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Prelude

0.1 References
For further reading and reference:

• Quantum Field Theory and the Standard Model
Matthew D. Schwartz

• An Introduction to Quantum Field Theory
Michael E. Peskin and Daniel V. Schroeder

• Quantum Field Theory in a Nutshell
Anthony Zee

• Quantum Field Theory Lectures
David Tong
www.damtp.cam.ac.uk/user/tong/qft.html

• Sidney Coleman’s QFT Lectures
https://arxiv.org/abs/1110.5013
www.physics.harvard.edu/events/videos/Phys253
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0.2 Conventions
These lecture notes use the following conventions.

0.2.1 Vectors

xµ = (ct, x⃗) pµ =

(
Ep
c
, p⃗

)
where c is the speed of light. Greek letters will be used for spacetime indices µ = 0, 1, 2, 3 that can
be understood to correspond to t, x, y, z.

We use the Minkowski metric in the mostly-minus convention

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


which obeys ηµρηρν ≡ δµν , such that

xµ = ηµνx
ν = (ct,−x⃗)

∂µ =
∂

∂xµ
=

(
∂

∂(ct)
, ∇⃗
)

We can also write the quantum mechanical energy and momentum operators into the combined
operator pµ as

pµ =

(
E

c
=
iℏ
c

∂

∂t
, p⃗ = −iℏ∇⃗

)
= iℏ∂µ

0.2.2 Dimensional Analysis

Eventually, we will use natural units which is standard in quantum field theory

c = 2.988× 108 ms−1 = 1

ℏ = 1.055× 10−34 Js = 1

which gives all quantities dimensions of energy (usually in units of electronvolt, eV ) to some power.
We usually denote the mass dimension of a quantity within square brackets, such as

[mass] = 1 [length] = −1

and some more relevant quantities:

[E] = [∂µ] = [pµ] = 1

[dx] = [x] = [t] = −1

which you can derive by thinking about how physical quantities relate to each other with equations
from quantum mechanics and special relativity, for example:

E2 = m2c4 + p2c2

p = ℏk
x0 = ct

where k here is a wavenumber (i.e. the number of waves per unit length).
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0.3 Useful Formulae
Here are some formulae you might find helpful for this course.

• The Dirac Delta ∫ ∞

−∞
dk eikx = (2π)δ(x) (1)

• Commutators

[A,BC] = [A,B]C +B[A,C] (2)

• Cauchy’s Integral Formula
For f(z) analytic within the curve C, such as in fig. 1∮

dz
f(z)

z − z0
= 2πif(z0) (3)

Figure 1: Example contour C on the complex plane
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1 Quantum Field Theory: Why, What and How?

The language that our most fundamental description of Nature is written on is quantum field
theory. Learning this language takes time and (well spent) energy, so it is good to first pause and
see what is in it for us by answering three questions.

1.1 Why do we need quantum field theory?
We do because:

a) We need a consistent quantum treatment of relativistic particles.

b) Our theory should be local & causal, as nature has shown itself to be.

c) Our theory should allow for a dynamical number of particles.

Let’s elaborate on what we mean by each of this points, while the way in which QFT addresses
them will be unvelied throughout the course.

1.1.1 a) Consistent Relativistic Quantum Theory

Take non-relativistic quantum mechanics. I’m guessing you already know about:

• Quantum mechanical states: |ψ⟩

• Wavefunctions: ⟨x|ψ⟩ = ψ(x)

• The Schroedinger equation: iℏ ∂
∂tψ(x) = −

ℏ2∇2

2m ψ(x)

• The energy of a particle with momentum p⃗: Ep =
|p⃗|2
2m

Now try the same thing for relativistic quantum mechanics. One has Ep =
√
m2c4 + p⃗2c2 and

we can try to plug this into the Schroedinger equation:

iℏ
∂

∂t
ψ(x) = “

√
m2c4 −∇2ℏ2c2

′′
ψ(x) (4)

But we run into a problem: eq. (4) isn’t a valid parital differential equation (because of this
√
∇2),

so how about we try squaring it

−ℏ2 ∂
2

∂t2
ψ =

(
m2c4 −∇2ℏ2c2

)
ψ (5)

which has a solution
e−iEpt/ℏ+ip⃗·x⃗/ℏ (6)

and E2
p = m2c4 + p⃗2c2. Unfortunately, when we take the square root, there are two solutions:

Ep = ±
√
m2c4 + p⃗2c2 (7)

one of which has negative energy. Bad news - negative energy states are associated with unstable
systems: a continuum of negative energy until −∞!
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Figure 2: Massive, charged objects m1, Q1 and m2, Q2 at positions x1 and x2.

1.1.2 b) Locality & Causality

Take two massive, charged objects m1, Q1 and m2, Q2 at positions x1 and x2 respectively, sketched
in fig. 2. The potential energy they feel classically is given by Newton’s law of gravitation &
Coulomb’s law:

V = −GN
m1m2

|x⃗1 − x⃗2|
+

Q1Q2

4πϵ0|x⃗1 − x⃗2|
(8)

But does object 1 know of object 2 instantly? Clearly not, since for example we know if the sun
disappeared, it would take us ∼ 8 minutes for us to realise.

The solution to this is that fields mediate the interaction and travel at a speed v ≤ c. Recall
from classical electromagnetism, Maxwell’s equations in terms of a scalar potential Φ = Φ(x⃗, t)

and vector potential A⃗ = A⃗(x⃗, t):

−∇2Φ− ∂t∇⃗ · A⃗ = ρ/ϵ0 (9)

∇⃗ × ∇⃗ × A⃗+
1

c2
2

ϵ

(
∇⃗Φ+ ∂tA⃗

)
= µ0J⃗ (10)

E⃗ = −∇⃗Φ− ∂A⃗

∂t
(11)

B⃗ = ∇⃗ × A⃗ (12)

such that the potential felt by object 1 is sourced by object 2, which we can write as follows:

Φ(x⃗, t) =
Q2c

ϵ0

∫ t

∞

dt′d3k

(2π)32|⃗k|
eik⃗(x⃗−x⃗2(t

′))
(
ie−i|⃗k|(t−t

′)c + h.c.
)

(13)

where the exponential terms describe waves travelling at the speed of light. Now we are able to
formulate the dynamics of object 1 locally, for example the potential energy of object 1 as a result
of 2 is:

V (x⃗1) = Q1Φ(x⃗1, t) (14)

1.1.3 c) Variable Number of Particles

In quantum mechanics, the number of e.g. electrons is fixed and does not change. The combination
of special relativity & quantum mechanics does, however, imply that particle number is a dynamical
(changing) quantity.
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Figure 3: A shrinking box.

Heuristic argument: Localise a particle in a box with volume L3, which gets ever
smaller such as in fig. 3. Heisenberg’s uncertainty principle tells us that

∆x∆p ≥ ℏ (15)

so where ∆x is decreasing, ∆p increases. We can write down the uncertainty in the
energy as

∆E2 ∼ ∆p2c2 =

(
ℏc
∆x

)2

. (16)

Whenever ∆E ∼ ℏc
∆x > 2mc2 there is enough energy to produce pairs of particles.

Alternatively, take the real life Large Hadron Collider (LHC) case. We collide
high-energy protons, and produce a shower of lower-energy particles as in fig. 4.

Figure 4: A very simple schematic of a collision at the Large Hadron Collider (LHC).

1.2 What can we do with quantum field theory?
A) Treat all particles on the same footing, with a common framework. The spin-statistics relation

“emerges".

B) It is language to formulate our most fundamental theorem of nature parts of which are the
most precise & sucessful theory.

C) It supports a consistent, low energy theory for quantum gravity our next to last theory.

9



1.3 How will we build a quantum field theory?
The short answer is by analogy with the theories we know:

A) Dynamics: Review Lagrangian & Hamiltonian mechanics, and apply it to fields.

B) Quantise: Implement canonical commutation relations.

C) Interpret the theory we obtain: Introduce Fock space, and identify familiar operators.
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2 A: Classical Mechanics Review

2.1 Lagrangian Mechanics

Figure 5: Paths of the coordinate q between fixed t0 and t1. The path which minimises the action
is labelled qmin. A small deviation around this path is highlighted, and labelled δq.

We can formulate finding the equations of motion (EoM) of a system as a minimisation problem.
Consider some coordinate q, with time derivative q̇ = dq/dt, which is fixed at the endpoints t0 and
t1. We want to extremise the action S, which is a function of the path between the endpoints, as
shown in fig. 5. We can write the action S as the time-integral of the Lagrangian L:

S =

∫
dtL(q, q̇) (17)

Take qmin(t), q̇min(t) as minimising the action. Small “variations" around these functions

q = qmin + δq (18)
q̇ = q̇min + δq̇ (19)

will leave the action invariant (as we’re varying around a stationary point)

δS =

∫
dt

(
δq
∂L

∂q
+ δq̇

∂L

∂q̇

)
= 0 (20)

=

∫
dtδq

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
+

(
δq
∂L

∂q̇

∣∣∣∣t1
t0

(21)

(22)

where by definition δq = 0 at the start and end points, so we can ignore the right-most term. We
are left with:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 Euler-Lagrange Equations (23)
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2.2 Legendre Transform
We will use the Legendre transform to find the inverse of a function F ′(v).

Maths
Take our function F (v) and define w ≡ ∂F

∂v . Then the inverse of w is ∂G
∂w with:

G(w) = w · v(w)− F (v(w)) (24)

such that G(w) is the Legendre transform of F (v).

Proof.

∂G

∂w

(
∂F

∂v

)
=
�������∂v

∂w

(
w − ∂F

∂v

)
+ v

= v

Physics
For us, this is a ticket to Hamiltonian mechanics, i.e. a change of variables from velocity to
momentum (v → w) ∼ (q̇ → p) and a change of function from Lagrangian to Hamiltonian
(F → G) ∼ (L→ H).
This transformation also has use in statistical mechanics and the path integral formulation
of QFT.

2.2.1 Hamiltonian Mechanics

First we apply the Legendre transform: treat q̇ as independent from q and trade it for p (the
canonical momenta) as

p ≡ ∂L
∂q̇

(
w =

∂F

∂v

)
(25)

and so we can write the Hamiltonian H in terms of the Lagrangian L

H(q, p) ≡ pq̇(p, q)− L(q, q̇(p, q)) (26)

but the Legendre transformation gives us a first order differential equation

∂G

∂w
= v −−−−−−−−→ ∂H

∂p
= q̇ (27)

Next to obtained a closed set of differential equations, the evolution of p is, :

∂H

∂q
=
∂q̇

∂q

(
p− ∂L

∂q̇

)
− ∂L

∂q
= −ṗ (28)

where we have used eq. (23) (Euler-Lagrange equations) to reach the RHS. We have reached:

q̇ =
∂H

∂p
ṗ = −∂H

∂q
Hamilton’s Equations (29)

We have doubled the degrees of freedom, but halved the order of the differential equations.
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2.2.2 Example

Consider a point-like mass m in a potential V such as fig. 6.

Figure 6: Example potential.

Lagrangian Formulation

The Lagrangian is:

L =
1

2
mq̇2 − V (q). (30)

Using the Euler-Lagrange equations, the EoM is

d

dt

∂L

∂q̇
=
∂L

∂q
−→ d

dt
mq̇ = −V ′(q) (31)

which is Newton’s second law of motion.

Legendre Transformation

Let the momentum p = mq̇. Then we can write the Hamiltonian using Eq. 26

H = p · q̇ − 1

2
mq̇2 + V (q) (32)

=
p2

m
− p2

2m
+ V (q) (33)

=
p2

2m
+ V (q). (34)

And using Hamilton’s equations Eq. 29 for the EoM

q̇ =
∂H

∂p
=

p

m
ṗ = −∂H

∂q
= −V ′ (35)

We see that nothing is lost, or gained. These are equivalent formulations.

Incidentally
∂L

∂q̇

∣∣
q̇=y

= my
inverse←−−−→ ∂H

∂p

∣∣
p=y

=
y

m
(36)
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2.3 Poisson Brackets and Time Evolution
Let’s look for constants of motion. Consider an arbitrary function O = O(q, p, t).

dO(q, p, t)
dt

= q̇
∂O
∂q

+ ṗ
∂O
∂p

+
∂O
∂t

(37)

=
∂H

∂p

∂O
∂q
− ∂H

∂q

∂O
∂p

+
∂O
∂t

(38)

where we have used the equations of motion to go from the first to second line.
We define a Poisson bracket as

[A,B]P =
∂A

∂p

∂B

∂q
− ∂A

∂q

∂B

∂p
(39)

such that
dO
dt

= [H,O] + ∂O
∂t

(40)

then we have that

• Any magnitude O such that

[H,O] = −∂O
∂t

(41)

is conserved.

• For H time-independent, H itself is conserved.

• This resembles QM and Heisenberg’s picture.

2.4 Classical Field Mechanics [PS 2.2, S 3, T 1.1]
Formally, the number of degrees of freedom will blow up now, since there is one per space-point
ϕ(t, x⃗), so space is somewhat like time but not quite. If this sounds funny, you’ve seen this before:

E⃗(x⃗), B⃗(x⃗) ; Φ(x⃗), A⃗(x⃗) (42)

E⃗ = −∇Φ− ∂

∂t
A⃗ ; B⃗ = ∇× A⃗ (43)

The change is then

R→ R q(t)←→ ϕ(t, x) Rn+1 → R
R→ R p(t)←→ Π(t, x) Rn+1 → R

t←→ t;x

We can picture the field as a “mattress”, like in fig. 7 (see Zee).

2.4.1 Lagrangian Formulation

Sure, the Lagrangian formulation should do, but what are we to make of the extra label? Let
ϕ̇ = ∂ϕ

∂t , then

S =

∫
dtL(ϕ, ϕ̇,∇ϕ, ...) (44)

=

∫
dt

(∫
d3xA(ϕ(x)) +

∫
d3xd3yB (ϕ(x), ϕ(y)) + ...

)
(45)
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Figure 7: Zee’s “mattress” visualisation of a field.

But remember locality! The field at ϕ(t, 0) does not have it’s dynamics influenced directly and
instantaneously by the field at ϕ(t, z). As such, B(ϕ(x), ϕ(y)) = 0 and instead we introduce the
Lagrangian Density, L.

