and mass are related as E2 = p2 +m2.

• The scalar product in Minkowski is built with the metric of eq. (2.4) and is the
same for all observers
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3 Parity and Angular momentum

In this lecture we will cover parity and angular momentum. The unlikely link between the two
is symmetry, a concept that permeates most of physics.

Symmetry The set of transformations that leave the laws of physics the same

The presence of symmetry is useful since it simplifies the study of any given physical system.
This can be made explicit, in a connection which is one of the most fundamental in physics:

Symmetry Consequence

continuous (e.g. rotations) conserved quantity (e.g. angular momentum)
discrete (e.g. parity) selection rule

We will not attempt at a proof of this, which is beyond our scope but refer the interest
reader to the Emily Noether theorem.

We have made a distinction in the type of symmetry between discrete and continuous, this
is best understood with an example, as in fig. 2. A continuous symmetry is constituted of a
continuous set of transformations while a discreet one has a finite, countable set.

Figure 2: LHS: Continuous symmetry - a circle which looks the same when rotating any angle
θ RHS: Discrete symmetry - A square only looks the same if we rotate it 90, 180 or 270 degrees.

3.1 Parity

The action of parity is simply to take x to −x, that is a inversion around the origin. It might
sound cumbersome but lets call P̂ the parity operator which does such a transformation. You
can entertain yourself to do some parity transformations, here is sample:

P̂× =

Figure 3: Parity acting on a Tetris block
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P̂×

v

=

Figure 4: Parity acting on a particle’s trajectory and velocity

What we learn from the second example is that some magnitudes, on top of the relocation
imposed by parity, pick up a minus sing

v =
dx

dt
→ −dx

dt
= −v

In fact this exhausts the list of possibilities, a magnitude might pick up a minus sign or none. We
can see this by considering the quantum operator acting twice, P̂ P̂ (x) = P̂ (−x) = −(−x) = x.
That is acting twice we end up where we started, in terms of eigenstates of the parity operator,
such that

P̂ (Eigenstate) = Pi(Eigenstate) (3.1)

one has

P̂ P̂ = 1, P̂ P̂ (Eigenstate) = P 2
i (Eigenstate) = (Eigenstate) ⇒ Pi =

{
+1
−1

(3.2)

The action on a particle’s wave function of parity is

P̂ψ(x) = Pintrinsicψ(−x) (3.3)

The prefactor is the intrinsic parity of a particle; there is some arbitrariness in defining this,
one can in particular set it to +1 and forget about it (but if one does so the antiparticle will
have opposite intrinsic parity, see NPP2 lectures).

The wave-function can then be split into two pieces which are eigenstates as

ψ(x) =
1

2
(ψ(x) + ψ(−x)) +

1

2
(ψ(x)− ψ(−x)) ≡ ψ+(x) + ψ−(x) (3.4)

P̂ψ±(x) = (±)ψ(x) (3.5)

The selection rule that follows if parity is a symmetry, i.e. it leaves the fundamental physics
unchanged can be stated as

if [P̂ ,H] = 0 parity is conserved so

if one starts with
a parity eigenstate
it will stay a parity

eigenstate

(3.6)

The composition law for parity can be derived from the consideration of the action of P̂
on a composite system of (distinguishable particles for simplicity) in parity eigenstates ψPi(xi),
P̂ψPi(xi) = PiψPi(xi) as

P̂ψP1(x1)ψP2(x2) . . . ψPn(xn) =P1ψP1(x1)P2ψP2(x2) . . . PnψPn(xn) (3.7)

=P1P2...P3︸ ︷︷ ︸
total parity

ψP1(x1)ψP2(x2) . . . ψPn(xn) (3.8)
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3.2 Angular momentum

This is just a review, consider angular momentum, which is a vector generically denoted J in
our notation. We have that is is specified in terms of a quantum number J and the projection
along a given axis, e.g. Jz

J J, Jz︸︷︷︸
quantumnumbers

J = 0 1/2 1 3/2...
Jz 0 1/2 1

−1/2 0
−1

(3.9)

That is a total of 2J + 1 state for angular momentum J and we also recall J2 = J(J+ 1).
There is a composition law for momentum in quantum mechanics, a prominent example

being the Hydrogen atom

J = L︸︷︷︸
orbital

+ S︸︷︷︸
spin

|L− S| ≤J ≤ L+ S (3.10)

and for example if L = 1, S = 1/2 for an electron in the p orbital, J = 1/2 or 3/2.
It is worth asking about parity, the Hamiltonian is e2/(4πε0|x) and invariant under a par-

ity transformation, so it is a good quantum number. The Hamiltonian eigenstates that one
find solving the Hydrogen atom have well-defined parity, which is captured by the spherical
harmonics

P̂ YL,m(θ, ϕ) = YL,m(π − θ, ϕ+ π) = (−1)LYL,m(θ, ϕ) (3.11)

So the parity is given by the orbital quantum number L.
Lastly we can use that same composition law for a decay instead of a simple addition,

take a initial excited state with angular momentum and parity JPe
e decaying to the ground

state J
Pg
g and electric radiation which is described by the angular momentum it carries away ℓ

and spherical harmonics Yℓ,m(θ, ϕ). As such, this radiation has parity Pℓ = (−1)ℓ. Using the
conservation of angular momentum and parity we have Je = Jg + ℓ and Pe = PgPℓ. These
conservation equation impose constrains on possible final states, take for example JPe

e = 1/2−

J
Pg
g = 3/2− one has

ang. momentum 3/2− 1/2 ≤ ℓ ≤ 3/2 + 1/2 ℓ =1 2 (3.12)

parity (−1) = (−1)(−1)ℓ × ✓ (3.13)

So that only one of the two options for the angular momentum of the radiation is allowed.

N In a nutshell

• When parity leaves the dynamics of a system invariant, parity [which take just two
values, ±1] is preserved.

• Composition of angular momentum L and S in quantum mechanics produces any
of the angular momentum |L− S| ≤ J ≤ L+ S.
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4 Scattering from Fermi’s Golden rule

The number of scattering events in our experiments is given by luminosity L (flux times number
of targets) and cross section σ. We have control over L since we can tune it as part of our initial
state preparation, σ on the other hand is a fundamental property of our particles which we
can compute from theory. This means that, given a theory, one can predict the number of
scatterings & then confront this prediction against the outcome of the experiment to prove or
disprove our ideas. In this chapter we turn to how we compute this cross section.

To make this computation we will (i) introduce momentum eigenstates in the continuum
to describe our initial and final states and (ii) use perturbation theory (Fermi’s Golden rule)
to calculate the probability for scattering (iii) compare with our expression for number of
scatterings. For another derivation of these results see [1].

4.1 Momentum eigenstates

L

nx· · ·

0

1

2

Let us start the computation in a box of side L and
volume V = L3. We set periodic boundary conditions
for our wave-function at the edge of the box. This dis-
cretizes the momentum states since we can only fit in-
teger multiples of the wavelength, that is

px =
h

λx
=

2πℏ
L/nx

=
2π

L
nx (4.1)

where in the last line we used N.U. and we note that
our spacing in momentum is δp = 2π/L. Momentum is
however not discretized in our scattering experiments
which can be understood as taking the large volume
limit which yields a continuum spectrum. However in
taking this limit we should take care in particular to
define our sums over states, in particular inverting the above our sum over momentum states
looks like

nx =
Lpx
2π

∑
nx,y,z

→
∫
d3n =

∫
V

(2π)3
d3p (4.2)

On the other hand we can write the wave function for our states as

Ψp(x) =⟨x|Ψp⟩ =
eip·x√
V

∫
V
dx3|Ψp(x)|2 = 1 (4.3)

Our momentum states however should not depend on volume which will be set to infinity so we
define them as

|Ψp⟩ ≡
|p⟩√
V

⟨x|p⟩ = eip·x (4.4)

4.2 Fermi’s Golden rule

You have seen Fermi’s Golden rule in the first part of this module for an oscillating perturbation.
Here our perturbation or interacting Hamiltonian will be time independent which makes the
derivation somewhat simpler. As usual we split our Hamiltonian into a free and an interacting
term

i
∂

∂t
|Ψ(t)⟩ = (H0 +Hint) |Ψ(t)⟩ H0|Ψp⟩ = Ep|Ψp⟩ (4.5)
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The solution to Schrodinger’s equation is then, in matrix notation1

eiH0t|Ψ(t)⟩ =eiH0tei(H0+Hint)t|Ψ(0)⟩ (4.6)

≃|Ψ(0)⟩ − i

∫ t

0
dt′eiH0t′Hinte

−iH0t′ |Ψ(0)⟩ (4.7)

where in the second line we take Born’s approximation to retain one power of the interaction
Hamiltonian which will suffice here.

