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A small preface
"Originally, this work has been prepared in the framework of a seminar of the

University of Bonn in Germany, but it has been and will be extended (after
being presented and published online under www.dkriesel.com on

5/27/2005). First and foremost, to provide a comprehensive overview of the
subject of neural networks and, second, just to acquire more and more

knowledge about LATEX . And who knows – maybe one day this summary will
become a real preface!"

Abstract of this work, end of 2005

The above abstract has not yet become a

preface but at least a little preface, ever

since the extended text (then 40 pages

long) has turned out to be a download

hit.

Ambition and intention of this
manuscript

The entire text is written and laid out

more e�ectively and with more illustra-

tions than before. I did all the illustra-

tions myself, most of them directly in

LATEX by using XYpic. They reflect what

I would have liked to see when becoming

acquainted with the subject: Text and il-

lustrations should be memorable and easy

to understand to o�er as many people as

possible access to the field of neural net-

works.

Nevertheless, the mathematically and for-

mally skilled readers will be able to under-

stand the definitions without reading the

running text, while the opposite holds for

readers only interested in the subject mat-

ter; everything is explained in both collo-

quial and formal language. Please let me

know if you find out that I have violated

this principle.

The sections of this text are mostly
independent from each other

The document itself is divided into di�er-

ent parts, which are again divided into

chapters. Although the chapters contain

cross-references, they are also individually

accessible to readers with little previous

knowledge. There are larger and smaller

chapters: While the larger chapters should

provide profound insight into a paradigm

of neural networks (e.g. the classic neural

network structure: the perceptron and its

learning procedures), the smaller chapters

give a short overview – but this is also ex-
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plained in the introduction of each chapter.

In addition to all the definitions and expla-

nations I have included some excursuses

to provide interesting information not di-

rectly related to the subject.

Unfortunately, I was not able to find free

German sources that are multi-faceted

in respect of content (concerning the

paradigms of neural networks) and, nev-

ertheless, written in coherent style. The

aim of this work is (even if it could not

be fulfilled at first go) to close this gap bit

by bit and to provide easy access to the

subject.

Want to learn not only by
reading, but also by coding?
Use SNIPE!

SNIPE1
is a well-documented JAVA li-

brary that implements a framework for

neural networks in a speedy, feature-rich

and usable way. It is available at no

cost for non-commercial purposes. It was

originally designed for high performance

simulations with lots and lots of neural

networks (even large ones) being trained

simultaneously. Recently, I decided to

give it away as a professional reference im-

plementation that covers network aspects

handled within this work, while at the

same time being faster and more e�cient

than lots of other implementations due to

1 Scalable and Generalized Neural Information Pro-
cessing Engine, downloadable at http://www.
dkriesel.com/tech/snipe, online JavaDoc at
http://snipe.dkriesel.com

the original high-performance simulation

design goal. Those of you who are up for

learning by doing and/or have to use a

fast and stable neural networks implemen-

tation for some reasons, should definetely

have a look at Snipe.

However, the aspects covered by Snipe are

not entirely congruent with those covered

by this manuscript. Some of the kinds

of neural networks are not supported by

Snipe, while when it comes to other kinds

of neural networks, Snipe may have lots

and lots more capabilities than may ever

be covered in the manuscript in the form

of practical hints. Anyway, in my experi-

ence almost all of the implementation re-

quirements of my readers are covered well.

On the Snipe download page, look for the

section "Getting started with Snipe" – you

will find an easy step-by-step guide con-

cerning Snipe and its documentation, as

well as some examples.

SNIPE: This manuscript frequently incor-

porates Snipe. Shaded Snipe-paragraphs

like this one are scattered among large

parts of the manuscript, providing infor-

mation on how to implement their con-

text in Snipe. This also implies that
those who do not want to use Snipe,
just have to skip the shaded Snipe-
paragraphs! The Snipe-paragraphs as-

sume the reader has had a close look at

the "Getting started with Snipe" section.

Often, class names are used. As Snipe con-

sists of only a few di�erent packages, I omit-

ted the package names within the qualified

class names for the sake of readability.
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It’s easy to print this
manuscript

This text is completely illustrated in

color, but it can also be printed as is in

monochrome: The colors of figures, tables

and text are well-chosen so that in addi-

tion to an appealing design the colors are

still easy to distinguish when printed in

monochrome.

There are many tools directly
integrated into the text

Di�erent aids are directly integrated in the

document to make reading more flexible:

However, anyone (like me) who prefers

reading words on paper rather than on

screen can also enjoy some features.

In the table of contents, di�erent
types of chapters are marked

Di�erent types of chapters are directly

marked within the table of contents. Chap-

ters, that are marked as "fundamental"

are definitely ones to read because almost

all subsequent chapters heavily depend on

them. Other chapters additionally depend

on information given in other (preceding)

chapters, which then is marked in the ta-

ble of contents, too.