S =

∫
dt

∫
L(ϕ, ϕ̇,∇ϕ) (46)

including boundary conditions (BC). A small deviation of the action, shown in fig. 8, is given by

Figure 8: A small variation of the field ϕ, δϕ in dark green from that which minimises the action
ϕmin shown in lighter green.
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δS =

∫
dtd3x

δϕ∂L
∂ϕ

+ δϕ̇
L
∂ϕ̇

+
∂δϕ

∂xi
∂L

∂
(
∂ϕ
∂xi

)
 (47)

=

∫
dtd3xδϕ

(
∂L
∂ϕ
− ∂

∂t

∂L
∂ϕ̇
− ∂

∂xi
∂L
∂ ∂ϕ
∂xi

)
(48)

+

∫
δϕ
∂L
∂ϕ̇

d3x
∣∣t1
t0
+

∫
dtδϕ

∂L
∂ ∂ϕ
∂xi

· dΣ⃗ (49)

where, dΣ⃗ is an infinitesimal element normal to the surface we integrate over and on the final line,
the first term cancels for Dirichlet boundary conditions, and we assume that ϕ → 0 which sends
the second term to zero. Note if we’re in finite space, there is a choice of Neumann or Dirichlet
boundary conditions. We can now extract field equations

∂

∂t

∂L
∂ϕ̇

+
∂

∂xi
∂L
∂ ∂ϕ
∂xi

− ∂L
∂ϕ

= 0 Field Equations (50)

where time and space are now on the same footing. We can package them up into a 4-vector
xµ = (ct, x⃗), and rewrite the field equations:

∂

∂xµ
∂L

∂
(
∂ϕ
∂xµ

) − ∂L
∂ϕ

= 0 (51)

This formula holds regardless of Lorentz invariance.

2.4.2 Hamiltonian Formulation

The Hamiltonian formalism for fields now has variations where we had derivatives:∫
d3xδϕ̇Π ≡

∫
d3xδϕ̇

∂L
δϕ̇

(52)

=

∫
d3xδϕ̇

(
∂L
∂ϕ̇
−∇ ∂L

∂∇ϕ̇

)
(53)

such that the canonical coordinate is

Π(x⃗) =
∂L
∂ϕ̇
−∇ ∂L

∂∇ϕ̇
(54)

where in almost all cases we will consider, the right-most term will vanish. Now we can write the
Hamiltonian as

H =

∫
d3xH =

∫
d3x

(
Π · ϕ̇− L

)
Hamiltonian (55)

The equations of motion now follow from Legendre’s inverse transform such that∫
d3xδϕ

δH
δϕ

=

∫
d3x

(
δϕ̇

δϕ

(
Π− δL

δϕ̇

)
− δL
δϕ

)
(56)
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as

ϕ̇ =
∂H
∂Π
−∇ ∂H

∂∇Π
Π̇ = −∂H

∂ϕ
+∇ ∂H

∂∇ϕ
(57)

Poisson’s bracket has a generalisation such that

d

dt
Θ = [H,Θ]P +

∂Θ

∂t
(58)

2.4.3 Example: Klein-Gordon Field

We are headed, eventually, to our theory of elementary particles; in this context the Klein-Gordon
field is fundamental & including interactions will describe the Higgs boson. Here it is, it’s La-
grangian density is

L =
1

2

[
ϕ̇2 − (cϕ∇⃗ϕ)2 − αϕ2

]
(59)

where cϕ, α are constants. The EoM is given by:

∂

∂t

∂L
∂ϕ̇

+ ∇⃗ ∂L
∂∇⃗ϕ

− ∂L
∂ϕ

= 0 (60)

⇒ ϕ̈− c⃗2ϕ∇⃗ϕ+ αϕ ≡ (□+ α)ϕ = 0 (61)

The Hamiltonian density follows from the canonical coordinate

Π =
∂L
∂ϕ̇

= ϕ̇ (62)

such that

H = Πϕ̇− 1

2

[
Π2 − (cϕ∇⃗ϕ)2 − αϕ2

]
(63)

=
1

2

(
Π2 + (cϕ∇⃗ϕ)2 + αϕ2

)
(64)

2.4.4 Example: Low Energy Accoustic Phonons

A small modification of the Klein-Gordon Lagrangian allows us to describe low-energy phonons.
Take D(x) to be the displacement of an atom of mass m interacting with it’s neighbours via a

spring (see fig. 9.

L =
1

2

(
mḊ2 −K(l∇D)2 + K

4
(l2∇⃗D)2

)
(65)

with a Hamiltonian density

H =
1

2m
Π2 +

K
2

[
(l∇⃗D)2 − (l2(∇⃗)2D)2

4

]
(66)

2.4.5 Example: Electromagnetism

It’s as simple as

LEM =
ε0
2

(
E⃗2 − c2B⃗2

)
(67)

=
ε0
2

((
δ∇Φ+ ∂tA⃗

)2
− c2

(
∇⃗× A⃗

)2)
(68)
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Figure 9: A schematic of atoms of mass m interacting with it’s neighbours with springs of spring
constant K. The displacement of the atom at the xth and xth position at time t is labelled as
D(t, x, y).

where we note that E⃗ is the canonical momenta of A⃗, and we have used eqs. (11) and (12). We
will find it useful to rewrite the Lagrangian in terms of the field strength tensor

Fµ,ν ≡

 0
(
∇⃗Φ+ ∂tA⃗

)T
−∇⃗Φ− ∂tA⃗ c

(
−∇iAj +∇jAi

)
 (69)

where we have used that µ ∈ [0, i] and i = 1, 2, 3. Recall the Minkowski metric, defined in
section 0.2.1 can be used to raise and lower indices. Then we can rewrite the Lagrangian density
as

LEM = +
ε0
4
Tr(ηFηF ) (70)

2.4.6 Example: Complex, Constrained Field

One last example is a complex field φ (conjugate is φ∗), with a first order EoM

L = iℏφ∗∂tφ−
ℏ2∇⃗φ∗ · ∇⃗φ

2m
(71)

we treat φ,φ∗ as independent so that the EoM are

∂t
∂L
∂φ̇∗ + ∇⃗ ∂L

∂∇⃗φ∗
− ∂L
∂φ∗ = −ℏ2∇⃗2φ

2m
− iℏφ̇ = 0 (72)

∂t
∂L
∂φ̇

+ ∇⃗ ∂L
∂∇⃗φ

− ∂L
∂φ

= iℏφ̇∗ − ℏ2∇⃗2φ∗

2m
= 0 (73)

the canonical momenta is
Π = iφ∗ℏΠ∗ = 0 (74)
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and so we find the Hamiltonian density is

H = Πφ̇+ 0 · φ̇∗ −

(
Πφ̇− ℏ∇⃗φ∗ · ∇⃗φ

2m

)
(75)

=
ℏ∇⃗φ∗ · ∇⃗φ

2m
(76)

=
iℏ∇⃗Π · ∇⃗φ

2m
(77)
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3 B: Quantisation [P.S. 2.3, S 2.3, Z 1.8, T 2.1-2.4]

Thus far, we have reviewed classical mechanics and even seen how, with Poisson brackets, the
evolution of observables is akin to that of quantum mechanics. To quantise the theory, however,
we need to input the uncertainty principle. Again, parallels help:

[X,P ] = iℏ⇒ [ϕ,Π] = iℏ“1” (78)

This tells us we cannot measure momentum and position simultaneously, and to arbitrary preci-
sion. When we translate to canonical variables, we cannot determine the field value and it’s time
derivative to arbitrary precision either. This is our starting point: we promote ϕ,Π to operators
and impose a form that satisfies commutation relations.

3.1 The Quantum Harmonic Oscillator
3.1.1 Review

The way we will go about quantisation calls for a review of the harmonic oscillator first. Take a
Hamiltonian

H =
1

2

P 2

2m
+
mω2X2

2
(79)

where X and P are position and momentum operators respectively. We introduce creation a† and
annihilation a operators, such that [a, a†] = 1 and we write an ansatz for X and P as

X = (a+ a†)C (80)

P = i(a− a†)Bℏ (81)

which satisfies the commutation relations

[X,P ] = iℏ([a,−a†] + [a†, a])CB = −2iℏCB (82)

where we can take C,B such that

X =

√
ℏ

2mω
(a+ a†) (83)

P = −i
√

ℏmω
2

(a− a†) (84)

which give us [X,P ] = iℏ, but also

H =
( m
2m

(
−ω
2

) (
a2 + (a†)2 − {a, a†}

))
ℏ (85)

+
ω2m

4mω

(
a2 + (a†)2 + {a, a†}

)
ℏ (86)

=
ℏω
2
({a, a†}) (87)

= ω

(
aa† +

1

2

)
ℏ (88)

where {a, a†} = aa† + a†a, i.e. the anti-commutator, so that

[H, a†] = ℏωa†[a, a†] = ℏωa† (89)

[H, a] = ℏω[a†, a]a = −ℏωa (90)
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The action of a† (a) on a Hamiltonian eigenstate is to increase (decrease) the energy by ω. Given
the positive definite spectrum, there must be a state |0⟩ such that a |0⟩ = 0 and the whole spectrum
is spanned by the Hilbert space: ⊕

(a†)n |0⟩ (91)

which has the following promising features:

• Energy is ∼
√
ω2 and we have a positive spectrum.

• Creation and annihilation operators offer a simple picture of quanta.

3.1.2 Quantum Harmonic Oscillator Field

For fields now we should specify what happens to the labels x⃗, y⃗ on the right hand side of the
commutator. In our mattress picture fig. 7, there’s an oscillator at every x⃗ so we have that the
commutator is only iℏ for ϕ,Π on the same side:

[ϕ(x⃗),Π(y⃗)] = iℏδ3(x⃗− y⃗)I (92)

where I refers to the identity matrix. We now try the same type of ansatz as for X and P above:

ϕ(x⃗) =

∫
[dk⃗]A

(
ake

ik⃗·x⃗ + a†ke
−ik⃗·x⃗

)
(93)

Π(x⃗) = −i
∫

[dk⃗′]B
(
ak′e

ik⃗′·x⃗ − a†k′e
−ik⃗′·x⃗

)
(94)

with the notation

[dk⃗] =
d3k

(2π)3Nk
, [ak, a

†
k′ ] = (2π)3Nkδ

3(k⃗ − k⃗′) (95)

with k⃗, k⃗′ wavevectors of units 1/[length].
Nk is a normalisation that differs in different texts. It does not matter for physical results. We

note that ∫
[dk⃗]f(k, k′)[ak′ , a

†
k] = f(k, k) (96)

Now let’s look at the commutator

[ϕ(x⃗),Π(y⃗)] (97)

= −i
∫
[dk⃗][dk⃗′]AB

(
eik⃗·x⃗e−ik⃗

′·y⃗[ak,−a†k′ ] (98)

+ e−ik⃗·x⃗eik⃗
′·y⃗[a†k, a

′
k]

)
(99)

= +i

∫
[dk⃗]AB

(
eik⃗(x⃗−y⃗) + h.c.

)
= iℏδ3(x⃗− y⃗) (100)

such that 2A·B
Nk

= ℏ after expanding our notation. Now the Hamiltonian will dictate the energy
relation to momentum and give us the spectrum of the theory, which should be bounded from
below on energy.
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3.1.3 Example: Klein-Gordon Field

To be explicit, let’s use the Klein-Gordon field, which will also show us the way to a consistent,
relativistic theory. The EoM is (

∂2

∂t2
− c2ϕ∇2 + α

)
ϕ(x) = 0 (101)

which resembles the equation we got by “squaring" the dispersion relation in Eq. 60, but recall
when applied on the wavefunction gave E → −∞ states. Here however, ϕ is a field and we shall
hold our conclusions until we have studied the Hamiltonian

H =

∫
d3x

1

2

(
Π2 + (cϕ∇⃗ϕ)2 + αϕ2

)
(102)

where we substitute our ansatz from earlier, eqs. (93) and (94)

H = −B
2

2

∫
[dk⃗][dk⃗′]

(
ake

ik⃗·x⃗ − a†ke
−ik⃗·x⃗

)(
ak′e

ik⃗′·x⃗ − a†k′e
−ik⃗′·x⃗

)
(103)

+
A2c2ϕ
2

∫
[dk⃗][dk⃗′]

(
ake

ik⃗·x⃗ − a†ke
−ik⃗·x⃗

)
ik⃗ · ik⃗′

(
ak′e

ik⃗′·x⃗ − a†k′e
−ik⃗′·x⃗

)
(104)

+
αA2

2

∫
[dk⃗][dk⃗′]

(
ake

ik⃗·x⃗ + h.c.
)(

ak′e
ik⃗′·x⃗ + h.c.

)
(105)

If we collect terms and integrate over d3x, we can use that
∫
d3xeix⃗(̇k⃗−k⃗

′) = (2π)3δ3(k⃗ − k⃗′) and
we obtain

H =

∫
[dk⃗]

(
−B2 +A2c2ϕk

2 +A2α
) aka−k

2

1

Nk
+ h.c. (106)

+

∫
[dk⃗]

(
B2 +A2c2ϕk

2 +A2α
) {ak, a†k}

2

1

Nk
(107)

!
=

∫
[dk⃗]Ek

{ak, a†k}
2

(108)

where by forcing the form of H in the final line, we find a set of equations (k⃗ = p⃗/ℏ)

(1) B2 = A2(k2c2ϕ + α)

(2)
2AB

Nk
= ℏ

(3)
B2 +A2(k2c2ϕ + α)

Nk
= Ek

Noting that since Nk > 0, energy Ek > 0 also. The normalisation Nk is a given value (commonly
Nk = 1 such as in Peskin & Schroeder, and Tong; also Nk = 2Ek), so we can solve for the 3
unknowns: Ek, A,B. The solutions are

Ek = ℏ
√
k2c2ϕ + α

more relativistic E
=

√
p2c2 +m2c4 (109)

A2 =
ℏNk
2

√
k2c2 + α =

ℏ2Nk
2Ek

(110)

B2 =
ℏNk
2

√
k2c2 + α =

NkEk
2

(111)
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We have found the field that presents the relativistic energy relation (provided that cϕ = c,
the speed of light, and α = m2c4/ℏ2) and has a positive definite spectrum as

H =

∫
[dk⃗]Ek

(
a†kak +

(2π3)Nkδ
3(0)

2

)
(112)

Ek = ℏ
√
k⃗2c2 + α =

√
p⃗2c2 +m2c4 (113)

[ak, a
†
k′ ] = (2π)3Nkδ

3(k⃗ − k⃗′) (114)
ak |0⟩ ≡ 0 where |0⟩ is the vacuum (115)

This field quantum harmonic oscillator system is the basis for QFT and our ansatz for the fields
is

ϕ(x⃗) = ℏ
∫
[dk⃗]

√
Nk
2Ek

(
ake

ik⃗·x⃗ + a†ke
−ik⃗·x⃗

)
(116)

= ℏ
∫

d3k

(2π)3
√
Nk2Ek

(
ake

ik⃗·x⃗ + a†ke
−ik⃗·x⃗

)
(117)

Π(x⃗) = −i
∫
[dk⃗]

√
Nk2EkEk

(
ake

ik⃗·x⃗ − a†ke
−ik⃗·x⃗

)
(118)

= −i
∫

d3kEk

(2π)3
√
Nk2Ek

(
ake

ik⃗·x⃗ − a†ke
−ik⃗·x⃗

)
(119)

3.1.4 The Quanta Of The Field

What is specific to a Klein-Gordon field is the energy relation Ek, but we can apply the rest to our
other examples. A common feature is that the quanta created by a† has a particle interpretation

[H, a†k′ ] =

∫
[dk⃗][a†kak, a

†
k′ ]Ek = Ek′a

†
k′

so that if we act on an energy eigenstate |Es⟩ with energy Es, with the Hamiltonian H:

|Es′⟩ = a†k |Es⟩ H |Es′⟩ =
(
[H, a†k′ ] + a†k′H

)
|Es⟩ (120)

= (Ek + Es) |Es′⟩ . (121)

I.e. what is returned is another energy eigenstate, with energy increased by a quanta Ek from
when a† acts. On the other hand, a decreases Es and so we are led to the conclusion that

a†k ↔ creates particle with momentum p⃗ = ℏk⃗ (122)

ak ↔ annihilates particle with momentum p⃗ = ℏk⃗ (123)

Note that the δ3(0) term does not affect [H, a†], i.e. the difference of energy between states, and is
present even for |0⟩; it is a vacuum energy & an overall shift of all energies. Here we are interested
only in energy differences and so we will drop it. Side note, that it relates to one of the deepest
puzzles in physics, the cosmological constant Λ.