The question we ask in our scattering experiments is what is the probability that an initial
momentum state p scatters into a final momentum state p′. Here we make the assumption that
the target very massive and not does not recoil.

(Ep,p) (Target)

(Ep′ ,p′)

(No recoil)

θ

To answer this question we take the matrix element:

eiEp′ t⟨Ψp′ |Ψ(t)⟩ =⟨Ψp′ |Ψp⟩ − i

∫
dt′ei(Ep′−Ep)t′⟨Ψp′ |Hint|Ψp⟩ (4.8)

=⟨Ψp′ |Ψp⟩ − i

∫
dt′
ei(Ep′−Ep)t′

V
⟨p′|Hint|p⟩ (4.9)

whose modulus squared will give the transition probability:

Pp→p′ = |⟨Ψp′ |Ψ(t)⟩|2 =
∣∣∣∣∫ dt′ei(Ep′−Ep)t′⟨Ψp′ |Hint|Ψp⟩

∣∣∣∣2 (4.10)

=

∣∣∣∣2 sin[(Ep′ − Ep)t/2]

Ep′ − Ep
⟨Ψp′ |Hint|Ψp⟩

∣∣∣∣2 (4.11)

=
t→∞

2πtδ(Ep′ − Ep)
∣∣⟨Ψp′ |Hint|Ψp⟩

∣∣2 (4.12)

where we have used that in the limit2 of large t:

lim
t→∞

2 sin(ωt/2)

ω
= 2πδ(ω) , lim

t→∞

(
2 sin(ωt/2)

ω

)2

= 2πtδ(ω) .

This is the transition probability for a momentum state, if we instead sum over a number of
momentum states we take the continuum limit as prescribe above∑

n

Pp→p′ → dPp→p′ =2πδ(Ep′ − Ep)t
∣∣⟨Ψp′ |Hint|Ψp⟩

∣∣2 V d3p′
(2π)3

(4.13)

which is Fermi’s Golden rule for a time independent perturbation. You have seen this rule for an
oscillating perturbation where the integrand was approximated to ei∆Et cos(ωt) ∼ ei(∆E−ω)t/2.
The result here can be obtained as a limit by sending ω → 0 and multiplying the matrix element
by 2 and hence Fermi’s rule by 4.

1How did the second line get an integral? By virtue of a connection of matrix algebra and calculus that says
e−AeA+B − 1 =

∫ 1

0
dze−zABezA +O(B2)

2To convince yourself of this you can evaluate the 2 sin(ωt)/ω at ω = 0 and the result that
∫∞
−∞ sin(x)/x = π

which if motivated, you can derive with complex analysis.
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4.3 Theory formula for cross section

dA

|v|dt
v

Fraction
dA(vdt)|Ψ|2

Finally we connect with chapter one and the number of scat-
terings N = Fσt. Flux itself was the number of particles that
passed per unit area per unit time, but we have one parti-
cle only, how should we interpret flux? Well we compute ‘how
much’ of a particle has gone through. Quantum mechanics tells
us the density is given by the wave-function squared and the
‘fraction’ of the particle that lies in d3x is |Ψ(x)|2d3x; integrat-
ing all over space we obtain 1 as in eq. 4.3. The fraction of our
projectile that goes through a differential area dA perpendic-
ular to the velocity v in time dt is therefore |Ψp(x)|2dA|v|dt.
Eq. 4.3 a;sp tells us that for our initial state |Ψp(x)|2 = 1/V so
that for the flux where we divide by area and time one finds:

F =
1

A× dt

∫
|Ψp(x)|2dA|v|dt =

|v|
V

=
1

V

|p|
Ep

which is independent of the area and where we used the relation v = p/Ep that you can derive
in the first problem sheet.

Number of events needs re-interpretation as well; we have one particle so N cannot be larger
than 1, can we make sense of N ≤ 1? We can if we take it to be a probability; the particle
does indeed scatter or it doesn’t but we can only find in what ratio if we repeat the experiment
many times. This will give us the probability that any one particle scatters, a number smaller
than one. The differential probability for scattering into a momentum p′ is therefore after our
re-cast of chapter 1:

dPp→p′ = t× F × dσp→p′ =
t

V

|p|
Ep

dσp→p′ (4.14)

The probability on the left-hand side we have computed with Fermi’s Golden rule; if we substi-
tute it in:

t

V

|p|
Ep

dσp→p′ = 2π t δ(Ep′ − Ep)

∣∣∣∣⟨p′|Hint|p⟩
V

∣∣∣∣2 V d3p′(2π)3
(4.15)

the factors of volume and time are the same on both sides and drop out for a result independent
of V as it should. The Dirac delta can be used to do the integral over the modulus of p′ and
obtain:

dσ =

∣∣∣∣ Ep

(2π)
⟨p′|Hint|p⟩

∣∣∣∣2 dΩ |p|′ = |p| (4.16)

with dΩ = sin θdθdϕ the solid angle measure for the direction of the scattered particle. This
concludes our derivation, we have expressed cross section in terms of the interaction Hamilto-
nian. Were someone to give us an experiment and an explicit Hint as predicted by some theory
we could test said theory.

N In a nutshell

• Fermi’s Golden rule gives us the cross section as the square of a matrix element.

• Approximating a non-recoiling target in and out momenta have the same modulus
and the differential cross section depends only on scattering angle.
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5 Rutherford Experiment

With the tools to compute scattering probabil-
ity one can now look back at the seminal ex-
periment which started nuclear physics as we
now know it. The leading theory of the atom at
the turn of the 20th century was Thomson’s or
the plum pudding model where the electrons are
held in place by a substance with positive charge
that extends over the atom. In order to test
this theory in 1905 Rutherford and his students
Geiger and Marsden spread a few-atoms-thick
Gold film and shot alpha particles (i.e. Helium,
4
2He, stripped of its electrons) at it, measuring
the direction along which the particles had scat-
tered.

The expectation from Thomson’s model is
that most of the alpha particles would pass
unperturbed; if they encountered an electron,
which is ten thousand times lighter, they would knock it off without changing course, whereas
going through the positively charge substance might have slowed them but not deflected them
much. It was then to Rutherford’s reported surprise that they detected a significant number of
alpha particles scattered at large angles and even backwards. They concluded that the mass of
atoms must be concentrated in a small region and those backscattered particles happened to
bounce of this ’nucleus’.

5.1 Rutherford cross section

With our previous knowledge we can go further than words and actually compute the scattering
cross section. The interaction between the nucleus and the alpha particles is mediated by
electromagnetism and we can think of the alpha particle moving in the potential generated by
the Gold core so

Hint(x) = VCoulomb =
ZHeZAue

2

4πε0 r
(5.1)

with r = |x| and ε0 the permittivity of free space.
Our matrix element for the cross section is in momentum, not space representation; to

connect the two we use the favourite trick in quantum mechanics and insert the identity as

⟨p′|Hint|p⟩ =
∫
d3x⟨p′|x⟩Hint(x)⟨x|p⟩ =

∫
d3xeiq·xHint(x) (5.2)

with q = p−p′. That is the Fourier transform of the potential. One can perform this transform
by changing to spherical coordinates:3∫

r2drd(−cθx)dϕxei|q|rcθxHint(r) =
2π

|q|

∫
rdr

eiqr − e−iqr

i

ZHeZAue
2

4πε0r
(5.3)

The dependence on the radius r is then limited to complex exponential; we know how to do this
integral but how do we evaluate it given that the upper limit of integration is r = ∞? Here the
way will be to introduce an exponential factor as H → He−r/a, then take a → ∞ which gives

3To do the polar angle integration stepwise do cos θx = η so dη = −sθxdθx and remember to re-order the
limits of integration η = ±1.
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e−r/a(a → ∞) ∼ 1. This is more justified than what you would think, after all, at a distance
of about the Bohr radius of Gold we have the electron screening an even further there’s no
potential. What we obtain is

⟨p′|Hint|p⟩ =
2πZHeZAue

2

4πε0|q|

∫
dr
ei|q|r − e−i|q|r

i
e−r/a =

ZHeZAue
2

2ε0

2

q2 + a−2
(5.4)

Taking our limit a → ∞ leaves us with q2 only in the denominator. The modulus of the
transferred momentum q is, given that |p′| = |p|:

q2 = (p− p′)2 = p2[(1− cos θ)2 + sin(θ)2(cos(ϕ2) + sin(ϕ)2)] = 4p2 sin(θ/2)2

if in addition we take the non-relativistic approximation Ep ≃ m, we obtain Rutherford’s cross
section: (

dσ

dΩ

)
Ruth

=
m2α2

emZ
2
HeZ

2
Au

4p4 sin4(θ/2)
=

α2
emZ

2
HeZ

2
Au

16E2
K sin4(θ/2)

(5.5)

where EK is the kinetic energy, EK = p2/2m and αem = e2/4πε0 is the electromagnetic fine
structure constant.

5.2 Comparison with experiment

This formula gives the prediction for the scattering of a charge ZHee particle off a static point
particle of charge ZAue. Integrating over solid angle (glossing over the divergence at θ = 0
for now) we obtain the total cross section σ, multiply this times the luminosity and you would
have a prediction for the number of scatterings to compare with experimental data. We can do
much better than that however. The differential cross section is a prediction for each scattering
angle, if we break down our scatterings into angles we will have a function rather than a point
to compare with!
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Figure 5: Histogram built out of a Rutherford-like experiment with a total of 1000 scattering
events.

How do we go about reconstructing such a function? In practice we cannot reconstruct a
smooth function due to two main limitations and we instead obtain a distribution that looks
like a coarse grained function or histogram as in fig. 5. There is a so-called systematic limitation
stemming from the finite resolution in our measuring devices; we cannot measure the scattering
angle with infinite precision so instead we put our particles in ‘boxes’ the size of our experimental
resolution, ∆θ in this case. Then there is a statistical limitation due to the probabilistic nature
of quantum mechanics and the finiteness of our dataset. In our Rutherford-like experiment
we count how many particles scatter in a given range of θ but quantum mechanics gives a
probability for this to happen not a deterministic prediction. Rolling a dice we have equal

15
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probability to get an even or odd number, if we roll and even number twice it doesn’t mean
our probabilities were wrong. This limitation can be pushed to be smaller by measuring more
and improves as 1/

√
N , the systematic limitation however can only be overcome with better

technology.

5.3 Mott cross section

This formula was derived for non-relativistic particles but is not much more work to do it for
relativistic particles. Shooting particles at a Gold atom if we want to probe subatomic distances
λ ∼ 0.1pm we need a momenta.

|p| = 2π

0.1pm
=

2π(197 fm MeV)

100fm
∼ 13 MeV

where we introduced a factor ℏc to convert from SI to NU. While an alpha particle can achieve
this momentum for v ∼ 0.003c for an electron this momentum is well above its mass which
means it is a relativistic particle (can you find its speed? v = |p|/Ep).

This means that the electron would be relativistic and our formula has to be corrected to
Mott’s scattering cross section for no recoil(

dσ

dΩ

)
Mott

=

(
dσ

dΩ

)
Ruth

(1− v2 sin2(θ/2)) (5.6)

The behaviour of this formula can be justified in the relativistic limit. It does indeed cancel
for backscattering (θ = 0) when v ∼ 1. This follows from conservation of angular momentum;
at high energies helicity, i.e. spin along direction of motion, is a conserved quantum number.
Angular momentum itself is conserved and with Coulomb’s potential there is no transfer of
angular momentum. All these factors mean we can’t have a relativistic particle helicity bouncing
straight back.

N In a nutshell

• Coulomb’s potential with a point charge at the center of the atom describes Ruther-
ford’s experiment.

• Differential cross section are reconstructed as histograms with real data to test our
theories.

• Mott’s cross section gives the generalization to a relativistic projectile.
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6 Nuclear shapes

Rutherford’s experiment taught us that the atom is mostly an electron cloud in volume and a
small nucleus in its mass. One can do better than this qualitative description and put numbers
in place of ‘mostly’. This chapter outlines how we do this while giving an explicit connection
of wavelength and the distances we can resolve.

6.1 Form factor

A small nucleus meant in practice that we approximated it to be point-like and the potential it
generated was Coulomb’s. If one has instead an extended distribution or density of charge the
potential is to be found solving Laplace’s equation which gives

Hint =
Z1Z2e

2

4πε0

∫
d3y

f(y)

|x− y|

∫
d3xf(x) = 1 (6.1)

where f(y) is the probability density of a proton. Here we have used some of our implicit
knowledge, that is that the charge Z1e is made up of Z1 identical particles and we even gave
them a name, the proton.

Propagating this change to the cross section we have the square of a more complicated
Fourier transform. One can nonetheless factorize this change with a little massaging as∫

d3xd3y
eiq·xf(y)

|x− y|
=

∫
d3z

∫
d3y

eiq(z+y)f(y)

|z|
=

[∫
d3z

eiqz

|z|

] [∫
d3y eiqyf(y)

]
(6.2)

which allows us to write

⟨p′|Hint|p⟩ =
ZHeZAue

2

2ε0

F (q2)

q2
F (q2) =

∫
d3y eiq·yf(y) (6.3)

and hence a cross section
dσ

dΩ
= |F (q2)|2

(
dσ

dΩ

)
Ruth

This form factor depends on the scattering angle through the transferred momentum q so we
can look at the differential distribution to find the changes wrt to Rutherford scattering but,
how do we relate them to the size of the nucleus?

6.2 Energetic enough to see

Let’s start with a rough sketch of what the nucleus could be like. Consider a spherical uniform
distribution which ends sharply at r = R. Our charge distribution is then

fSph(y) =
3

4πR3

{
1 r < R
0 r > R

r = |y| (6.4)

which returns

F (q2) =
3

4πR3

∫ R

0
r2dr(2π)

eiqr − e−iqr

iqr
=

3

(|q|R)2

(
sin |q|R
|q|R

− cos(|q|R)
)

(6.5)

This form factor presents a number of the features of finite size targets.

• In low energy limit qR ≪ 1 one does not have enough energy to resolve the size of the
nucleus and it is effectively point-like. This can be seen taking the limit

F (q2 ≪ R−2) → 1
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which you can do yourself using the expansion of sine and cosine for small argument

sin(x) =x− x3

6
+O(x5) cos(x) =1− x2

2
+O(x4)

and means we will recover Rutherford’s cross section where the nucleus is described as
point-like. This is evidence for our statement that to resolve distances of a size d we
should use particles with momentum of at least 1/d (in natural units).