To drop this term, we introduce normal ordering : O : where

: ak1a
†
k2

: = a†k2ak1

: ak1ak2a
†
k3
ak4a

†
k5

: = a†k3a
†
k5
ak1ak2ak4
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That is, all a†’s left of the a’s, so that:

H ≡: 1
2

∫
d3x

(
Π2 + (c∇ϕ)2 + αϕ2

)
: (124)

=

∫
[dk⃗]Ek :

{a†k, ak}
2

: (125)

=

∫
[dk⃗]Eka

†
k, ak (126)

With our normal ordered definition of H, H |0⟩ = 0. Next, is the first excited state with Ha†k |0⟩ =
Eka

†
k |0⟩ where Ek ≥ mc2. Next, a two-particle state a†ka

†
k′ |0⟩ and so on. A general state in this

space will be a superposition of such states as

|s⟩ = f (0) |0⟩+ f (1)(k1)a
†
k1
|0⟩+ f (2)(k1, k2)a

†
k1
a†k2 |0⟩ (127)

=
∑
n

f (n)(k1, ..., kn)

(∏
n

a†ki

)
|0⟩ (128)

with

H(a†k1 ...a
†
kn
) |0⟩ =

(∑
i

Eki

)
a†k1 ...a

†
kn
|0⟩ (129)

This space is larger than your usual Hilbert space & its dimensions are hard to grasp; it is, however,
the space we were looking for, a space that includes multiparticle states and will allow us to describe
transitions. It is called Fock Space.

Normalisation of momentum states

• In a box : If in a box of volume V we have discretised momentum and

(2π)3δ3(k⃗ − k⃗′)→
∫
V

d3xei(k⃗−k⃗
′)·x⃗ k⃗→k⃗′−−−−→ V (130)

so that

|k⟩V ≡
ak√
NkV

|0⟩
V
⟨k|k⟩V = 1 (131)

• Non-Relativistic: We use arrow notation
∣∣∣⃗k〉〈

k⃗
∣∣∣⃗k〉 = (2π)3δ3(k⃗ − k⃗′) (132)∣∣∣⃗k〉 ≡ ak√

Nk
|0⟩ (133)

• Relativistic: Now without an arrow |k⟩

⟨k|k⟩ = (2π)3δ3(k⃗ − k⃗′) (134)

|k⟩ ≡
√

2Ek
Nk

ak |0⟩ (135)

also note

ϕ(x⃗) |0⟩ =
∫

[dk⃗]e−ik⃗·x⃗
√

2Ek
Nk

a†k |0⟩ (136)

=

∫
d3k

(2π)32Ek
e−ik⃗·x⃗ |k⟩ (137)
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3.1.5 Complex Klein Gordon Field

The motions are the same if we have a complex scalar field with

L = ϕ̇†ϕ̇− c2∇⃗ϕ†∇⃗ϕ− αϕ†ϕ (138)

H = ϕ̇†ϕ̇+ c2∇⃗ϕ†∇⃗ϕ+ αϕ†ϕ (139)

so now we propose a non-hermitian ansatz

[ak, a
†
k′ ] = [bk, b

†
k′ ] = (2π)3Nkδ

3(k⃗ − k⃗′) (140)

ϕ =

∫
[dk⃗]A

(
ake

ik⃗·x⃗ + b†ke
−ik⃗·x⃗

)
(141)

Π = i

∫
[dk⃗]B

(
a†ke

−ik⃗·x⃗ − bkeik⃗·x⃗
)

(142)

and, as you’re asked to show yourselves,

:

∫
d3xH : =

∫
[dk⃗](a†a+ b†b)Ek (143)

ϕ =

∫
[dk⃗]

√
Nk
2Ek

(
ake

ik⃗·x⃗ + b†ke
−ik⃗·x⃗

)
(144)

Π = i

∫
[dk⃗]

√
NkEk

2

(
a†ke

−ik⃗·x⃗ − bkeik⃗·x⃗
)

(145)

3.1.6 Example: Complex, Constrained Field

At times, our system will have constraints which reduce the degrees of freedom. Let’s see a case:

L = ℏφ†i∂tφ−
ℏ2∇φ†∇φ

2m
(146)

H =
δL
δφ̇
φ̇+

δL
δφ̇† φ̇

† − L =
ℏ2∇φ†∇φ

2m
(147)

The key is in phase-space dimension, the momentum is not independent as Π = iφ†. Let’s recklessly
push ahead nonetheless:

φ =

∫
[dk⃗]

(
Aake

ik⃗·x⃗ +Bb†ke
−ik⃗·x⃗

)
(148)

Π = i

∫
[dk⃗′]

(
A∗a†k′e

−ik⃗′·x⃗ +B∗bke
ik⃗′·x⃗

)
(149)

Hamiltonian

H ∝ik′
(
A∗a†k′e

ik⃗′·x⃗ −B∗bk′e
−ik⃗′·x⃗

)
× ik

(
Aak′e

ik⃗′·x⃗ −Bb†ke
−ik⃗′·x⃗

)
(150)

where AB = A∗B∗ = 0. We are forced to give up one degree of freedom! This is what phase space
was trying to tell us, instead of the two d.o.f. of a complex field, this system has one only. We will
see more versions of this & its interplay with Lorentz invariance. For now we conclude:

H =

∫
[dk⃗]

ℏ2k2

2m
a†kak (151)

φ =

∫
[dk⃗]

Nk
e

ik⃗·x⃗
ak (152)
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In passing, we note that this, which gives a non-relativistic particle Fock space, is a QFT version
of Schroedinger’s equation. The fact that field & wavefunction have the same equation is partially
to blame for the name “second" quantisation.

3.2 Fock Space and Operators [PS 2.4, S 2.3, Z 1.8, T 2.4-2.6]
Whatever our classical field theory, after quantisation, we have our Hamiltonian & Fock space.
This is all we need to lay out the expectation for a given observable represented by a Hermitian
operator O.

Expectation value of O at a time t:

Schroedinger Heisenburg
⟨s, t|O(x⃗)|s, t⟩ ⟨s|O(t, x⃗)|s⟩

iℏ ∂
∂t |s, t⟩ = H |s, t⟩ iℏ ∂

∂tO = [O, H]

where now position is a label and the two pictures are equivalent. They will come in handy at
different stages.

It is useful to define the evolution operator

|s, t⟩ = U0(t, 0) |s, 0⟩ (153)

O(t, x⃗) = U†
0 (t, 0)O(0, x⃗)U0(t, 0) (154)

so both pictures give
⟨s, 0|U†

0 (t, 0)O(0, x⃗)U0(t, 0)|s, 0⟩ (155)

For our quadratic harmonic-oscillator-like theories, evolution is simple

iℏ∂tU0 = HU0 U0(t) = −e−iHt/ℏ (156)

let us then evolve our first operator

ak(t) = eiHt/ℏake
−iHt/ℏ (157)

= ak +
it

ℏ

∫
[dk′]Ek′

[
a†k′ak′ , ak

]
+O(H2) (158)

= ak +
it

ℏ

∫
[dk′]Ek′

[
a†k′ , ak

]
ak′ +O(H2) (159)

= ak −
iEkt

ℏ
ak +O(H2) (160)

For higher terms, use the Baker-Campbell-Hausdorff formula

eBAe−B =
∑
n

1

n!

n times︷ ︸︸ ︷
[B[B[...[B,A]]] (161)

You can show that

[H, [H, ak]] = [H,−iEkak] = −E2
kak (162)

ak(t) = e−iEkt/ℏak (163)

which carries over to

ΦI(t, x⃗) = ℏ
∫

[dk⃗]

√
Nk
2Ek

(
e−iωkt+ik⃗·x⃗ak + h.c.

)
(164)
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the label I, just like U0, seems odd to add now but will be useful when talking about interactions.

One can also obtain this solution from the Euler-Lagrange equations for the operator

(∂2t − c2∇2 + α)Φi(t, x⃗) = 0 (165)

Let’s compute observables. We sort of already did, since we know:

⟨0|akHa†k|0⟩ = Ek ⟨0|aka†k|0⟩ (166)

= Ek(2π)
3Nkδ

3(k⃗ − k⃗) (167)

The infinity has to do with normalisation, but setting that aside, the Hamiltonian expectation
value is the energy, it’s squared will be E2

k etc, as it should be for an eigenstate. What about the
field itself?

⟨0|akΦI(t, x⃗)a†k|0⟩ =
∫
[dk⃗]A

(
⟨0|ak

(
ak′e

−ik′·x + a†k′e
ik′·xa†k

)
|0⟩
)

(168)

=

∫
[dk⃗]A

(
e−ik

′x ⟨0|ak
(
a†kak′ + (2π)3Nkδ

3(k⃗ − k⃗′)
)
|0⟩ (169)

+ eikx ⟨0|
(
a†k′ak + (2π)3Nkδ

3(k⃗ − k⃗′)
)
a†k|0⟩

)
(170)

= 0 (171)

where we have used that ak |0⟩ = 0 and ⟨0| a†k = 0. So the expectation value of the field in a
one-particle state is zero. That is, if we measure the field value at any point at any time, we will
get on average 0. This, however, does not mean that the field is not moving, since you can check
that

⟨0|ak(ΦI(t, x⃗)2a†k|0⟩ ≠ 0 (172)

Squaring our field adds upwards and downward fluctuations coherently, so we conclude it is moving
(oscillating) around 0. We picture then our states as “ripples” on the field, around an average level
as shown in fig. 10.

Figure 10: “Ripples” of a field in dark blue, around an average level shown in light blue”

You can check that ⟨0|(ak)nϕ(a†k)n|0⟩ = 0 for any n. States with a well-defined number of
particles return 0 average value for the field. We can build ⟨ϕ⟩ ≠ 0 with a superposition of different
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n states. This allows us to qualify the statement “the light coming from that lamp is made out of
photons”. Actually, “the light coming from that lamp is a superposition of multiphoton states”.

3.2.1 Number and Momentum Operator

What we mean by well-defined number of particles can be made explicit

N =

∫
[dk⃗]a†kak |n⟩ = (a†k)

n |0⟩ (173)

N |n⟩ = n |n⟩ (174)

An eigenstate of N then has a well-defined number of particles & since

[N ,Φ] = 0

they cannot be simultaneously Φ eigenstates. This counting of particles can be used to define total
momentum Pi

Pia†k |0⟩ = ℏkia†k |0⟩ (175)

Pia†k1a
†
k1
|0⟩ =? (176)

where the RHS of eq. (176) is left for you to work out. The operator that does this job is:

Pi ≡
∫
[dk⃗]ℏkia†kak (177)

3.3 Connection with ‘old’ QM
Defining a position operator is not as simple. There is no wavefunction in sight to tell us what a
localised particle at x⃗ looks like. The general procedure is to look at the energy density:

⟨s|H(x⃗)|s⟩ ∼ |wavefunction(x⃗)|2

but this equation makes no sense in general, since the LHS need not factorise into the square of
anything. One can make sense of this for the non-relativistic limit and proceed as follows: with
our non-relativistic states ∣∣∣⃗k〉 ≡ ak√

Nk

∣∣∣⃗k〉 (178)〈
k⃗′
∣∣∣⃗k〉 = (2π)3δ3(k⃗ − k⃗′) (179)

we Fourier transform for a position state

|x⃗⟩ ≡
∫

d3k

(2π)3

∣∣∣⃗k〉〈k⃗∣∣∣x⃗〉 =

∫
[dk⃗]e−ik⃗·x⃗

Nk√
Nk

a†k |0⟩ (180)

your position operator then

X ≡
∫
d3yy⃗ |y⃗⟩ ⟨y⃗| X |x⃗⟩ = x⃗ |x⃗⟩ (181)

and your wavefunction

|s⟩ =
∫
d3y |y⟩ ⟨y|s⟩ ≡

∫
d3yψ(y) |y⃗⟩ (182)
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Note that

⟨x⃗|y⃗⟩ =
∫

[dk][dk′]
√
Nk
√
Nk′ ⟨0|ak′a†k|0⟩ e

ik′y (183)

=

∫
[dk]Nke

ik(y−x) (184)

= δ3(x⃗− y⃗) (185)

and is only the identity in a 1-particle subspace.

So the usual action of momentum on the wavefunction

Pi
∫
d3xψ(x) |x⃗⟩ = ℏ

∫
[dk]kia†kak

∫
d3xψ(x)

∫
[dk⃗′]

√
Nke

−ik⃗′·x⃗a†k′ |0⟩ (186)

= ℏ
∫
d3x

∫
[dk⃗]a†kk

iψ(x)
√
Nke

−ik⃗·x⃗ |0⟩ (187)

= ℏ
∫
d3x

∫
[dk⃗]a†k |0⟩

√
Nki

∂

∂xi
eik⃗·x⃗ψ(x) (188)

=

∫
d3x

(
−iℏ ∂

∂xi
ψ(x)

)∫
[dk⃗]

√
Nka

†
ke
ik⃗·x⃗ |0⟩ (189)

=

∫
d3x

(
−iℏ ∂

∂xi
ψ(x)

)
|x⃗⟩ (190)

and the commutation relation is realised by

[Xi,Pi]

∫
d3xψ(x) |x⃗⟩ =

∫
d3x

(
−iℏ∂ψ(x)

∂xi

)
|x⃗⟩

3.4 A First Look at Causality [P.S 2.1-2.4, S 12.6, T 2.6.1]
Special relativity taught us that nothing travels faster than c. An immediate consequence is causal
ordering. Consider an event taking place at t1, x⃗1 and another at t2, x⃗2; the Minkowski product is

(x1 − x2)µηµν(x1 − x2)ν = (t1 − t2)2c2 − (x⃗1 − x⃗2)2 (191)

A light signal from event 1 would have covered a distance c(t2 − t1) by the time of event 2. If
c(t2 − t1) < |x⃗2 − x⃗1|, light cannot cover the distance in time and the two events are causally
disconnected. The opposite case has that light would have reached event 2 and there is possibility
of correlation.