• In the high momentum regime there will be angles θ where interference causes the cross
section to approximately cancel, we can find the first of this values numerically

sin(|q0|R)
|q0|R

− cos(|q0|R) = 0 |q0|R = 2|p| sin(θ0/2)R ≃ 4.493 (6.6)

the second instead located at |q|0R ≃ 7.725, etc. Given the momentum of the incoming
particles and the angle of the first cancellation θ0 one can determine R.

when we increase enough our projectile’s momentum a diffraction-like pattern will appear in
our distribution in scattering angle. Let us look at actual data and see; fig. 6a contains the
experimental data points in black, our naive ansatz in dashed red and a grown-up ansatz for
the form factor in blue which reads

fph =
C

1 + e(r−R)/a
(6.7)

with C a normalization factor.

(a) Ratio of cross section to Rutherford’s cross sec-
tion as a function of the scattering angle

(b) Charge distribution as inferred from scattering
data

Whereas our sphere modelling does not fall squarely on top of the data it does give the
ballpark value within a few degrees. In fact for enough data, we can turn it around and obtain
the inverse Fourier transform of the form factor to get the charge density f , which is what is
done in fig. 6b.

N In a nutshell

• Particles with momentum p ≥ 1/R resolve a size R nucleus.

• The effect of a finite size target is encoded in the form factor F (q2) in our cross
section.
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7 Nuclear masses and binding energies

Charge +e 0 −e
Mass[MeV] 938.3 939.6 0.511

Strong Force ✓ ✓ ✗

proton neutron eletron

So we have seen evidence of nuclei being a few
fm in radius and having integer charges compat-
ible with a number Z of copies of a Hydrogen
nucleus, let’s call it proton for short, which are
themselves distributed roughly homogeneously.
Considering only protons however we would ac-
count for less than half of the nuclei mass. As
we know now other particles of similar mass but
with no electromagnetic charge make up for the missing part, neutrons, discovered by Chadwick
in 1932. Ultimately the way we find out that nuclei are made up of these particles is breaking
them apart, which will be discussed on the next chapter. Here we will study the force holding
nucleons and protons together and the effect it has on nuclei masses.

What is the force holding nucleons together? First let’s give it a name, the strong force, we
do already know some things about it:

• It is stronger than the electromagnetic force.

• It has a short range of the order of a few fm.

• It is attractive (except for a repulsive core for distances smaller than ≃ 1 fm).

If we were to follow the successful steps of the Hydrogen atom one could think of reconstructing
the force from nucleon nucleon scattering then computing the bound states from Schrodinger’s
equation. This program is however faced with a number of hurdles

• The nuclear force is so strong that perturbative methods have poor convergence

• Its a many body problem with all particles of the same mass.

• Nucleons move at large speeds and the non relativistic approximation is not always valid.

Let’s have a look at the first step of this program, reconstructing the nucleon-nucleon po-
tential as possible in principle from nucleon-nucleon scattering, we would find:

VNcl =V0(r) + Vss(r)(S1 · S2) + VT (r)

(
3
(S1x)(S2x)

r2
− S1S2

)
+ VLS(r)(S1 + S2) · L

+ VLs(r)(S1 · L)(S2 · L) + Vps(r)
(S1 · p)(S2 · p)

m2
(7.1)

with S1,2 the spin of each nucleon and L angular momentum. Compare this to the Coulomb
potential and you may realize why a phenomenological approach will be adopted here.

Rather than solving for the bounds states of a multi-particle system with a complicated
potential we can just ask Nature directly what the binding energies are. This turns out to be
a very straightforward experimental determination, the reason behind given by Einstein’s mass
formula.

7.1 Binding energy

The masses of the proton and neutron, our nuclei building blocks are:

Mp = 938.27MeV = 1.0073 u , Mn = 939.57MeV = 1.0087 u (7.2)

where u is the atomic mass unit defined by the nuclear mass of Carbon M(126 C) = 12u. The
most common form of Helium is made up of two protons and two neutrons which we denote

19

https://www.aps.org/publications/apsnews/200705/physicshistory.cfm


PHYS3621 - Nuclear 7 NUCLEAR MASSES AND BINDING ENERGIES

4
2He with superindex total number of nucleons (mass number) and subindex number of protons
(atomic number). So one would expect the mass of Helium to be

M = 2Mp + 2Mn = 2× 1.0073 u + 2× 1.0087 u

= 4.032 u (7.3)

So what’s the mass of the He nucleus? Nature tells us is

M(42He) = 4.0015 u . (7.4)

Comparing these two values of mass reveals one of the most striking results in nuclear physics.
The mass of the nucleus is less than the mass of its constituent parts; what is this deficit?
Binding energy B, the connection energy-mass given by Einstein’s mass relation m = E/c2.
For Helium we have

B(4, 2) =
EB

c2
= 2Mp + 2Mn −M(42He) = 0.031u . (7.5)

To dismantle a nucleus we have to put in this amount of energy as shown in fig. 7. This energy
corresponds to the mass difference between free and bound nucleons and is therefore also called
the mass defect. The mass defect is clearly manifest in nuclear physics, but it does not mean

+

+

+
+

�

Figure 7: In order to break the bond of a nucleus into separate nucleons energy is required (e.g.
by an energetic photon).

that it only happens here. In atomic physics electrons are also in bound states and this will
give a mass defect only here binding energies of 13eV are 8 orders of magnitude smaller than
atomic masses and it is safe to neglect it.

The exercise can be repeated for all elements of the periodic table giving us a wealth of data
about the nuclear force. To classify our nuclei we use two numbers, as

Atomic number: the number of protons in the nucleus. Because the number of proton is
the same as the number of electrons in a neutral atom the atomic number specifies the
chemical properties of the atom. It is normally denoted with Z

Mass number: the number of proton and neutrons. As its name suggests it is roughly related
to the mass of the nucleus in atomic mass units. It is usually denoted with A.

A nucleus with atomic number Z and mass number A has therefore N = A − Z neutrons.
Nuclides are represented as AX, A

ZX or A
ZXN with X the chemical symbol for the atom.

The binding energy B(A,Z) of a nucleus with atomic number Z and mass number A is the
difference between its atomic mass and the sum of the mass of its constituents.

B(A,Z) = ZM(1H) + (A− Z)M(n)−M(A,Z) (7.6)
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Here, M(1H) = Mp +me includes the masses of the proton and of the electron. This formula
assumes that the energy difference coming from the electron binding energies is negligible (it is
≈ 13.6 eV). The binding energies for all nuclei are shown in Fig. 8b.

(a) Radius of different nuclei as a function of cubic
root of the mass number.

(b) Binding energy per nucleon as a function of the
mass number for the most stable isobar (same A)
together with the prediction of the semi-empirical
mass formula (eq. 7.7) for odd A nuclei (black
line).

Figure 8: Radius and binding energy per nucleon.

7.2 The liquid drop model

The binding energies cannot be predicted accurately from first principles for the reasons outlined
in the beginning of this chapter. Instead an approximate formula can be postulated based on
physical arguments, with parameters to be determined experimentally, the so-called Bethe-
Weizsäcker or semi-empirical mass formula based partially on the liquid drop model

B(A,Z) = EVolume − ESurface − ECoulomb − EAsymmetry ± EPairing

= aVA− asA
2/3 − ac

Z2

A1/3
− aa

(N − Z)2

4A
+

δ

A1/2
(7.7)

Some of these terms are motivated by a comparison between the nucleus and a liquid drop.
Both the nucleus and a drop of liquid contain large numbers of particles, are homogeneous and
incompressible and their mass density drops off sharply at the boundary. In this picture, the
binding energy of the nucleus corresponds to the vaporisation heat of a liquid. The radius of
the nucleus, given the approximately constant density, is taken proportional to A1/3 (you can
see how good of an assumption this is on fig 8a).

Volume term [EVolume = aVA] The strong force between nucleons is short-
range, unlike the Coulomb force or gravity. Just like molecules in a
liquid, nucleons only interact with other nucleons that are close enough,
so the contribution to the potential energy scales with the mass number
A. This can be understood as follows, the attractive nature of the force
means its energetically favourable for a nucleon to surround itself with
other nucleons, but it can only be surrounded by a few and the ones
one layer away do not sizably contribute to binding energy. This means there is a con-
stant binding energy per nucleon and the total binding energy B scales with A. Since
the volume of a sphere is given by 4/3πR3 ∝ A, this term is called the volume term.
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Surface term [ESurface = asA
2/3] In the above description we neglected the

fact that the density of neighbours is smaller for nucleons at the bound-
ary of the nucleus, these will not contribute as much as those in the mid-
dle of the nucleus. This term corrects for this effect and is proportional
to the area of the nucleus and since the area scales as area = 4πR2, we
have a term proportional to R2 = (A1/3)2 = A2/3. The equivalent in a
liquid drop is the surface tension. Both the liquid drop and the nucleus
are spherical, because this shape combines the largest volume with the smallest surface.

Coulomb term [ECoulomb = ac Z
2/A1/3] Electromagnetic interactions push the

nucleus apart. This has no analogy in a liquid drop. The potential for each
proton is proportional to the number of other protons so it will be proportional
to Z(Z−1). The Coulomb potential is proportional to V (r) = α/r so we expect
a dependence proportional to 1/R = A−1/3, for large values of Z we can replace
Z(Z − 1) with Z2.

Asymmetry term [EAsymmetry = aa (N − Z)2/(4A)] This term is a quantum
effect and can also not be explained in analogy with the liquid drop. Since
both neutrons and protons are fermions (which carry spin 1/2 ) Fermi statistics
enforces that no two identical nucleons can be in the same state. To illustrate
how this term arises we can imagine that the neutrons and protons have the
same energy levels, and they fill the lowest n levels if there are n nucleons of one
type. If we start from a nucleus with equal number n of protons and neutrons
both type will have their n lowest energy state filled. If we now try to replace a neutron with
a proton, this cannot work straight-forwardly because the corresponding energy level is already
occupied by a proton, so this new proton will have to go into a higher energy level, hence
reducing the binding energy. Nuclei with a symmetric number of neutrons and protons can be
packed tighter. This term measures the difference between the number of neutrons and protons
and is therefore proportional to A− 2Z = N − Z.

Pairing term [EPairing = δ/A1/2] Nuclei with even numbers of protons and
neutrons are more stable. The reason is again a quantum effect and can not
be explained by analogy with the liquid drop. In terms of shells, it can be
explained by the fact that two different nucleons with opposite spin can be on
the same shell, whereas a third nucleon would need to be on the next shell, i.e.
lead to a bigger, more weakly bound nucleus. So we expect different values of
δ for both protons and neutrons appearing in even numbers, one even and one
odd and for both in odd numbers. The scaling as a function of A is found to be as A−1/2.

δ =


+δp even-even nucleus

0 odd-even nucleus

−δp odd-odd nucleus

(7.8)

Although this model of the binding energies of nucleons is descriptive and we can only
motivate the terms with qualitative explanations it does a good job of describing nature with a
relatively small number of inputs as you can see in fig 8b.
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N In a nutshell

• Nucleons are made of Z protons and N neutrons for a total of A = N +Z nucleons

• Binding energies change nuclear masses at the ∼ 1% level and are described by the
semi-empirical liquid drop formula.
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8 Nuclear stability

Not all bound states of protons and neutrons result in a stable nucleus. There are a relatively
small number of nuclides that can be observed, with a smaller that are stable. The stable
nuclides are shown in Fig. 9. The mass formula can tell us if a given transition is energetically
viable, that is explicitly decays can occur if the difference of masses of initial state and final
state, here called Q, is positive

Q = parent mass− daughter masses > 0 . (8.1)

This does not tell us however how it happens or if it happens at all. There are a first a few
rules that decays should satisfy as we have found through experiments

• Conservation of baryon number

• Conservation of lepton number

• Conservation of angular momenta

• For strong and electromagnetic decays, conservation of parity

Figure 9: Stability of the nuclides as a function of the number of protons Zand the number of
neutrons N . The color coding indicates the lifetime in seconds. Figure taken from [3].

Neutrons and protons are assigned a baryon number of one and this conservation means that
their total number will not change. Equivalently electron e− and electron neutrino νe have
electron number 1 but their anti-particles the positron e+ and anti-neutrino ν̄e electron number
−1.

Nuclei have a baffling range of lifetimes from ms to millions of years. This reflects both the
fact that there are different mechanisms for decay and that these mechanisms are very sensitive
to differences in bound states.
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Figure 10: Fraction of atoms remaining as a
function of time.

We characterize how long does a nucleus live
by λ, its decay rate. If we have a number of
unstable states N we find that the number of
decays per unit time proportional to the number
of states

dN

dt
= −λN , ⇒ N(t) = N0e

−λt . (8.2)

With λ the proportionality constant. The solu-
tion of this equation tracks the number of states
N after a time t has elapsed. We can ask ques-
tions then like how long does it take until only
have of the atoms are left? The answer to this
is is called the halflife of a sample,

N(t1/2) =
N0

2
= N0e

−λt1/2

⇒ t1/2 =
ln(2)

λ
. (8.3)

We can ask a slightly different question: how long does it take on average for a nucleus in the
sample to decay? In this case the answer is given by the mean lifetime,

dP =
−dN
N0

= − 1

N0

dN

dt
dt = λe−λt (8.4)

τ ≡ ⟨t⟩ =
∫
t dP =

1

N0

∫ ∞

0
λtN(t)dt =

1

λ

∫ ∞

0
dxx e−x = λ−1 (8.5)

The mean lifetime is related to the halflife by t1/2 = τ ln(2). Figure 10 shows the exponential
decay of the number of nuclei and the lifetime and half time.

The frequency of decays in a material is called the activity

A = −dN
dt

= λN

Commonly used units for the activity are Becquerel (1Bq = 1 decay/s) or Curie (1Ci = 3.7 ·
1010 Bq). The activity of a sample decreases with time as the number of candidate nuclei for a
decay diminishes,

A(t) = λN(t) = λN0e
−λt (8.6)

The range of lifetimes for nuclei spans many orders of magnitude: some nuclides live for a mere
fs after being produced in the lab while others have a lifetime longer than thousands of years
and are present on earth contributing to the environmental radiation. The SI unit for measuring
the radiation dose is the sievert, Sv, and is determined by energy absorbed by kilogram of tissue
times a quality factor γ̄ which depends on the type of radiation (β, γ, γ̄ = 1;α, γ̄ = 20). Typical
doses we are exposed to are in the mSv per year.

N In a nutshell

• Unstable nuclide abundance decreases with an exponential law

• The characteristic decay time is the mean lifetime, the inverse of the decay rate
which is the time it takes for a sample to decrease by 0.368.
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9 Beta-decays (decays with constant A)

These are decays mediated by the weak interactions, which stem from a third type of force
different from the strong or electromagnetic. The basic interaction mediates the process of
neutron decay; a free neutron has a lifetime of about τ = 879.6 s = 14min 40 s and decays into
a proton, an electron and a neutrino through the weak interaction

n→ p+ e− + ν̄e (9.1)

this process is called β decay and it explains why there are no free neutrons even though there
are free protons. Neutrons can be long lived when they are part of a nucleus, energetically
neutron decay as above releases Q = 0.8MeV but average binding energy per nucleon are 10
times that, see 8b. In fact the opposite effect can also happen if the nucleus resulting from
a proton changing into a neutron is less massive. This can be triggered by a reduction in
the Coulomb energy and depending on the neutron-proton imbalance may result in the newly
created neutron taking a lower energy state than the proton. Nuclei with large number of
protons will tend to exchange protons for neutrons and nuclei with large numbers of neutrons
compared to protons will tend to exchange protons for neutrons. This processes called β-decay
do not change the mass number A but change Z.