Let’s define
— (x1 − x2)µ(x1 − x2)µ < 0 Causally disconnected, or space-like
— (x1 − x2)µ(x1 − x2)µ > 0 Causally connected, or time-like
— (x1 − x2)µ(x1 − x2)µ = 0 Causally connected, or light-like

which make up the light-cone shown in fig. 11. How do we check for the causality of our theory?
There should be no correlation between two measurements at causally disconnected space-time
points. Which is to say that one measurement should not affect the other; which is to say that the
operators commute since they cannot be simultaneously diagonalised.

[O(t1, x⃗1),O′(t2, x⃗2)] = 0 (192)

for c2(t1 − t2)2 − (x⃗1 − x⃗2)2 < 0 (193)
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Figure 11: Diagram of the light-cone: blue is time-like, red space-like and green is light-like.

We build our operators out of the field & its derivatives; it can be shown that for causality to
hold, the commutator of the field itself should vanish for space-like points.

3.4.1 Example: Complex, Constrained Field

Causality is not guaranteed; take our field φ

LS = φ∗iℏ
∂

∂t
φ− ℏ2∇φ∗∇φ

2m
(194)

which is an attempt at a non-relativistic quantum field theory. As such, this theory does not know
about the speed of light, so one wouldn’t expect it to be causal. Let’s show it is not:

[φ(x1), φ
†(x2)] =

∫
[dk⃗][dk⃗′]ℏ

√
Nk
√
Nk′e

− iEkt1
ℏ +ik⃗·x⃗1e−

iE
k′ t2
ℏ +ik⃗′·x⃗2 [ak, a

†
k] (195)

=

∫
d3k

(2π)3
e

iℏk2

2m ∆t−ik⃗·∆x⃗ if t2 > t1 (196)

we want to find out if this expression cancels for c2∆t2 − |∆x|2 < 0. Before doing the integral
explicitly, one can get a sense by looking at the speed of the waves we are integrating over

v ∼ ∂ω

∂ |⃗k|
=

∂

∂ |⃗k|
ℏ2k⃗2

ℏ2m
=

ℏ|⃗k|
m

(197)

Remember for our electromagnetic potential Φ in lecture 1, ω = |⃗k|c.

This grows ever larger for larger |⃗k| and for |⃗k| > mc/ℏ waves are superluminal. Not a good sign
for causality. The final confirmation comes after actually doing the integral, done in the complex
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place as a Gaussian to yield for δt ̸= 0

[φ(x1), φ
†(x2)] =

( m

2π∆tℏ

)3/2
eiϕ (198)

This is non-zero in general & in particular if say ∆x = nc∆t, n > 1

1

n3/2

( m

2πℏc∆x

)3/2
̸= 0 (199)

which does decrease the further away the points are, but we were looking for zero, not small. So
this theory does not respect causality.
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4 C: Symmetry [P.S. 2.2, S 2.1, Z I.10, T 1.3]

Here we choose to present different concepts separately; hopefully this will give you a sense of
what each of the moving pieces in QFT does. One, however, cannot get too far without encountering
symmetry in particle physics; it permeates through pretty much all of it. An overview of the kinds
we’ll find

• Continuous: Any transformation has others infinitesimally close. E.g. rotations.

• Discrete: None of the elements can be obtained from an infinitesimal displacement. E.g.
parity.

• Global: Independent of space-time. E.g. baryon number.

• Local (gauge): Space-time dependent. E.g. U(1)em diffeomorphisms.

• Internal: Acting on fields only.

4.1 Boosts & Rotations
You might know about Lorentz transformations, such as a boost

(
ct′

x⃗′

)
=


γ1 γβ 0 0
γβ γ1 0 0
0 0 1 0
0 0 0 1

(ctx⃗
)

for β = v/c and γ = (1− v2/c2)−1/2.

(a) passive: a relation between frames (b) active: act on spacetime “shift fabric”

Or a rotation, such as (
ct′

x⃗′

)
=


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

(ctx⃗
)

such that x′ = −y and y′ = x.
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(a) Passive rotation. (b) Active rotation.

4.2 A Group
If we perform a rotation, then another, the resulting action is still a rotation. If we do a rotation,
then a boost, out comes an action which is neither of the two; it is a general Lorentz transform.
This is the end of this game: performing two Lorentz transforms is still a Lorentz transform. All
this talk is formalised in group theory. A group B is a set of elements Ui with a composition
rule U1 ◦ U2 such that

(i) It contains the identity.

(ii) For each element, it’s inverse is in the group.

(iii) Associativity U1 ◦ (U2 ◦ U3) = (U1 ◦ U2) ◦ U3.

(iv) Closure U1 ◦ U2 = U3.

When acting on a linear representation r:

t→ r′ = U(θ)r = eiθaT
a

r (200)

where a runs up to the dimension of the group, θa are real parameters and T a are the group
generators. By (iv) above, [T a, T b] ∝ T c.

4.3 Lorentz Group
Let’s apply it to the Lorentz group. The Lorentz transformation rule is x′µ = Λµνx

µ which defines
the group. We will consider an infinitesimal boost by small β⃗ and rotation by a small angle θ

Boost: Λµν = 1 +

(
0 β⃗

β⃗ 0

)
+O(β2) (201)

Rotation: Λµν = 1 +

(
0 0⃗

0⃗ εijkθ
k

)
+O(θ2) (202)
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which we can combine into a single infinintesimal ωµν

Λµν = δµν + ωµν (203)

Using the fact that the Minkowski product is invariant:

xµxµ = (x0)2 − (x⃗)2 = (x′)µ(x′)µ (204)
Λµνx

νηµρΛ
ρ
κx

κ = xνηνκx
κ (205)

ΛµνηµρΛ
ρ
κ = ΛµνΛµκ = ηνκ (206)

Then applying Eq. 203

ΛµνηµρΛ
ρ
κ ∼ ηνκ + ωµνηµκ + ηνρω

ρ
κ = ηνκ (207)

ωκν + ωνκ = 0 (208)

This all agrees;

η ·
(
0 β
β εθ

)
=

(
0 β
−β −εθ

)
is anti-symmetric and it allows us to redo counting: ω+ωT = 0 means we have 6 free parameters.
This group gets its name from its definition:

ΛT ηΛ = η O(1, 3) Disconnected
for det{n} = 1 SO(1, 3) Connected = Lorentz group

4.4 U(1) Group
A simpler yet ubiquitous group is U(1), defined to be the unitary complex transformations in 1
complex dimension.

φ′ = Uϕ (φ′)†(φ′) = φ†φ

U = eiθ θ is one parameter, T = 1

If we have another representation of the group, it’ll transform the same up to a factor

ψ′ = eiqθ q is a ratio of ψ, ϕ U(1) charges.

One question in QED is why all ratios are rational, i.e. we have charge quantisation. These are
group definitions, for a group to lead to a symmetry, we say that its transformations
leave the action invariant (the same) up to a boundary (i.e. a total derivative) term.

4.5 Lorentz Symmetry
You might have heard that the laws of physics are Lorentz invariant. This does not mean things
look the same, it means the only information we need to relate two frames of reference is Λµν (see
the schematic in fig. 14). E.g. we do not have to solve the equations of motions twice.
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Figure 14: Schematic of transforming between frames using that laws of physics is Lorentz invariant.

Let’s try it out. Say x = Λy and y = Λ−1x, then

ϕ′ = ϕ(Λ−1x) (209)

(∂µϕ)
′ =

∂

∂xµ
ϕ(Λ−1x) =

∂yν

∂xµ
∂

∂yν
ϕ(y) = (Λ−1)νµ∂ν(Λ

−1x) = Λ ν
µ (∂νϕ) (210)

(∂µϕ)′ = Λµν(∂
νϕ) (211)

where the final step in Eq. 210 uses a result that will be derived in the problem sheet.

4.5.1 Klein-Gordon Field

Let’s see how a transformation in the Lorentz group will affect the Klein-Gordon equation. Recall
for a relativistic energy relation, we had that the action S is

S =

∫
dtd3x

1

2

(
(∂tϕ)

2 − (c∇ϕ)2 − m2c4

ℏ2
ϕ2
)

(212)

=

∫
d4x

c

c2

2

((
∂ϕ

c∂t

)2

− (∇ϕ)2 − m2c2

ℏ2
ϕ2

)
(213)

= c

∫
d4x

1

2

(
∂µϕ∂

µϕ− m2c2

ℏ2
ϕ2
)

(214)

so the Euler Lagrange equation in frame y

ηµν
∂

∂yµ
∂

∂yν
ϕ+

m2c2

ℏ2
ϕ = 0 (215)

If we find a solution ϕ(y), would ϕ′ = ϕ(Λ−1x) be a solution in frame x?

ηµν
∂

∂yµ
∂

∂yν
ϕ′ +

m2c2

ℏ2
ϕ′ = Λ ρ

µ

∂

∂yρ
Λµν

∂νϕ

∂y
+
m2c2

ℏ2
ϕ (216)

= Λ ρ
µ Λµν

∂

∂yρ
ηκν

∂

∂yκ
ϕ+

m2c2

ℏ2
ϕ (217)

=

(
∂

∂yν
∂

∂yν
+
m2c2

ℏ2

)
ϕ (218)

i.e. yes! This follows from the action being invariant under Lorentz transformations, as we will
also show. For now though, let’s talk units.
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4.6 Natural Units
Two fundamental constants of nature are

c = 2.998 · 108 m/s (219)

ℏ = 6.582 · 10−16 eVs (220)

They show up all over our formulae, so we will set them to 1 and say we measure speed in units of
c and angular momentum in units of ℏ.

c = 1 ℏ = 1 (221)

As we outlined, this implies

[E] = [mass] = [length]−1 = [time]−1 = eV (222)

To convert back and forth, then we restore powers of ℏ and c. For example if we have an area A:

AN.U. =
10−20

eV2 AS.I. = AN.U.ℏpcq (223)

[AS.I.] = m2 = AN.U.(eVs)p(m/s)q = eV−2(eVs)p(m/s)q (224)

where we see that p = q = 2 and as such,

AS.I. =
10−20

eV2 (2 · 10−7 m eV)2 (225)

From now on we’ll take the view of an active transformation on the fields.

For example an active field rotation:

ϕ′
((

0
1

))
= ϕ′

((
1
0

)
=

(
0 1
−1 0

)(
0
1

))
(226)

ϕ′(x) = ϕ(R−1x) (227)

For a general transformation

ϕ′(xµ) = ϕ
(
(Λ−1)µνx

ν
)

(228)
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Computationally, the same results follow as before

(∂µϕ)′ = Λµν(∂
νϕ)((Λ−1)x) (229)

Next, we show that the action is left invariant.

S′ =

∫
d4x det(Λ)

{
1

2
(∂µϕ)

′(∂µϕ)′ − V (ϕ′)

}
(230)

=

∫
d4x

{
1

2
Λ ν
µ (∂νϕ)(Λ

−1x)Λµρ(∂
ρϕ)(Λ−1x)− V (ϕ(Λ−1x))

}
(231)

for an infinitesimal Lorentz transformation as in Eq. 203:

δωS =

∫
d4x

(
1

2
∂µϕ(x− ωx)∂µϕ(x− ωx)− V (ϕ(x− ωx)

)
(232)

=

∫
d4x

(
−ωνρxρ∂ν

{
1

2
∂µϕ∂

µϕ− V (ϕ)

})
(233)

=

∫
d4x

(
−∂νωνρxρ

{
1

2
(∂µϕ)∂

µϕ− V (ϕ)

})
(234)

So this change is just a total derivative, and so the integral only depends on the boundary. As
such the K.G. equation is invariant under SO(1, 3). The U(1) case is simpler. For the U(1)
transformation ϕ′ = eiθϕ where θ is small:

S′ =

∫
d4xφ†e−iθ∂te

iθφ− ∇φ
†e−iθ∇eiθφ

2m
(235)

δθS =

∫
d4x(iθ − iθ)L = 0 (236)

4.7 Noether’s Theorem
One can further expect the presence of symmetries to obtain conservation laws. Here’s how, take
the infinitesimal transformation of the field ϕ to be δθϕ. We say the transformation is a symmetry
if the Lagrangian changes by a total derivative

δL = ∂µF
µ (237)

i.e. the action is left invariant

δθS =

∫
d4x∂µF

µ
a θ

a (238)

=

∫
d4x

(
∂µ(δθϕ)

∂L
∂∂µϕ

+ δθϕ
∂L
∂ϕ

)
(239)

=

∫
d4x(δθϕ)(–EoM–) +

∫
d4x∂µ

(
δθϕ

∂L
∂∂µϕ

)
(240)

which we can rearrange to be

∂µ

(
δθϕ

∂L
∂∂µϕ

− Fµa θa
)
≡ Jµa θa = 0 (241)
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where a = 1, ...,dim(G) where G is the transformation’s group. And Jµa is known as a Noether
current, which is conserved over a volume V :∫

V

d3x∂µJ
µ =

d

dt

∫
V

d3xJ0
a +

∫
A

dΣ⃗ · J⃗ = 0 (242)

The second term measures the flow out of the surface of area A (see fig. 15).

Figure 15: A surface, area A with surface element dΣ⃗, and a current J⃗ flowing from it.

If we take the surface to be large enough, we assume the fields in J⃗ die off and J⃗ → 0 fast
enough to cancel the integral such that

Qa ≡
∫
V

d3xJ0
a

d

dt
Qa = 0 (243)

we have obtained a conserved charge! Next is a tour of conserved charges and currents, some
of which are fundamental.

4.8 Translations
We skipped this one but fundamental physics does not care about where you set the origin of
space-time. Or, in terms of a transformation

x→ x′ = x− ϵ (244)

In face, in combination with the Lorentz group, they give us the Poincare group

x′ = Λx− ϵ (245)

In our active interpretation, our field transforms as

ϕ′ = ϕ(x+ ϵ) (x′ = x− ϵ) (246)
δϵ = ϵµ∂µϕ (247)
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These don’t affect our derivatives as ∂x′/∂x = 1 as spacetime has only been shifted. Our new
action is

S′ =

∫
d4xL (ϕ(x+ ϵ), ∂µϕ(x+ ϵ)) (248)

which gives a variation

δS =

∫
d4x

[
(ϵν∂ν∂µϕ)

∂L
∂∂µϕ

+ (ϵν∂νϕ)
∂L
∂ϕ

]
(249)

=

∫
d4x [ϵν∂νL] (250)

= ϵν
∫
d4x (∂νη

µ
νL) (251)

such that Fµ(ν) = ηµνL, one for each ν. I.e. we have four conserved currents:

ϵνJµ(ν) =

(
δϵϕ

∂L
∂∂µϕ

− ϵνηµνL
)

(252)

Jµν ≡ Tµν =

(
∂νϕ

∂L
∂∂µϕ

− ηµνL
)

(253)

This is none other than the Stress-Energy tensor. For our real K.G. Field

Tmu ν = ∂νϕ∂
µϕ− ηµν

(
(∂ϕ)2

2
− m2ϕ2

2

)
(254)

Do you recognise the 0
0 component? Yep, it’s the Hamiltonian

ϕ̇2 − 1

2

(
ϕ̇2 − (∇ϕ)2 −m2ϕ2

)
(255)

Indeed, ϵ0 is a time translation that leads to energy conservation.