Three processes are possible, all using variations of the β-decay formula (9.1) by moving
particles between final and initial state. All of them include neutrinos whose mass can be
neglected.

β− decay: A neutron in the nucleus decays into a proton, an electron and an electron anti-
neutrino.

n→ p+ e− + ν̄e (9.2)

This decay within a nucleus reads,

A
ZXN −→ A

Z+1 YN−1 + e− + ν̄e . (9.3)

Such a decay is possible if the mass difference between the parent and daughter nuclei is
large enough to “afford” the creation of the electron an neutrino. In terms of atom masses
the condition is :

M(A,Z) > M(A,Z + 1) (9.4)

where the fact that we use atom masses takes the additional electron produced in the
decay into account since the daughter nucleus has one more electron than the parent.

β+ decay: A proton in the nucleus is changed into a neutron by emitting a positron and a
neutrino:

p→ n+ e+ + νe (9.5)

Inside a nucleus this reads

A
ZXN −→ A

Z−1 YN+1 + e+ + νe . (9.6)

For this process to happen the mass difference between the nuclei should be large enough
to ”buy” the mass of the positron. In terms of atomic masses the condition is

M(A,Z) > M(A,Z − 1) + 2me (9.7)

we need to add twice the mass of the electron on the right-hand side to account for the
mass of Z electrons and 1 positron.
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electron capture: in this case we consider the case in which an electron from the atom com-
bines with a proton to give a neutron and a neutrino:

p+ e− → n+ νe , (9.8)

so that for this reaction inside the nucleus

A
ZXN + e− −→ A

Z−1 YN+1 + νe , (9.9)

and for this process to occur the condition is less stringent because no energy is needed
to produce a positron or electron, only the (negligible) energy for the neutrino is needed.
The condition is

M(A,Z) > M(A,Z − 1) + ϵ (9.10)

where ϵ is the energy of the excited state of the nuclide A
Z−1Y produced. For this process

to happen there needs to be some overlap between the electron wave function and the
nucleus. This is more likely to be the case for s-shell electron since there the radial wave
function has a non-zero value at the origin. Also the higher the charge of the nucleus the
closer the electron wave function is concentrated close to the nucleus, so electron capture
gets more likely for larger nuclei. Electron capture is always possible when β+-decay is
allowed but the reverse is not true: if the mass difference between two isobars is smaller
than 2me only electron capture is possible.

Since these decays do not change A we can quantify this by looking at the semi-empirical
formula eq. 7.7 and eq. (7.6) for a fixed value of A, and substituting N = A− Z

M(A,Z) = (A− Z)Mn + Z(Mp +me)− aVA+ asA
2/3 + ac

Z2

A1/3
+ aa

(A− 2Z)2

4A
− δ

A1/2
,

(9.11)

we find that the mass formula is quadratic in Z so we expect the masses of the isobars to fit on
a parabola.

In the case of odd A we have one parabola, as shown in Figure 11. In such a case only one
isobar is the lowest and is β-stable. All other isobars can decay to that stable isobar.

In the case of even A nuclei there are two parabolas because of the pairing term. An example
is shown in Figure 11. In some cases we are in a situation where there are two nuclides of the
even-even type lower than a nuclide of odd-odd type.

N In a nutshell

• β decays exchange neutrons and protons and change Z by one unit while leaving
A the same.

• They involve electrons, positrons, neutrinos and anti-neutrinos and occur in 3 forms
β− (n→ p), β+ (p→ n) and electron capture (p→ n).
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Figure 11: Mass differences between isobars and the lightest isobar for A = 77 (left) and A = 80
(right). The arrows represent β-decays.

10 A-changing decays

Weak or β decays change the charge of a nucleon but leave the nucleus with the same number of
nucleons A. Electromagnetism and the strong force cannot do this since they preserve both the
number of protons and neutrons but they can mediate the rearranging of these into separate
daughter nuclei. This occurs mostly in 3 processes

i) Proton and neutron emission Very proton or neutron rich nuclei are so unstable that they
emit a single proton or neutron before it can undergo a beta decay. This is a very rare process
that only occurs in a small number of nuclei. The decay formula for these processes are

Neutron emission: A
ZXN −→A−1

Z YN−1 +
1
0 n1 , (10.1)

Proton emission: A
ZXN −→A−1

Z−1 YN +1
0 p0 . (10.2)

and they take place if

Neutron emission: M(A,Z) > M(A− 1, Z) +Mn (10.3)

Proton emission: M(A,Z) > M(A− 1, Z − 1) +M(1H) . (10.4)

ii) α-decay Another possibility for decay is the α-decay where an 4He nucleus, also called
α-particle is emitted. This decay reduces Z by two units and A by four,

A
ZXN −→A−4

Z−2 YN−2 +
4
2He2 . (10.5)

It occurs often for heavy nuclei for which binding energy per nucleon is smaller the larger the
mass number, as show in fig. 8b. For this decay to happen the mass of the atom must satisfy:

M(A,Z) > M(A− 4, Z − 2) +M(4, 2) (10.6)

We can estimate the probability for this decay by considering the effective potential that the
α-particle is subject to, sketched on the left-hand side of fig 12. Outside of the nucleus (that is
further than the range of the nuclear force) the alpha particle only feels the Coulomb potential
of the remaining Z − 2 protons in the nucleus whereas inside the nucleus the attractive strong
force is simplified to produce a square-well potential. For positive total energy then there is a
chance that the α particle tunnels out of the well.
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Nuclear potential

V (r)
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Energy

r

induced fission

spontaneous fission

Figure 12: Left panel: Potential of an α-particle as a function of the distance to the nucleus.
Right panel: Potential for the two daughters in a fission process as a function of the separation.

To estimate the likelihood of the α particle escaping we can first consider the simplified
case of a particle directed towards a thin wall as in fig. 13. The time-independent Schrodinger
equation reads

(
− 1

2m

∂2

∂2x
+ V (x)

)
Ψ = EΨ V (x) =


VI x < 0
VII 0 < x < ∆x
0 x > ∆x

(10.7)

The solution gives us the wave-function regions (I) and (II) as

ΨI,II = eixp(I),(II)
{

p(I) =
√
2m(E − VI) x < 0

p(II) = i
√
2m(VII − E) 0 < x < ∆x

(10.8)

V (x)

∆x

E

Figure 13: The wave-function
of a particle in the potential of
eq. (10.7)

The probability that the particle tunnels out through our
thin wall is then proportional to the square of the wave-function
amplitude at x = ∆x, that is Exp(−

√
2m(VII − E)∆x). This

result can be applied to any potential if we break it down into
thin slices to give an expression:

Ψ(x) = Exp

(
−
∫ x

0
dx

√
2m(V (x)− E)

)
≡ e−G (10.9)

where G is the Gamow factor. With our approximation to the
potential we have x→ r and V (r) ∼ 1/r whereas the limits of
integration are given by the size of the nucleus R and the energy
E which sets the ‘exit’ radius ro as V (ro) = E. The probability
of decay will scale with the square of this exponential which
means that changes in Gamow factor will be greatly amplified
in the resulting lifetime. This effects accounts for the wider
range of lifetimes for nuclei that decays via α decay.

iii) Nuclear fission α-decay is only one case in which the nu-
cleus splits into several smaller nuclei. If we look at the energy as we pull the two parts of a
nucleus apart we can reconstruct the potential as a function of the distance between the two
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Figure 14: Decay modes in the N -Z plane. Data from [3]

parts which is sketched in fig. 12. Starting from the ground state of the parent nucleus (which
we assume to be spherically symmetric) at first the surface energy dominates and we have to in-
put energy to stretch it out, but at some finite distance this is overcome by the electromagnetic
interaction whose force tries to push the two same-charge daughter nuclei apart.

The height of the barrier is called the activation energy. Very few nuclides decay through
spontaneous fission, in most cases α-decay is more likely (see fig. 14). The probability of fission
increases with Z and is more likely for heavy nuclides. Fission processes can be induced by
exposing the nuclides to a flux of neutrons. If an atom absorbs a neutron it will acquire its
kinetic energy (although part of it will be needed to produce the daughter nucleus recoil) and it
also gains the bounding energy associated with the additional neutron. This additional energy
can bring the nucleus energy above the fission barrier, triggering the fission of the nucleus.

N In a nutshell

• For A ≳ 100 nuclei are less bound for increasing A and can decay into lighter nuclei

• This can occur through i) proton or neutron emission ii) α particle emission iii)
fission
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11 Nuclear power

Energy is produced in each nuclear decay and can be a priori extracted for our use. Radioactive
substances will however follow the exponential decay law and disappear within a period of a
few lifetimes which is a problem for storage. Instead if one can find a stable substance which
combined or sparked by another undergoes a reaction and produces energy we have a viable
energy source. The qualitative process is like combustion with the quantitative difference being
that where chemical bounds rearrange to produce an energy of around eV per reaction; nuclear
energy is a million times more efficient. Here we will outline how this energy is harnessed in
fission reactors and a brief sketch of how this might be possible in fusion in the future.

Fission As we pointed out a neutron can be absorbed by a nuclei and trigger fission, in the
case of 235U ,

fission 1
0n+ 235

92 U → 236
92 U −→ 141

56 Ba + 92
36Kr + 3 1

0n (11.1)

where we observe that there are three neutrons produced in the reaction; if they were to go on
to excite other 235U nuclei past their activation energy we would have ourselves 9 neutrons and
the making of a chain reaction. This feature helps sustain fission but it also requires monitoring
and counterbalance.

Figure 15: Cross sections for induced fission and radiative capture for the two main isotopes or
uranium. The shaded regions represent the typical energies for thermal neutrons (around 0.025
eV) and neutrons from the fission process (around 1 MeV). Data from [4]

The balance is provided in part by Uranium itself, in practice the produced neutrons do not
always produce fission when absorbed, one can also have photon emission as the outcome

rad. caputure 1
0n+ 235

92 U → 236
92 U −→ 236

92 U + γ (11.2)

In addition 235U is not found in Nature in isolation but it occurs with a split of 99% 238U
and 0.7% 235U. Figure 15 shows the cross section for the absorption of a neutron by these two
isotopes of uranium; here we can see that for 238U radiative capture dominates for most of the
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range.

rad. caputure 1
0n+ 238

92 U → 239
92 U −→ 239

92 U + γ (11.3)

In particular it does so for MeV neutrons which are produced in fission (with a peak slightly
lower than 1 MeV) which is the reason why uranium in the earth crust does not undergo a
fission chain reaction. In fission power plants reaction is kept going under control with the
combination of three ingredients

• Fuel Uranium with an isotope composition close to its natural abundance. One can read
from fig. 15 what is more likely to occur to a neutron from fission given its energy by
identifying the largest cross section.

• Moderator For these neutrons to be mainly recycled into another fission process they
are cooled down by the moderator. This substance, rich in neutrons but light enough to
sizably bounce off an scattering with a neutron, is commonly heavy water or graphite.

• Control rods In order to decrease the rate of the reaction, control rods of a material that
absorbs neutrons can be inserted in the fissible material, with common materials being
Boron.

An sketch of a fission reactor is shown in fig. 16.

Fuel rod Moderator

Control rod

Fission

Capture

Absorption

Moderation

Figure 16: Left: Schematic representation of the moderator and fuel arrangement in a nuclear
reactor. Right: Breazeale Nuclear Reactor at the University of Pennsylvania.

Fusion A drawback of fission is the production of radioactive materials with a thousand year
lifetime whose radiation is armful. While safe disposal of this products should solve the problem,
there is the (so far unrealized) possibility of using nuclear reactions which do not produce toxic
materials.

Fusion makes use of the tightly bounded 4
2He nucleus to output energy. The reaction con-

sidered is
3
1H+ 2

1H −→ 4
2He + n

which releases some 17.6MeV.
One of the challenges of using this reaction for outputing energy is that first the tritium and

deuterium must be heated enough to be able to overcome the electromagnetic repulsion between
them to KeV (temperatures). At these temperatures they are stripped of electons and the fuel
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is therefore a charged very hot substance, a plasma which is handled by magnetic fields in smart
configurations. For these and other reasons fusion presents a challenge which we haven’t met
yet even if there’s progress in experiments like ITER in France.

N In a nutshell

• A suitable arrangement of fissible material and moderator can sustain a controlled
chain reaction.

• Fusion makes use of the tightly bound 4
2He and offers a waste-free alternative but

is in R&D at present.
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Figure 17: First excited state energy. The highest energies (and hence the most stable states)
are concentrated around proton and neutron numbers equal to 2,8,20,28,50,82,126

12 Shell model

The wealth of data on nuclear masses allowed us to learn about the strong interaction and
model the binding energies it produces with some success in terms of the phenomenological
drop formula. This description however cannot explain some outstanding features in the data
nor it does tell us about excited states. Indeed one of the signals of a state being composite
(other than the obvious “it can be broken apart”) is that it has excited states that correspond
to less tightly bounded combinations of its constituents.

Looking at the data we find that certain nuclei with so-called magic numbers both require a
large amount of energy to transition to their first excited state and have larger binding energies
per nucleon than its neighbours see figs 17, 8b. The nuclear shell model provides an explanation.

We have seen that the nucleon potential is more complex than the Coulomb potential that
describes the atom; this nonetheless does not prevents us from employing some of the techniques
of atomic physics, it just means they will have a smaller range of applicability and less precision
on its prediction. For a simple case where we can expect some success consider a nucleon in
the effective potential induced by the rest of the nucleons. We assume that this potential is
spherically symmetric and that the remaining A− 1 nucleons combine to have 0 total angular
momentum (this is usually the case if A−1 is even). The solution to Schrodinger’s equation will
then be labelled by a principal quantum number n for the radial solutions and an angular mo-
mentum index L for the spherical harmonic function YL,m(θ, ϕ) and a total angular momentum
index J , which in our case given neutron and protons have S = 1/2 is L± 1/2. Spin-statistics
tells us that no two fermions can be on the same state so we expect the protons to settle on the
lowest energy unfilled states and the same for neutrons but since they are distinct fermions they
fill their own set of states. We will use spectroscopic nomenclature as nLJ with L = s, p, d, f....

If we ignore the nuclear spin in a first stage, the situation is that of the Hydrogen atom,
only now our potential is short range (∼ fm) which means we can approximate it to roughly
follow the nucleon density that we derived from experiment in chapter 6

V (r) = − V0

1 + e(r−r0)/a
(12.1)

with parameters r0 and a fitted from data and this being called the Saxon-Woods potential
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Figure 18: Illustration of the shell model, the potential and magic numbers.