H =

∫
d3xT 0

0 (256)

If you remember, a space shift does lead to total momentum conservation

P i =

∫
d3xT 0i (257)

which for K.G. is

P i =

∫
d3xϕ̇∂iϕ =

∫
d3xϕ̇

(
− ∂ϕ
∂xi

)
(258)

We will connect this to the previous in the exercises.

4.8.1 Alternative Derivation

For general space-time we substitute ηµν → ∂µν(x) and the action is∫
d4x
√
|g|L(ϕ, ∂µϕ, η → g) (259)
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where gµν , the metric, is also the graviton field. We can define Tµν as the source, i.e. the linear
coupling of gµν .

Tµν ≡ −
(

2
√
g

∂

∂gµν

√
gL(η → g)

)
g=η

(260)

You can check this explicitly using

∂

∂gµν
gαβg

βγ = 0⇒ ∂gβγ

∂gµν
= −gµβgνγ (261)

|g| = |det(gµν)| (262)
∂

∂gµν
= gµν |g| (263)

4.9 U(1) Current
The U(1) symmetry has no F term so given δϕθ = iθϕ, δθϕ∗ = −iθϕ∗.

Jµ = i

(
ϕ

∂L
∂(∂muϕ)

− ϕ∗ ∂L
∂∂µϕ∗

)
(264)

Examples are

LK.G. = ∂µϕ
∗∂µϕ−m2ϕ∗ϕ (265)

LS = iφ∗∂tφ−
∇φ∗∇φ

2m
(266)

with currents

JµK.G. = i (∂µϕ∗ϕ− ϕ∗∂µϕ) (267)

JµS = i

(
iφ∗φ,−

(
−(∇⃗φ∗)φ+ φ∗(∇⃗φ)

2m

))
(268)

4.10 Lorentz Symmetry
We have that

δωϕ = −ωµνxν∂µϕ (269)

= ωαβ(−xβ∂αϕ) (270)

= ωαβ (271)

= ωαβ
(
−
x[β∂α]ϕ

2

)
(272)

where the square brackets on the final line mean the indices are antisymmetrised (i.e. x[β∂α]ϕ =
xβ∂αϕ− ∂αxβϕ. And

δωS =

∫
d4x∂µ (−ωµνxν∂µL) (273)

=

∫
d4xωαβ (−xβ∂αL) (274)

=

∫
d4xωαβ

(
−
x[β∂α]L

2

)
(275)
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from which our six currents follow as

Jµ(αβ) =
2

2

(
−x[β∂α]ϕ

∂L
∂∂µϕ

+ x[β∂α]L
)

(276)

=
(
xαT

µ
β − xβT

µ
α

)
(277)

These are not unfamiliar for α, β = 1, 2, 3:

J0(ij) = xiT 0j − xkT 0i Rotations (278)

J0(0i) = tT 0i − xiH Other translations (279)

To clarify, let’s write

d

dt

(∫
d3x(tT 0i)−

∫
d3xxiH(x)

)
= 0

tP i =

∫
d3xxiH(x) + C

which tells us the centre of mass (energy) moves inertially (dP i/dt = 0). While on the topic,∫
d3k

(2π)32Ek
=

∫
d4k

(2π)3
δ(k2 −m2)Θ(k0) (280)

is the true (and only) Lorentz invariant measure, as you will show on the problem sheet.

4.11 Causality: Lorentz Invariant Theories [P.S. 2.1&2.4, S 12.6, T 2.1.6]
We can now revisit causality for Lorentz Invariant theories. Take real K.G. theory, the field itself
does not commute for any xµ, yµ

[ϕ(x), ϕ(y)] =

∫
[dk][dk′]

√
Nk
2Ek

√
Nk′

2Ek′
[ake

−ik·x + a†ke
ik·x, ake

−ik·y + a†ke
ik·y] (281)

=

∫
d3k

(2π)32Ek

(
e−i(x−y)µk

µ

− e−i(y−x)νk
ν
)

(282)

Where normalisation has dropped out to give a Lorentz invariant result and kµ = (Ek, k⃗). We can
use now, for space-like points, laying x⃗− y⃗ = (0, 0,∆d)

∆x0

0
0
∆x

 =


γ 0 0 γβ
0 1 0 0
0 0 1 0
γβ 0 0 γ




0
0
0
∆d

 (283)

∆x0 = γβ∆d ∆x = γ∆d (284)
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As such, ∆x0 < ∆x only for causally disconnected (space-like) points. The first term of eq. 282
then reads in this frame∫

d3k

(2π)32Ek
e−i(k◦Λ)µ◦∆dµ =

∫
d3k′

(2π)32Ek′
e−ik

′·∆d (285)

=

∫
d3k

(2π)32Ek
eik∆d cos θ (286)

=

∫
dϕ sin θdθ|⃗k|2d|⃗k|

(2π)32Ek
eik∆d cos θ (287)

=

∫
|⃗k|d|⃗k|
(2π)3Ek

sin
(
∆d |⃗k|

)
∆d

(288)

=
m2

(2π)2∆d
K1(∆d m) (289)

where K1 is a modified Bessel function of the first kind.
This term has a faster decrease than our non relativistic example.

→ e−m∆d m∆d >> 1 (290)

But we want zero for the commutator in eq. 282 for causality to be preserved. The way we have
written it, the second term is obtained by taking ∆d→ −∆d

∫
d3k

(2π)32Ek
eik·∆d =

∫
|⃗k|d|⃗k|
(2π)3Ek

sin
(
−∆d |⃗k|

)
−∆d

. (291)

We see then, before even carrying out the integral, that:

[ϕ(x), ϕ(y)] =

∫ ∞

0

kdk

(2π)3ek

sin(∆d k)

∆d
−
∫ ∞

0

sin(−∆d k)
−∆d

(292)

= 0 (293)

for (x− y)2 < 0 and using ∆x = γ∆d and ∆x0 = γβ∆d as in Eq. 284. Causality is thus preserved,
though it should be said, L.I. theories don’t have the exclusive priviledge of causality. The same
exercise for complex K.G. theories goes the same, now with [a, a†], [b, b†] terms cancelling out which
is why some say the antiparticle restores causality.
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5 D: Interactions [P.S. 4.5&4.6, S 5.1&6.3, Z I.7, T 3.1&3.2&3.6]

At the heart of it, interactions would be solved if we found the eigenbasis for the full Hamilto-
nian. Implicit in this view is the assumption that we have a pretty good idea of what the particles
are, with ⟨0|ϕ |p⃗⟩ = 0, and the dispersion relation being p2 = m2. This however might itself
change, and particles move somewhere else; e.g. in QCD we formulate the theory with quark fields
q, yet particles at low energy are instead in states ⟨0| q̄γ5q |pion⟩. The way to “look" for particles
translates then to poles in correlation functions (which is beyond this course).

So we will assume a perturbative expansion holds & gives us small corrections, as is the case
in QED.

5.1 Dyson’s Formula
Time ordering & Dyson’s formula are not restricted to QFT, in face one would encounter them in
Q.M. with explicit time-dependence. The problem at hand is to evolve in time our operators (θ)
or states |s⟩. Actually if we introduce the evolution operator U , it doesn’t actually matter which
we evolve:

O(t, x⃗) = U†(t, ti)O(ti, x⃗)U(t, ti) (294)
|ψ(t)⟩ = U(t, ti) |ψ(ti)⟩ (295)

For U captures the time-dependence

i∂tU = HU = (H0 + UI)U (296)

where we have separated H in two; it is convenient to do the same for U only given our t = 0, ϕ(x⃗)
which we do as

U(t, ti) ≡ U0(t, 0)UI(t, ti)U
†
0 (ti, 0) (297)[

|ψI(t)⟩ ≡ U†
0 (t, 0) |ψ(t)⟩

]
(298)

where it follows that U(t, t) = UI(t, t) = 1 and

(i∂tU)U0(ti) = i∂tU0(t)UI(t, ti) + iU0(t)∂tUI(t, ti) (299)
= (H0 +HI)U0(t)UI(t, ti) (300)

where the two scored-out terms cancel. Rewriting, we have:

i∂tUI(t, ti) = U0(t, 0)
†HI(ϕ(x⃗))U0(t, 0)UI(t, ti) (301)

i∂tUI = HIUI ≡ Hi(t)UI (302)

where we have used that the Hamiltonian is a function of the field ϕ(x⃗), and U0(t) puts the time-
dependence given by the tree Hamiltonian to give us the interacting field. The derivative of UI is
therefore the free-Hamiltonian evolved interacting Hamiltonian; that is, for example, HI = λ

4!ϕ
4.

U†
0

∫
d3x

λ

4!
ϕ4(x⃗)U0 =

∫
d3x

λ

4!
[U†

0ϕU0]
4 (303)

=

∫
d3x

λ

4!
ϕI(t, x⃗) (304)
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then we can solve iteratively UI =
∑
n U

(n)
I :∑

n

i∂tU
(n)
I =

∑
n

HI(t)U
(n)
I (305)

which, solving termwise, gives

i∂tU
(0)
I = 0 i∂tU

(0)
I = 1 (U(t, t) = 1)

i∂tU
(1)
I = HI(t) i∂tU

(1)
I = −i

∫ t

ti

dt′HI(t
′)

i∂tU
(2)
I = HI(t)

(
−i
∫ t

ti

dt′HI(t
′)

)
i∂tU

(2)
I = (−i)2

∫ t

ti

dt′′HI(t
′′)

∫ t′′

ti

dt′HI(t)

A note on integration, we can perform the time integrals in the manner shown in fig. 16

Figure 16: Rearranging the integrand to solve for the time-dependence of the Hamiltonian,
eq. (305).

And the solution for general n is:

U
(n)
I = (−i)m

∫ t

ti

dt(n)HI(t
(n))

∫ t(n))

ti

dt(n−1)...

∫ t′′

ti

dt′HI(t
′) (306)

but it’s a little cumbersome to carry around, so we introduce time-ordering T

T (A(t), B(t′)) = Θ(t− t′)A(t)B(t′) + Θ(t′ − t)B(t′)A(t)

T (At, Bt′ , Ct′′) = Θt−t′Θt′−t′′AtBt′Ct
′′ +Θt−t′′Θt′′−t′AtCt

′′Bt′

+Θt′−tΘt−t′′Bt′AtCt
′′ +Θt′−t′′Θt′′−tBt′Ct

′′At

+Θt′′−tΘt−t′Ct
′′AtBt′ +Θt′′−t′Θt′−tCt′′Bt′At
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e.c.t. For us, all operators are the same and we integrate over all times so

T

{∫ t

ti

dt′
∫ t

ti

dt′′HI(t
′)Ht′′

I HI(t)HI(t
′′)

}
(307)

=

∫
dt′dt′′ (Θt′−t′′HI(t

′)HI(t
′′) + Θt′′−t′HI(t

′′)HI(t
′)) (308)

= 2

∫ t

ti

dt′′HI(t
′′)

∫ t′′

ti

dt′HI(t
′) (309)

where we have used that ∫ t

ti

dt′Θt′′−t′ =

∫ t′′

ti

dt′

You can show that (Exercise: do it!)

T

{
n∏
k

∫
dt(k)HI(t

(k))

}
= n!

∫ t

ti

dt(n)HI(t
(n)...

∫ t′′

ti

dt′HI(t
′) (310)

which takes us to Dyson’s formula:

UI(t, ti) = T exp

(
−i
∫ t

ti

HI(t
′)dt′

)
(311)

It is quite a formal achievement which lets us make the time-evolved operator or state of our
choice. However, in practice we cannot find an all orders explicit form except for the simplest of
cases so we expand on HI .

5.2 Scattering and Tree Level Predictions
The formalism of QFT is like a huge machine which, for full rigour and generality, takes a long
time to get started and operational. However, if we accept a full approximation as good enough
we can short-cut to results. Cause what are we looking for in the end? Predictions to compare
with experiment, and the type of experiment we most often make use of in HEP is scattering.

5.2.1 What We Measure

It is refreshing to leave the stuffy world of theory for a look at experimental data. The setup is
shown in fig. 17

5.2.2 Lifetime

One straightforward measure is the lifetime of a particle. A bunch of N(t) unstable particles will
decrease in number as

dN

dt
= −ΓN (312)

So any one of these has a probability to decay, on a small interval ∆t.

Prob =
−dNdt ∆t
N

= Γ∆t (313)
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Figure 17: A collision schematic of particles p⃗1, p⃗2 colliding at some early time ti, with a final set
of particles k⃗1, k⃗2, ... at some late time tf . Note the outgoing state is on the left and incoming on
the right, as in e.g. a matrix element calculation.

which we measure experimentally, often quoting the inverse of Γ:

τ = Γ−1 ≡ lifetime (314)

N(t) = N(t0)e
−(t−t0)/τ . (315)

For example for muons τµ 2× 10−6 s, for pions τπ 3× 10−8 s and for the Higgs τh ∼ 2× 10−22 s.

5.2.3 Cross-Section

Picture (by looking at fig. 18) a set of particles directed at another set of target particles.

Figure 18: A set of (blue) particles with velocity vrel, relative to some stationary particles (red).
The cross-section of the red particles, σ, is shown as a partially transparent red circle.

We define the cross-section σ as the area around a particle within which incoming particles will
interact. Then the number of scattering events Ns in a time ∆t is

Ns = Flux×Nt × σ ×∆t (316)

where Nt is the number of target particles, and the flux of the incoming particles is the number
of beam particles per unit time per unit area. Any experimentalist with enough data can tell you
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the cross section

σ =
Ns

Nt × flux×∆t
≡ Ns

[∫
dtLinst

]−1

(317)

where we have defined the instantaneous liminosity Linst, which is a beam property of our colliders.
For example at the LHC Linst ∼ 1034

cm2s . Back to our setup, the probability of an incoming particle
scattering is given by

Prob =
flux×Nt × σ ×∆t

Flux×A×∆t
= nt × vrel ×∆t× σ (318)

with nt the number density of target particles, i.e. the number of targets per unit volume. Now
let’s cut it down to the volume that contains on average 1 target particle in a volume ∆V : nt ≡ 1

∆V .
We have then:

Prob =
∆t× vrel × σ

∆V
(319)

and we can make contact with a 1 on 1 scattering fig. 19

Figure 19: One on one scattering process.

which we can connect with the theory expression. We introduce here, with later justification,
that for scattering of two incoming particles k, k′ into a set of outgoing particles kf over a time ∆t
is:

⟨{kf},∆t|U(∆t)
∣∣∣⃗k, k⃗′〉 ≡ −i(2π)4δ4(kµk′µ −∑

i

kµf,i)M (320)

where {kf} stands for the final state and the Dirac delta function follows from energy and momen-
tum conservation, and δ4(kµ + k′µ −

∑
i k
µ
f,i) = δ(Ek + E′

k −
∑
iEf,i)δ

3(k⃗ + k⃗′ −
∑
i k⃗f,i) and M

is known as the scattering matrix element which we will define later.
We should, however, remember that our states are not normalised. In particular

⟨k1|k2⟩ = 2Ek(2π)
3δ3(k⃗1 − k⃗2) (321)

= 2Ek

∫
d3xei(k⃗1−k⃗2)·x⃗ (322)

−−−−→
k1→k2

2Ek∆V (323)
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then we need to divide the scattering probability by this factor to normalise

Prob =
∑
f

| ⟨{kf},∆t|U(∆t)
∣∣∣⃗k, k⃗′〉 |2

⟨k|k⟩ ⟨k′|k′⟩
(324)

=
∑
f

|(2π)4δ4(kµ + k′µ − kf )M|2

2Ek2Ek′(∆V )2
(325)

with kf =
∑
i kf,i. Next, we should interpret a Dirac delta squared, which we do by taking the

large space-time limit.∫ ∆t/2

−∆t/2

dteit∆k
0

=
2

i∆k0
sin

(
∆t∆k0

2

)
−−−−→
∆t→∞

(2π)δ(∆k0) (326)∣∣∣∣∣
∫ ∆t/2

−∆t/2

dteit∆k
0

∣∣∣∣∣
2

=

∣∣∣∣ 2

i∆k0

∣∣∣∣2 sin2(∆t∆k0

2

)
−−−−→
∆t→∞

(2π)∆tδ(∆k0) (327)

which leaves us with

Prob =
∑
f

(2π)4δ4(k + k′ − kf )|M|2∆t∆V
2Ek2Ek′(∆V )2

(328)

The sum over final states we obtain from the finite volume as

n =
k · L
2π

∑
nxnynz

→
(
Ldk

2π

)3

(329)

1

⟨k|k⟩
⇒
∫

∆V d3k

(2π)3
1

2Ek(∆V )
(330)

We are now in a position to compare with our experimental data:

Prob =
∆t× σ × vrel

∆V
(331)

=
∑
f

(2π)4δ4(k + k′ − kf )∆t∆V |M|2

(∆V )22Ek2Ek′
(332)

σ =
1

2Ek2Ek′vrel

∑
f

(2π)4δ4(k + k′ − kf )|M|2 (333)

=
1

2Ek2Ek′vrel

∏
i

∫
d3ki

(2π)32Eki
(2π)4δ4(k + k′ − kf )|M|2 (334)

All factors of time and volume drop, as they should, to give us an expression in terms of
Lorentz invariant integrals & matrix element squared. The calculation of the invariant matrix
element would then give a prediction for a cross-section to compare with those we measure at the
LHC or others.
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5.2.4 What We Predict We Should Measure

The scattering is mediated by interactions & quite generally we cannot solve exactly for anything
other than our tree Hamiltonian. As physicists do when faced with this problem, we expand on we
hope some small corrections. This is our HI , and formally evolution is solved by Dyson’s equation.
Further, though, we will make a number of assumptions and approximations:

• We will approximate in and out states, a.k.a. asymptotic states, by tree Hamiltonian eigen-
states. This is fine once we renormalise (more on this later).

• Asymptotic states are separated & non-interacting: i.e. they are distant wave-packets. We
take the limit of well-defined momenta & approximate them by plane waves. This is also
done in e.g. non-relativistic QM.

• We implicitly assumed we knew where the particles “are", i.e. ⟨0|ϕ |p⃗⟩ ≠ 0. This is so for
the free theory & stays for weakly coupled theories. But it can change for strongly coupled
theories.

• In weakly coupled theories, bound states might show up (e.g. hydrogen atom) which are
possible asymptotic states which we ignore for now.

With our first approximation, let us now build our in and out states as in fig. 20.

Figure 20: Building our in and out states.

So we define

⟨{k}, t|U(t, ti) |{p}, ti⟩ = ⟨{k}|U†
0 (t, 0)U(t, ti)U0(ti, 0) |{p}⟩

= ⟨{k}|UI(t, ti) |{p}⟩

= ⟨{k}|Te−i
∫
dt′HI |{p}⟩

where we have used eq. (297) and take the limit for t→∞, t′ → −∞, then at tree level:

⟨{k}|Stree |{p}⟩ ≡ ⟨{k}|UI(∞,−∞) |{p}⟩ (335)

≡ ⟨{k}|Te−i
∫ ∞
−∞ dt′HI(t

′) |{p}⟩ (336)

This will be our working expression at tree level, with a generalisation that will come in a few
lectures.
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5.2.5 A Lifetime

So let’s go ahead and compute something we can measure! Take a real K.G. field φ of mass M
and complex K.G. field ϕ of mass m. Then introduce an interaction between them:

LI = κφϕ∗ϕ HI = −LI (337)

Provided M > 2m this will mediate decay since the matrix element

⟨0|âk′ b̂kStreea†p|0⟩ ≠ 0 (338)

where â, b̂† ↔ ϕ and a↔ φ. Let’s compute this:

⟨0|âk′ b̂kTe−i
∫
HI(t

′)dt′a†p|0⟩ = ⟨0|âk′ b̂ki
∫
d4xκφIϕ

∗
IϕIa

†
p|0⟩ (339)

Now if we let the â, b̂ go all the right we get 0, and the same goes if we let a† go all the way to
right left. The non-vanishing piece is then

⟨0| âk′ b̂ki
∫
d4x

∫
[dq1]

(
ae−iq1·x + a†eiq1·x

)
(340)

·
∫
[dq2]

(
â†eiq2·x + b̂e−iq2·x

)
(341)

·
∫
[dq3]

(
âe−iq3·x + b̂†eiq3·x

)
a†p |0⟩ (342)

Note that [â, a†] = 0.

i ⟨0|0⟩
∫
d4x

∫
[dq1][dq2][dq3]e

−iq1·x[aq1 , a
†
p]e

iq2·x[âk′ , â
†
q2 ]e

iq3·x[b̂k, b̂
†
q3 ] (343)

= iκ

∫
d4xeix·(k+k

′−p) = i(2π)4δ4(p− k − k′) (344)

We have overall conservation of momentum as promised, and M = −κ. In the exercises, you will
compute τ .

5.2.6 Contact Scattering φ4 Interaction

How about scattering for a real field, mediated by LI = −λφ
4

4! ? There is a term to order the HI
expansion, so again:

⟨k, k′|Stree |p, p′⟩ − 1 = ⟨0| akak′
(−λi)
24

∫
d4x

∫
[dq⃗1]

(
aq1e

−iq1·x + a†q1e
iq1·x

)
·
∫
[dq⃗2]

(
aq2e

−iq2·x + a†q2e
iq2·x

)
·
∫
[dq⃗3]

(
aq3e

−iq3·x + a†q3e
iq3·x

)
·
∫
[dq⃗4]

(
aq4e

−iq4·x + a†q4e
iq4·x

)
a†pa

†
p′ |0⟩

Every external state a, a† will have to be commuted away, but there’s so much choice! One such
term gives

−λi
24

∫
d4xeik·xeik

′·xe−ip·xe−ip
′·x = −λi

4!
(2π)4δ4(p+ p′ − k − k′)
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with no trace of ‘which did we choose to contract with which?’. Combinatorics then say the other
23 options will combine for:

⟨k, k′|Stree |p, p′⟩ = −iλ(2π)4δ4(p+ p′ − k − k′) (345)

with the matrix element M = λ. Again, quite a simple result after quite a lot of work.

5.3 Yukawa Theory - The Feynman Propagator
Back to our φ, ϕ theory we can compute scattering now, in particular:

⟨0| âk b̂k′Streeâ†pb̂
†
p |0⟩ (346)

We now have no non-zero term to O(HI), so to O((HI)2)

⟨0| âk b̂k′
∫
d4x

∫
d4y

i2κ2

2

[
Θx0−y0φ

I
xϕ

∗
xϕ

I
xφ

I
yϕ

∗
yϕ

I
y +Θy0−x0φIyϕ

∗I
y ϕ

I
yφ

I
xϕ

∗I
x ϕ

I
x

]
â†pb̂

†
p′ |0⟩ (347)

We can find â’s and b̂’s to annihilate the out state (more than one now), but what are we to
make of a, a† in φx, φy? They have no-one but themselves to annihilate with. In particular, they
contribute a factor:

⟨0|T{φI(x)φI(y)} |0⟩ = Θx0−y0 ⟨0|φI(x)φI(y)|0⟩
+Θy0−x0 ⟨0|φI(y)φI(x)|0⟩

We have seen quite similar expressions, the first term is:

Θx0−y0

∫
[dk⃗][dk⃗′]e−ik·xeik

′·y[ak, a
†
k′ ] =

∫
d3k

(2π)32Ek
e−iEk(t−t′)+ik⃗·(x⃗−y⃗)Θx0−y0 (348)

Now we can rewrite the Heaviside function as

Θ(t) =
1

2πi

∫ ∞

−∞

dω

ω − iϵ
eiωt (349)

which we integrate over the contours in fig. 21.

Figure 21: The contours over which we perform the time-integral in eq. (349): the upper contour
for t > 0 and lower for t < 0. Note the pole which lies at +iϵ.
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So we have that:

e−iEk(x
0−y0)

2Ek
Θx0−y0 =

e−iEk(x
0−y0)

4πiEk

∫
dω
eiω(x

0−y0)

ω − iϵ
(350)

=

∫
dω

2πi

e−i(x
0−y0)(Ek−ω)

2Ek(ω − iϵ
(351)

=

∫
dk0

2πi

e−ik
0(x0−y0)

(2Ek)(Ek − k0 − iϵ)
(352)

where k0 ≡ Ek − ω. Direct substitution gives∫
d3k

(2π)32Ek
e−iEk(t−t′)+ik⃗·(x⃗−y⃗)Θx0−y0 =

∫
d4k

(2π)4i(2Ek)

eik·(y−x)

Ek − k0 − iϵ
(353)

but for the second term in eq. (348), we flip kµ → −kµ:∫
d4k

(2π)4i(2Ek)

eik·(y−x)

Ek + k0 − iϵ
(354)

and the sum of the two pieces is

∆F (x− y) = ⟨0|T{φI(x), φI(y)}|0⟩ (355)

=

∫
d4k

(2π)4i

e−ik·(x−y)

2Ek

(
1

Ek − k0 − iϵ
+

1

Ek + k0 − iϵ

)
(356)

∆F (x− y) =
∫

d4k

(2π)4
i

k2 −m2 − iϵ
e−ik·(x−y) (357)

with k2 = (k0)2 − k⃗2. This is Feynman’s propagator, central to pertubation theory.
Pushing ahead, we find several terms, for one of them, using ∆F (x− y) = ∆F (y − x),

− κ2

2

∫
d4xd4yeix(k+k

′)∆F (x− y)e−iy(p+p
′) (358)

= −κ
2

2

∫
d4xd4yeix·(k+k

′−q) id4q

q2 −M2 − iϵ
eiy·(q−p−p

′) (359)

=
d4q

(2π)4
(iκ)2

2

i

12 −M2 − iϵ
(2π)4δ4(k + k′ − q)(2π)4δ4(q − p− p′) (360)

= (2π)4δ4(k + k′ − p− p′) (iκ)
2

2

i

(p+ p′)2 −M2 − iϵ
(361)

which once more conforms to the form we assumed. Possibilities we have not written are âk, a†p
commuting in the same HI(x), and a degeneracy of commuting onto x or y, so that the final answer

−iM = (iκ)2
i

(p+ p′)2 −M2 − iϵ
+ (iκ)2

i

(p+ k)2 −M2 − iϵ
(362)

5.4 First Look at Feynman Diagrams
All the cases we have seen lead to simple expressions after laborious derivations, could there be an
easier way to compute? Let us draw and assign:
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(i)

(ii) Add (2π)4δ4(
∑
pin −

∑
pout) at each vertex.

(iii) Integrate over external line’s momenta
∫

d4q
(2π)4

We can now make diagrams for each of the processes we’ve looked at
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−−−→
time

S-Contribution

iκ(2π)4δ4(p− k − k′)

−iλ(2π)4δ4(p+ p′ − k − k′)

iκ(2π)4δ4(p+ p′ − q)
×
∫

d4q
(2π)4

i
q2−M2−iϵ

×(iκ(2π)4δ4(q − k − k′))

iκ(2π)4δ4(p− q − k)
×
∫

d4q
(2π)4

i
q2−M2−iϵ

×
(
iκ(2π)4δ4(q + p′ − k′)

)
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6 E: Interactions and the Perturbative Expansion [P.S. 4.2&4.3&7.2,
S 6.1&7.A, Z III.3, T 3.3&3.7]

Eager as we were to see a way from theory to experiment, we have encountered some of the
elements that make up any computation like vertices or Feynman propagators. Further, we have
seen how the invariant matrix element lives up to its name; after the flurry of a, a†’s cancelling
each other, rather simple, Lorentz-covariant results are obtained.

We now approach the perturbative expansion in a systematic way, which will allow us to
understand further down the road the new phenomena that shows up beyond tree-level like: field
renormalisation, running coupling constants or the fact that the vacuum is not empty.