Figure 19: Energy levels in a harmonic oscillator (H.O.), and infinite potential well (ISQ), in
the Saxon-Woods potential before (WS) and after including the spin-orbit coupling (WS+SO).
Figure taken form [2]
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(WS). With this potential we obtain the levels shown in the central part of Figure 19, (WS) for
comparison shown together with the energy states of a harmonic oscillator (H.O.) and infinite
square well (ISQ). This does account for why 4

2He is so tightly bound: two neutrons and two
protons fill the first shell and there is a considerable gap till the next energy state. For higher
A neglecting the spin is not a good approximation, but given our simplified scenario with the
rest of nucleons having no net angular momentum, there is only one other term to consider in
our potential, spin orbit coupling:

VLS = VLS(r)L · S

Whose correction to the energy can be estimated, first computing the average of the spin
coupling as we do in atomic physics:

J(J + 1) =
〈
J2

〉
=

〈
(L+ S)2

〉
= L(L+ 1) + S(S + 1) + 2 ⟨L · S⟩

⇒ ⟨L · S⟩ = J(J + 1)− L(L+ 1)− S(S + 1)

2
(12.2)

Since S = 1/2 total angular momentum J can take two values for given L: L+ 1/2 or L− 1/2
and the energy split:

∆ESO,nL = ⟨VLS(r)L · S⟩|J=L+1/2 − ⟨VLS(r)L · s⟩|J=L−1/2

= ⟨VLS(r)⟩
L+ 1/2

2
(L+ 3/2− (L− 1/2))

= ⟨VLS(r)⟩
2L+ 1

2
. (12.3)

We find experimentally that the coefficient ⟨VLS(r)⟩ < 0 is negative so that unlike for the
electron levels in the hydrogen the energy level with the higher value of J is the lower lying
one. The result of including this contribution is shown on the right of Figure 19 and results in
splits between levels consistent with the magic numbers. In practice the proton and neutron
potentials can have slightly different shapes resulting in small differences in the ordering of the
shells within a band, but not affecting the magic numbers, see Figure 20.

12.1 Spin and parity of nuclei

The parity of a state is given by its eigenvalue under the operation P : x → −x

PΨ = ±Ψ

In particular for orbital angular momentum we can deduce the parity by the spherical harmonic
property

PYL,m(θ, ϕ) = YL,m(π − θ, ϕ+ π) → (−1)LYL,m(θ, ϕ)

Composite states have parity equal to the product of their individual parities. Electromagnetism
and the strong interactions conserve parity which means it is a useful quantum number to label
our states and derive selection rules.

In addition to explaining the location of magic quantum numbers, the shell model can predict
parity and total angular momentum for ground states in certain cases.

Even-even If we have an even number of protons and neutrons we can expect the parity to
be +1 since for every nucleon we can find another with the same parity. As for angular
momentum we expect nucleons to pair up and give no net total as in the Hydrogen
atom. These approximations are specially good for magic numbers with full shells. The
prediction is then JP = 0+ as we can verify in fig. 21 for the doubly magic 16

8O
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Figure 20: Energy levels for protons and neutrons. The ordering within a band are different for
higher levels, but the structure in bands with magic number of nucleons is the same.
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Figure 21: Energy levels for nuclei with proton and neutron numbers close to the magical
number 8.

Even Odd In this case the parity and momentum will be given by the unpaired nucleon, that
is, JP = (L ± 1/2)L. This is again a very good approximation for the unpaired nucleon
being one more than or one short of (also called hole) a magic number. For example 17

9F
has one extra proton on top of a closed shell and by fig. 20 one has JP = 5/2+ which is
what is observed fig. 21.

Odd-odd Here the total parity and angular momentum is the combination of the unpaired
proton and neutron, but among the different possibilities the shell model does not tell us
which to choose.

12.2 Excited states

Filling in the lowest energy states with our protons and nucleons the shell model can predict
some of the nuclei ground state properties. If we consider now one or more of our nucleons not
in the lowest energy state we can study excited states.

Figure 21 shows the energies and JP quantum numbers of excitations of nuclei with proton
and neutron numbers close to the magical number 8. Take 17

9F the shell model predicts that if
we place the unpaired proton in the next to lowest energy available state, one has JP = 1/2+;
this is indeed the case as shown in 21. Note that 17

8O and 17
9F have very similar spectrums, this

is because they are so-called mirror nuclei which map into each other swapping the protons
with neutrons.

Transition between states can occur via emission or absorption of a photon. This being an
electromagnetic process we can obtain selection rules as in atomic physics.

The essence for our selection rule lies in the conservation of parity and total angular mo-
mentum. The emitted photon carries away a non-zero angular momentum, which we label with
ℓ and we have ℓ ≥ 1. It is related to the multipolarity of the radiation: ℓ = 1 is called dipole
radiation, ℓ = 2 quadrupole, ℓ = 3 octupole, etc. Angular momentum has to be conserved, so
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we have

Jp = Jd + ℓ⃗ (12.4)

The rule for angular momentum composition dictates |Jd − ℓ| ≤ Jp ≤ Jd + ℓ but given that we
often know the nuclear total angular momenta it is more useful to rewrite it as

|Jp − Jd| ≤ ℓ ≤ Jp + Jd . (12.5)

It is important to note that this equation leads to results that can appear counter-intuitive. For
example for Jp = Jd = 1 we can have ℓ = 2. It would appear that the angular momentum did
not change and yet the photon carries some angular momentum away. The important point is
that this is a vector equation and in this case J⃗p = −J⃗d and while they have the same norm
their angular momentum did change as a vector. In other words one can have ∆J = 0 with
∆J ̸= 0.

There are two ways for the initial state to change its angular momentum, it can change its
spin or change its orbital angular momentum. If a spin change has occurred, the transition
is classed as “magnetic” if not it is called “electric”. A transition with change on angular
momentum ℓ = |ℓ⃗| is labelled Eℓ orMℓ if it is electric or magnetic. Evaluation of matrix elements
shows that the amplitude for a change of spin is typically smaller than that of changing the
orbital momentum, so magnetic transitions are normally less likely than the electric transitions
for the same ℓ. On the other hand higher ℓ transitions are less likely so a given process will
normally occur with the lowest ℓ allowed by the conservation constraints. The parity of the EM
radiation is different for electric and magnetic radiation: it is (−1)ℓ for an electric transition
and (−1)ℓ+1 for a magnetic transition. Conservation of parity gives (Pp,d are parities of parent
and daughter nuclei):

Pp =

{
Pd(−1)ℓ for Eℓ transitions

Pd(−1)ℓ+1 for Mℓ transitions
(12.6)

The above constraints summarized give us the following selection rules

|Jp − Jd| ≤ ℓ ≤ Jp + Jd and (−1)ℓ =

{
PdPp for an Eℓ transition

−PdPp for a Mℓ transition

where we used P−1
p = Pp. For each ℓ only one of the E and M transitions will be allowed

by parity. If a Eℓ transition is allowed, parity will allow transitions E(ℓ ± 2), E(ℓ ± 4)... and
M(ℓ± 1),M(ℓ± 3)..., but angular momentum conservation will not allow all of them. We will
often find situations where Eℓ and M(ℓ± 1) are allowed and wonder which one is most likely.
The case Eℓ/M(ℓ + 1) is easy as E transitions are more likely than M transitions and the
likelihood is decreasing strongly with increasing ℓ. The other case with Mℓ and E(ℓ + 1) is
more complicated and the two can be of similar size, leading to interference effects.

Take fig. 21 again for an example, and consider the first excited to ground level transition
of F. Angular momenta for the photon (multipolarity) allowed are 2, 3, 4 whereas parity for Eℓ
transition dictates (−1)ℓ = 1 and (−1)ℓ = −1 for Mℓ. The most likely transition is therefore
E2.
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N In a nutshell

• The spin-orbit interaction in the nucleus is much stronger than in the hydrogen
atom and has opposite sign.

• The shell model can explain the magic numbers and predict spin and parity of
ground state of nuclei, as well as some excited states.

• Nuclei in excited states can relax to lower lying states through the emission of
photons. This process is called γ-radiation and obeys the selection rules imposed
by parity and angular momentum conservation.
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