Define, for real φ:

φI(x) = φ†(x) + φ−(x) (363)

φ†(x) =

∫
[dk⃗]e−ik·xak, φ− = (φ+)† (364)

6.1 Wick’s Theorem
We have seen how Feynman’s propagator shows in our S-matrix element computation, and the
time-ordering disappears. It would be computationally nice if this is true for more complicated
processes. First, let’s compute the two-field case:

T{φIxφIy} = Θx0−y0(φ
+
x + φ−

x )(φ
+
y + φ−

y ) + Θy0−x0(φ+
y + φ−

y )(φ
+
x + φ−

x ) (365a)

= Θx0−y0(φ
+
x φ

+
y + φ−

x φ
−
y + φ−

x φ
+
y + φ−

y φ
+
x + [φ+

x , φ
−
y ]) (365b)

= Θy0−x−(φ+
x φ

+
y + φ−

x φ
−
y + φ−

y φ
+
x + φ−

x φ
+
y + [φ+

y , φ
−
x ]) (365c)

=: φIxφ
I
y : + ⟨0|T{φIxφIy|0⟩ (365d)

=: φIxφ
I
y : +∆F (x− y) (365e)

the two-field product decomposes into a c-number, ∆F , which we computed, the rest being normal
ordered (hence cancelling between the vacuum). This relation is true for higher products. Consider
the three-field product with x01 > x02, x

0
3

φI1T{φI2φI3} = (φ−
1 + φ+

1 )(: φ
I
2φ

I
3 : +∆23) (366a)

=: φ−
1 φ

I
2φ

I
3 : + : φI2φ

I
3 : φ+

1 + [φ+
1 , : φ

I
2, φ

I
3 :]+ : φI1 : ∆23 (366b)

=: φI1φ
I
2φ

3
I : +[φ†

1, φ
−
2 ] : φ

I
3 : +[φ+

1 , φ
−
3 ] : φ

I
2 : +∆23 : φI1 (366c)

where ∆ij = δF (xi−xj). This is true for x01 > x02, x
0
3. The general expression adds up x02, x03 being

the latest time and all combine into:

T{φI1, φI2, φI3} =: φI1φ
I
2, φ

I
3 : +φI1φ

I
2φ

I
3 + φI1φ

I
2φ

I
3 + φI1φ

I
2φ

I
3 (367a)

=: φI1φ
I
2φ

I
3 : + : φI3 : ∆12+ : φI1 : ∆23+ : φI2 : ∆13 (367b)

This generalisation builds on the n − 1 product of fields to obtain the n product, which we can
then “write" as
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T{
n∏
i

φI(xi)} = L

n∏
i

φIi : +
∑
i<j

∆ij :

∏
k φ

I
k

φIiφ
I
j

:

+
∑

pair of pairs

∆ij∆kl :

∏
m φ

I
m

φIiφ
I
jφ

I
kφ

I
l

:

+ ...

=:

n∏
i

φIi : +(All possible contractions)

contractions being between fields that don’t commute, so if we have a complex field, Wick’s
theorem reads as

T{ϕI1ϕI∗2 ϕI3ϕI∗4 } =: ϕI1ϕ
I∗
2 ϕ

I
3ϕ
I∗
4 : +ϕI1ϕ

I∗
2 ϕ

I
3ϕ
I∗
4 (368a)

+ ϕI1ϕ
I∗
2 ϕ

I
3ϕ
I∗
4 + ... (368b)

The theorem also applies for coinciding spacetime points & it’s of use to us to compute the time-
ordered products. If we go back to our example Eq. 346, we needed:

T{ϕI∗x ϕIxφIxϕI∗y ϕIyφIy} = ...+ : ϕI∗x ϕ
I
xϕ

I∗
y ϕ

I
y : ∆xy (369)

which allows us to separate internal/virtual particles, and external, out states.

⟨0| âk b̂k′T{
(iκ)2

2

∫
d4x

∫
d4yφIxϕ

I∗
x ϕ

I
xφ

I
yϕ

I∗
y ϕ

I
y}â†pâ†p |0⟩ (370)

=
(iκ)2

2

∫
d4xd4y

(
⟨0|âk b̂k′ : ϕI∗x ϕIxϕ

I∗
y ϕ

I
y : â†pb̂

†
p|0⟩∆xy (371)

+ ⟨0|âk b̂k′ : ϕI∗x ϕ
I
xϕ

I∗
y ϕ

I
y : â†pb̂

†
p|0⟩∆xy (372)

+ ⟨0|âk b̂k′ : ϕI∗x ϕ
I
xϕ

I∗
y ϕ

I
y : â†pb̂

†
p|0⟩∆xy (373)

+ ⟨0|âk b̂k′ : ϕI∗x ϕIxϕI∗y ϕ
I
y : â†pb̂

†
p|0⟩∆xy

)
(374)

These two are identical contributions since ∆xy = ∆yx. As we did for the S-matrix, we can
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introduce Feynman diagrams for the Wick theorem & position space.

⟨0|T{ϕxIϕ
y
I}|0⟩ = ∆(x− y) = (375)

⟨0|T{ϕxIϕ
y
Iϕ

z
Iϕ
w
I }|0⟩ = (376)

⟨0|T{ϕxIϕ
y
Iϕ

z
Iϕ
w
I (ϕ

v
I )

4|0⟩ =

(377)

What are we to make of the disconnected piece? The answer is cancel it out. The diagram

is a vacuum fluctuation that we can’t observe in scattering.

⟨0|UI(−∞,∞)|0⟩ = 1− i
∫
d4x

λ

8
∆2
xx︸︷︷︸ +... (378)

6.2 Symmetry Factors
Some loop diagrams have numerical factors that cannot be extracted from Feynman rules alone.
We call these factors symmetry factors and they can be determined by the Wick theorem.
However, given the widespread use of Feynman rules we’ve come up with formulas to work them
out. The symmetry factor S is given by:

S =
1

R
·
(
1

2

)D1

·
(
1

2!

)D2

·
(
1

3!

)D3

·
(
1

4!

)D4

(379)

where:

R is the number of ways to permute the internal indices and produce an identical set of prop-
agators

D1 is the number of pairs of propagators of the form D2
aa

D2 is the number of pairs of propagators of the form D2
mn plus the number of factors of the form

D1
aa (N.B. the factor D2

aa contributes 1 to D1 and 2 to D2)

D3 is the number of sets of propagators of the form D3
mn

D4 is the number of sets of propagators of the form D4
mn
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6.2.1 Example

Here is an example diagram with symmetry factor 1/2, which we calculate by noting that there
are two propagators of the form Dxy so D2 = 1, and that we can switch x and y once to get the
same propagators so R = 1.

6.3 Green’s Functions
Following on Wick’s theorem steps, we can now put in a collection of objects: the all-order terms
that enter scattering Green’s functions, which we define as:

|Ω⟩, |λ⟩ vacuum & “excited” states of interacting theory

G(n)(x1, x2, ..., xn) ≡ ⟨Ω|T{ϕH(x1)ϕH(x2)...ϕH(xn)}|Ω⟩ (380)

where

ϕH(t, x⃗) = U†(t, 0)ϕ(x⃗)U(t, 0)

[U(t, 0) = U0(t, 0)UI(t, ti)U
†
0 (ti, 0)]

= U†
I (t, 0)ϕI(t, x)UI(t, 0)

We want to show how this relates to our interacting fields & perturbation theory. Between any
two fields, we have (using the shortform UI(t) = UI(t, 0))

ϕ1Hϕ
1
H = U†

I (t1)ϕ
1
IUI(t1)U

†
I (t2)ϕ

2
HUI(t2) (381)

whereas at the end of a chain

ϕH(t)|Ω⟩ = U†
I (t)ϕI(t)UI(t)|Ω⟩ (382)

= U†
I (t)ϕI(t)UI(t, 0)UI(0,−∞)︸ ︷︷ ︸

UI(t,−∞)

UI(−∞, 0)|Ω⟩ (383)
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we have

UI(∞, 0)|Ω⟩ = U†
0 (∞, 0)U(−∞, 0)|Ω⟩ (384)

= U0(0,−∞)|Ω⟩ (385)

where we have used that |Ω⟩ is the vacuum of the full theory with 0 energy. Next, we introduce
the identity as the sum over free states:

U0(0,−∞)

(
|0⟩⟨0|+

∑
n

|n⟩⟨n|

)
|Ω⟩ (386)

|0⟩⟨0|Ω⟩+ ei“∞
′′En |n⟩⟨n|Ω⟩ (387)

Using the Riemann-Lebesgue theorem, given that the
∑
s is really

∫
[dk], we have all excited states

cancelling [See Tong section 3.7]. The same holds on the left for ⟨Ω|, so we get:

⟨Ω|ϕ1Hϕ2H ...ϕnH |Ω⟩ = ⟨Ω|0⟩⟨0|UI(∞, t1)ϕ1I × UI(t1, t2)ϕ2I ...ϕnIUI(tn,−∞)|0⟩⟨0|Ω⟩ (388)

The time-ordering can be applied and it condenses notation as:

⟩Ω|T{ϕ1H ...ϕnH |Ω⟩ = |⟨Ω|0⟩|2⟨0|T{ϕ1I ...ϕnIUI(∞,−∞)}|0⟩ (389)

where time-ordering chops up & orders the integral in

UI(∞,−∞) = e−i
∫ ∞
−∞ dt′HI(t

′) (390)

The last step is setting ⟨Ω|Ω⟩ = 1. For the equation above with no fields

1 = ⟨Ω|Ω⟩ = |⟨Ω|0⟩|2⟨0|T{UI(∞,−∞)}|0⟩ (391)

for a final formula:

⟨Ω|T{ϕ1H ...ϕnH}|Ω⟩ =
⟨0|T{ϕ1I ...ϕnIUI(∞,−∞)}|0⟩

⟨0|UI(∞,−∞)|0⟩
. (392)

We have achieved 2 things:

(i) Related the Green function to the interaction picture evolution operator & fields. This
formula does resemble somewhat our S-matrix tree level expression.

(ii) We have factored out disconnected vacuum diagrams.

To see (ii) more clearly, let’s do an example.
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6.3.1 Contact Scattering ϕ4 Interaction

With our example, let’s write

⟨Ω|T{ϕxHϕ
y
H}|Ω⟩ =

⟨0|T{ϕxIϕ
y
I exp

(
−i
∫
d4zHI

)
}|0⟩

⟨0|{exp
(
−i
∫
d4zHI

)
}|0⟩

(393)

=
⟨0|T{ϕxIϕ

y
I

(
1− i

∫
d4zHI +O(H2)

)
}|0⟩

⟨0|{
(
1− i

∫
d4xHI +O(H2)

)
}|0⟩

(394)

=
⟨0|
(
T{ϕxIϕ

y
I} − i

∫
d4zϕxIϕ

y
I
λ
4! (ϕ

z
I)

4
+ ...

)
|0⟩

⟨0|{
(
1− i

∫
d4z λ4! (ϕ

z
I)

4
+ ...

)
}|0⟩

(395)

(396)

Though I’m cancelling “pictures” and asking you to believe me, you will do it yourself explicitly in
problem sheet 4. Now for point (i), we can have a look at the tree-level Green function

⟨Ω|T{ϕ1Hϕ2Hϕ3Hϕ4H}|Ω⟩ = ∆12∆34 + (combinations) (397)

−i
∫
d4xλ∆1x∆2x∆3x∆4x︸ ︷︷ ︸

−iλ
∫
d4x

[∏
i

∫ d4qiie
−iqi(xi−x)

(2π)4(q2
i
−m2)

]
+(λ2) (398)

=

[∏
i

∫
d4qiie

−iqixi

(2π)4(q2i −m2)

]
(−iλ)(2π)4δ4(

∑
i

qi) (399)

This looks like the Fourier transform of the S-matrix element we found, but with a momentum-
space propagator for each external leg. When we extend this relation to higher-orders, we obtain
the LSZ reduction formula.

6.4 LSZ Reduction Formula
We’ve seen hints that an S-matrix element could be written to all orders in our expansion in terms
of correlation functions, themselves Lorentz invariant. The derivation of such connection is what
we’ll do here. First, the Fourier transform of a Green’s function for the Heisenberg field:

G̃(n)({p}) =
n∏
k

∫
d4xke

ipk·xk⟨Ω|T

(
n∏
l

ϕH(xl)

)
|Ω⟩ (400)
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where p0k is a free variable. Let’s pull a field to the left:

⟨Ω|U(x0)ϕ(x⃗)U(x0, tf )U(tf , y
0)ϕ(y⃗) = ⟨Ω|e−ip⃗·x⃗ϕ(0)eip⃗·x⃗U(x0, tf )

∑
s

|s⟩⟨s|U(tf , y
0)

= ⟨Ω|ϕ(0)
∑
s

|s⟩⟨s|eiq⃗s·x⃗e−i(x
0−tf )Es ...

=
∑
s

⟨Ω|ϕ(0)|s⟩e−iqs·x⟨s, tf |U(tf , y
0)...

The Fourier transform does it’s job as∫ ∞

tf

dx0
∫
d3xeix(p−qs)

∑
s

⟨Ω|ϕ(0)|s⟩ d3qs
(2π)32Es

=

∫ ∞

tf

eix
0(p0−ES)dx0

2Es

∑
s

⟨Ω|ϕ(0)|s⟩ (401)

= − eitf (p
0−Es)

2iEs(p0 − Es)
∑
s

⟨Ω|ϕ(0)|s⟩ (402)

Next, we assume the only non-vanishing overlap of ⟨Ω|ϕ(0)|s⟩ is with a one-particle asymptotic
state and define Z ≡ ⟨Ω|ϕ(0)|s⟩. We note that there is a pole p0 = Es.

G̃(n) ({pi})
p0→Es−−−−→ i

p2 −m2
p

√
Z⟨s, tf |U(tf , y

0)ϕH(y0)... (403)

The last factor is a true asymptotic state, evolved to tf , times the rest of the fields. This procedure
can be repeated for the other fields, to be left with an out-state & in-state connected by U ,
⟨out, tf |U(tf , ti)|in, ti⟩. This is the true scattering matrix to all orders, & it is given by the LSZ
formula:

G̃(n) ({pi};−{kl})
p0i→Ep−−−−−→
k0l →Ek

[∏
i

i
√
Z

p2i −m2
p

][∏
l

i
√
Z

k2l −m2
p

]
× S{k}→{p} (404)

where mf is the physical mass, which differs from m as given in the free action. It is rather
a simple outcome that asymptotic & free states differ just by normalisation Z and mass. The
S-matrix is hence the “residue” in all external momenta. As in complex analysis, this means that
the full function G̃ may and generally contain other terms.

6.5 Two-Point Function
We need first in our expansion to a given order, then Z,mp. These appear in the 2-point Green’s
function which can be written, using translation invariance, as:

G̃(2)(p, k) = (2π)4δ4(p+ k)G̃(p2) (405)

G̃
p0→Ep−−−−−→ iZ

p2 −m2
p

[
Note the 1-pt only has one pole in p2

]
(406)

We can compute this order-by-order, & for a fixed order even sum a countable ∞.
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Figure 22: One particle irreducible (1PI) and one particle reducible (1PR) Feynman diagrams,
on which the red dashed line shows the internal line which could split the diagram into two
disconnected pieces.

where Σ is the blob representing all one-particle-irreducible (1PI) diagrams, and is called the
self-energy. But what is 1PI? It’s actually easier to define the opposite first:

One particle reducible diagram

There exists at least one inter-
nal line whose absence (or cutting)
would split the diagram into 2 dis-
connected pieces.

Let’s use λφ4 again for illustration in fig. 22 and the sum of these diagrams is the invariant matrix
element, for a “1 to 1” process. So here:

−iΣ =

∫
d4q

(2π)4
(−iλ)
2

i

q2 −m2
+O(λ2) (407)
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6.6 External Legs Corrections & Amputated Diagrams
Once we have the corrections to the two-point function, we can save ourselves some work at higher-
point functions. Consider again λφ4 and the diagrams: DAIGRAMS These corrections we have
computed already, so we can focus on the rest of the contributions, stripping out the external legs
propagators. Then the LSZ formula reads:

S{p}→{k} = (
√
Z)nG̃

(n)
amputated({p} → {k}) (408)

Gamputated can be computed as the invariant matrix elements in momentum space with Feynman
rules, e.g.

G(λ)
amp. =

∫
d4q

(2π)2
(iλ)2

2

i

(q2 −m2)

i

(q + p1 + p2)2 −m2
+ ... (409)

(410)

6.7 Effective Action & One Particle Irreducible
Lastly, we apply the 1PI definition on higher-point amplitudes, and define:

−iΣ = Sum of 2-point 1PI diagrams

iΓ(3) = Sum of 3-point 1PI diagrams
...

iΓ(n) = Sum of n-point 1PI diagrams

With these pieces, we can build higher-point greens functions, take

G(3)
amp. = i(2π)4δ4(

∑
p) Γ(3) ({pi})︸ ︷︷ ︸ (411)

G(4)
amp. = (2π)4δ4(

∑
p) ·

{
iΓ(4)({pi})︸ ︷︷ ︸ (412)

+ iΓ(p1, p2,−p1 − p2)G̃(p1 + p2)iΓ
(3)(p1 + p2, p3, p4)︸ ︷︷ ︸ (413)

+ (p3 ↔ p4) + (p2 ↔ p4

}
(414)

where these expressions are exact, the expansion is within Γ(n). Γ(n) can be computed not only
with diagrams, but also with functional methods in the path integral formulation. This, however,
goes beyond our course.
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6.8 Diagram Zoology
It’s good to collect here some of the diagram terminology:

Connected/Disconnected

Tree Level/Loop Level

Vacuum Diagrams

One Particle Reducible/One
Particle Irreducible

Amputated
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7 F: Fermions

7.1 Lorentz group representations
What are the Lorentz group representations? A clue is in angular momentum being contained in
it. This tells us that we’re missing something between ϕ and Aµ.

So what is
√
Aµ?

Define : γµ = γ0 , γ1 , γ2 , γ3 , 4× 4 complex matrices (415)
such that : {γµ, γν} ≡ γµγν − γνγµ = 2ηµν1I4×4 (416)

(γµ)† = γ0γµγ0 (417)

A representation of the Lorentz group in this space is ψ with

ψ →ψ′ = eiσµνω
νµ/2ψ σµν =

i

4
[γµ, γν ] , (418)

and you can show that (σµν)† = γ0σµνγ0.
We put forward the following

proposition ψ†γ0γµψ is a vector (419)

and proceed to prove it

(ψ†γ0γµψ)′ =ψ†e−iγ
0σωγ0/2γ0γµeiωσ/2ψ (420)

δω(ψ̄γ
µψ) =

1

2
ψ† (−iγ0σωγµ + γ0γµiσω

)
ψ (421)

=
i

2
ψ̄
(
−σωγµ + σωγµ + ωβα[γµ, σαβ ]

)
ψ (422)

=
i

2
ψ̄ωβα

i

2

(
ηµαγβ − ηµβγα − ηµβγα + ηµαγβ

)
ψ (423)

=ωµαψ̄γ
µψ (424)

7.2 Dirac’s field
What we have encountered, once promoted to space-time dependent, is Dirac’s field ψ(x). Let’s
build its quadratic action. Lorentz invariance sets constraints that leave us with two terms at this
order

S =

∫
d4x

(
iψ̄γµ∂µψ −mψ̄ψ

)
(425)

where ψ̄ = ψ†γ0 and I encourage you to check that the m term is invariant.
The EoM is

δS

δψ̄
→

(
iγµ

∂

∂xµ
−m

)
ψ =0 (426)(

iγ0∂t + iγ⃗∇⃗ −m
)
ψ =0 (427)
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that is Dirac’s equation.
Let’s count degrees of freedom, ψ is a 4-vector acted upon by γ matrices so you might then

count 4 real (ψ) and 4 imaginary ψ degrees of freedom. However when counting degree’s of freedom
we clook at phase space:

Πψ = iψ̄γ0 = iψ† (428)

which tells us there are half as many d.o.f. as you might think, 4.
The Hamiltonian density that follows is

H =
∂L
∂∂tψ

∂tψ − L = −iψ̄γ⃗∇⃗ψ +mψ̄ψ (429)

It is this operator that will give us the spectrum of the Quantum theory.
The Dirac field has then 4 d.o.f. We know that a spin 1/2 particle has two states, so there’s

two types of particles in ψ.
Let’s stay at the classical level & solve for the EoM which will give us the ansatz for the

quantum free-Hamiltonian-evolved-field, i.e. interaction picture field. Our ansatz

ψ(x) =

∫
d4p

(2π)4
e−ipxψ̃(p) (430)

so that the equation of motion

(γµpµ −m)ψ̃(p) = 0 (431)

This algebraic eq. needs a vanishing determinant for any non-trivial solution to exist

det(γ · p−m) = (m2 − p2)2 = 0 (432)

There are 4 solutions to this eq.

(2×) p0 =
√
p⃗2 +m2 (2×) p0 = −

√
p⃗2 +m2 (433)

We know that a spin 1/2 particle has two spin states, here we have two of those, one with
negative p0. Remember this is not an issue since we are looking at the field, not the wave-function.
We treat this as we did for the complex field:

ψ(x) =

∫
d4p

(2π)3
δ(p2 −m2)

(
As(p)us(p)e

−ipxΘ(p0) +Bs(p)
∗vs(p)e

ipxΘ(p0)
)

(434)

=

∫
d3p

(2π)32Ep

(
As(p)us(p)e

−ipx +Bs(p)
∗vs(p)e

ipx
)

(435)

Where we have introduced vs, us as the vectors in Dirac space that

us (γ · p−m)us = 0 p0 > 0 (436)

(p0γ0 − p⃗γ⃗ −m)us = 0 (437)

vs (γ · p+m)vs = 0 p0 > 0 (438)

(p0γ0 − p⃗γ⃗ +m)vs = 0 (439)
(440)

So the trick is to interpret a particle with momenta −p for p0 < 0. We’ll see if it works at the
quantum level.
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As eigenvectors, these satisfy orthogonality:

u†sus′ =2Epδss′ v†svs′ =2Epδss′ u†svs′ = 0 (441)

& as Lorentz group reps

ūsus′ = 2mδss′ v̄svs′ = 2mδss′ (442)∑
s

usūs = (γp+m)
∑
s

vsv̄s = (γp−m) (443)

Here’s a spinor in explicit form

γµ =

(
0 σµ

σ̄µ 0

)
σµ = (1, σ⃗)
σ̄µ = (1,−σ⃗) (444)

us(p) =

( √
pσχs√
pσ̄χs

)
vs(p) =

( √
pσχ̃s

−
√
pσ̄χ̃s

)
(445)

we parametrise χ by the spin S⃗ on the rest frame as

S⃗σ⃗χs = 1/2χs χ̃s = ϵχ∗
sχs =

(
cos θ/2

sin θ/2eiϕ

)
(446)

with θ, ϕ polar coordinates for the spin and

√
pσ =

(Ep +m)− σ⃗p⃗√
2(Ep +m)

√
pσ̄ =

(Ep +m) + σ⃗p⃗√
2(Ep +m)

(447)

7.3 Chirality and irreducible representations
We have not written down the smalllest spin 1/2 representation yet; a Dirac spinor is reducible.
Define

γ5 =iγ0γ1γ2γ3 [γ5, σ
µν ] = 0, γ25 = 1 (448)

This means, γ5 σµν can be simultaneously diagonalised, but γ5 splits representations with projec-
tors PL, PR

PL ≡
1− γ5

2
PR ≡

1 + γ5
2

(449)

ψL ≡PLψ ψR ≡PRψ (450)

with PLPR = 0, P 2
L = PL, P 2

R = PR, PL + PR = 1.
Given PL PR are projectors and the can be diagonalised simulatneously with Lorentz generators,

σµν , ψR and ψL are closed under boosts and rotations

ψ′
L = PLe

iωσ/2ψ = eiωσ/2PLψ = eiωσ/2ψL (451)

and the same holds for ψR. Why didn’t we start from the smallest representation? For Dirac mass
term we need both left and right, as you can show yourself. One can still have mass with say ψL
only, but that is a Majorana fermion.
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7.4 Dirac’s Field Quantisation
We have used our experience of quantising a complex Klein-Gordon field to line up the classical
theory so that quantisation should follow easily. As usual we do

and before we go any furhter let’s look at the Hamiltonian
For our harmonic oscillator H first there must be a cancellation on
which does cancel since span a orthogonal basis.
For the rest, however

7.5 Spin-statistics
A consequence of the anti-commutation relations is the statistics as deduced from a two-state
system. Take a scalar

but now for a Dirac field
The exchange of any Dirac particle implies a negative sign. We have discovered fermions of

course!
In particular the above means
You can’t put two fermions with the same spin on the same state. I we go back to a finite

volume
For a boson, we can put as many particles as we like in the state but for a spin 1/2 frmions we

can only put two: spin up and spin down.

7.6 Parity and Charge-conjugation
Parity does flip space’s sign x so a scalar field and derivative

ϕ′ (452)

where we used.
In fact all 4-vectors will pick a sign and so should, which means
If our theory is parity-invariant , i.e. our action stays the same. Then
Charge conjugation. We exchange particles for anti-particles by

7.7 Pertubation theory for fermions
At the centre of our perturbative expansion in Lorentz invariant formulae was Dyson’s formula
introducing time-ordering T and Wick’s theorem to get rid of it.

We’ll have to revise time ordering for fermions. When we put any fermion past another we
picka a sign so now (all fields are interaction picture but we ommit)

Tψ (453)

In particular

Tψ (454)

and this also generalises to a Wick theorem for fermions.
Nonetheless, Dyson’s formula time-orders the interaction Hamiltonian without any sign, is this

fermionic Wick theorm of any use to us?
It is cause the Hamiltonian is a ‘bosonic’ operator; consider an interaction of two different

fermions and a scalar

yukawa (455)
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A term in Dyson’s formula is

T (456)

Now suppose we evaluate it in between enough quanta to commute the fields away (e.g.) since we
have arranged the rest in the right order, we would get

⟨0| (457)

which is the fermionic time ordering. THis is not a proof but this elementary result can be used
for it.

Feynman propagator

Let’s evaluate the above two point correlator then [with normalisation]

⟨0|T
(
ψαψ̄β

)
|0⟩ = Θx0−y0 (458)

or sometimes written as

Causality

Another concern is causality where we used the commutation relations for a scalar field. What
saves the day in this case is that all observables have an even number of fermion fields. The way
D. Tong puts it " no detector goes to minus itself when you rotate it 360"

Take for illustration the fermionic density ψ†(x)ψ(x)

[ψ†(x)ψ(x), ψ†(y)ψ(y)] (459)

In computing this the following general relation is useful

[A,BC] = [A,B]C +B[A,C]

[A,BC] = {A,B}C −B{A,C}
Which helps break down the initial commutator into a factor ψ whose vanishing for ensures causal-
ity is preserved

Feynman Rules for fermions

This will be the factor associated with an internal fermion line. For external states

⟨0|ψa†p,s|0⟩ =e−ipxus(p) ⟨0|ψa†p,s|0⟩ =e−ipxus(p) (460)

⟨0|ψa†p,s|0⟩ =e−ipxus(p) ⟨0|ψa†p,s|0⟩ =e−ipxus(p) (461)

Finally consider the extension of our Yukawa theory for fermions

LI =− yφ(x)ψ̄(x)ψ(x)
∂

∂

∂

∂

∂

∂
LI = −yδαβ (462)

We can collect all these in momentum-space Feynman rules
As we did before, we impose 4-momentum conservation at every vertex and integrate over

internal momenta, but also sum over all spinor indexes to obtain a Lorentz invariant result.
An example

ūuf
i

(p1 − p3)2 −m2
φ

v̄v (463)
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7.8 QED
The theory with the most precise tested preductions goes by the name of Quantum Electro-
Dynamics (QED). It is a gauge theory, which we have not discussed so far, so let’s begin by
giving a gauge transformation

U(1)em A⃗→ A⃗′ = A⃗+∇α Φ→ Φ′ = Φ− ∂α

∂t
(464)

Then
E⃗′ = −∇Φ′ − ∂tA⃗′ = E⃗ +∇∂tα− ∂t∇α = E⃗

The same holds for the magnetic field, so our Lagrangian ε0/2(E
2 − c2B2) is invariant and we’ve

found a local symmetry U(1)em with α(x) the space-time dependent transformation parameter.
This type of symmetry is such that one could choose to give a phase to a field around the origin

α(0) = α0 bu not at some other point α(0, 1, 0, 0) = 0.
As it stands however this theory has no matter and the Noether current associated with the

symmetry vanishes ().
Let’s introduce a Dirac field ψ(x). If our symmetry is U(1) then it seems sensible to assume

U(1)em : ψ → ψ′ = e−iα/eψ (465)

yet this would make the Lagrangian

L′
ψ =ψ̄eiα/e

(
iγ0

∂

∂ct
+ iγ⃗∇−m

)
eiα/eψ∇αJ (466)

=Lψ +
1

e

[
ψ̄γ0ψ

1

c

∂α

∂t
+ ψ̄γ⃗ψ∇α

]
(467)

These terms we could cancel out with ψ̄γµψAµ = ψ̄γ0ψΦ/c − ψ̄γ⃗ψA⃗, recall Aµ = (Φ/c,−A⃗)
for a Lagrangian as

(468)

with D ≡ ∂ − ieA. In natural units (which we now take to include)

LQED = ψ̄ (iγµDµ −m)ψ − 1

4
FµνF

µν (469)

with

e2

4π
≃ 1

137
Fµνψ =

i

e
[Dµ, Dν ]ψ (470)

This is the most general renormalisable action one can build compatible with Lorentz and gauge
invariance.

It does have charged particles with

− α
e2
Jµem = δαAν

∂L
∂∂µAν

+ δψ
∂L
∂∂µψ

=
α

e
ψ̄γµψ (471)

The gauge invariance removes one d.o.f. of Aµ on top of the non-dynamical A0 so when
quantised this theory presents

e− electrons with spin 1/2 mass m, charge -e

e+ positrons with spin 1/2 mass m, charge e

Aµ photons with spin 1 (but two states only) mass 0, charge 0
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Feynman Rules
Interaction picture fields

ΨI(x) =

∫
d3k

(2π)32Ek

∑
s

(
ak,sus(k)e

−ikx + b†k,svs(k)e
ikx
)

(472)

AIµ(x) =

∫
d3k

(2π)32Ek

∑
λ

(
ck,sε

(λ)
µ (k)e−ikx + h.c.

)
εµ(k)k

µ = 0 (473)
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