Speaking headlines throughout the
text, short ones in the table of
contents

The whole manuscript is now pervaded by

such headlines. Speaking headlines are

not just title-like ("Reinforcement Learn-

ing"), but centralize the information given

in the associated section to a single sen-

tence. In the named instance, an appro-

priate headline would be "Reinforcement

learning methods provide feedback to the

network, whether it behaves good or bad".

However, such long headlines would bloat

the table of contents in an unacceptable

way. So I used short titles like the first one

in the table of contents, and speaking ones,

like the latter, throughout the text.

Marginal notes are a navigational
aid

The entire document contains marginal

notes in colloquial language (see the exam- Hypertext
on paper
:-)

ple in the margin), allowing you to "scan"

the document quickly to find a certain pas-

sage in the text (including the titles).

New mathematical symbols are marked by

specific marginal notes for easy finding Jx
(see the example for x in the margin).

There are several kinds of indexing

This document contains di�erent types of

indexing: If you have found a word in

the index and opened the corresponding

page, you can easily find it by searching
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for highlighted text – all indexed words

are highlighted like this.

Mathematical symbols appearing in sev-

eral chapters of this document (e.g. � for

an output neuron; I tried to maintain a

consistent nomenclature for regularly re-

curring elements) are separately indexed

under "Mathematical Symbols", so they

can easily be assigned to the correspond-

ing term.

Names of persons written in small caps
are indexed in the category "Persons" and

ordered by the last names.

Terms of use and license

Beginning with the epsilon edition, the

text is licensed under the Creative Com-
mons Attribution-No Derivative Works
3.0 Unported License2

, except for some

little portions of the work licensed under

more liberal licenses as mentioned (mainly

some figures from Wikimedia Commons).

A quick license summary:

1. You are free to redistribute this docu-

ment (even though it is a much better

idea to just distribute the URL of my

homepage, for it always contains the

most recent version of the text).

2. You may not modify, transform, or

build upon the document except for

personal use.

2 http://creativecommons.org/licenses/
by-nd/3.0/

3. You must maintain the author’s attri-

bution of the document at all times.

4. You may not use the attribution to

imply that the author endorses you

or your document use.

For I’m no lawyer, the above bullet-point

summary is just informational: if there is

any conflict in interpretation between the

summary and the actual license, the actual

license always takes precedence. Note that

this license does not extend to the source

files used to produce the document. Those

are still mine.

How to cite this manuscript

There’s no o�cial publisher, so you need

to be careful with your citation. Please

find more information in English and

German language on my homepage, re-

spectively the subpage concerning the

manuscript
3
.
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Part I

From biology to formalization –
motivation, philosophy, history and

realization of neural models

1





Chapter 1

Introduction, motivation and history
How to teach a computer? You can either write a fixed program – or you can

enable the computer to learn on its own. Living beings do not have any
programmer writing a program for developing their skills, which then only has

to be executed. They learn by themselves – without the previous knowledge
from external impressions – and thus can solve problems better than any

computer today. What qualities are needed to achieve such a behavior for
devices like computers? Can such cognition be adapted from biology? History,

development, decline and resurgence of a wide approach to solve problems.

1.1 Why neural networks?

There are problem categories that cannot

be formulated as an algorithm. Problems

that depend on many subtle factors, for ex-

ample the purchase price of a real estate

which our brain can (approximately) cal-

culate. Without an algorithm a computer

cannot do the same. Therefore the ques-

tion to be asked is: How do we learn to
explore such problems?

Exactly – we learn; a capability comput-

ers obviously do not have. Humans haveComputers
cannot

learn
a brain that can learn. Computers have

some processing units and memory. They

allow the computer to perform the most

complex numerical calculations in a very

short time, but they are not adaptive.

If we compare computer and brain
1
, we

will note that, theoretically, the computer

should be more powerful than our brain:

It comprises 109
transistors with a switch-

ing time of 10≠9
seconds. The brain con-

tains 1011
neurons, but these only have a

switching time of about 10≠3
seconds.

The largest part of the brain is work-

ing continuously, while the largest part of

the computer is only passive data storage.

Thus, the brain is parallel and therefore parallelism
performing close to its theoretical maxi-

1 Of course, this comparison is - for obvious rea-
sons - controversially discussed by biologists and
computer scientists, since response time and quan-
tity do not tell anything about quality and perfor-
mance of the processing units as well as neurons
and transistors cannot be compared directly. Nev-
ertheless, the comparison serves its purpose and
indicates the advantage of parallelism by means
of processing time.

3



Chapter 1 Introduction, motivation and history dkriesel.com

Brain Computer

No. of processing units ¥ 1011
¥ 109

Type of processing units Neurons Transistors

Type of calculation massively parallel usually serial

Data storage associative address-based

Switching time ¥ 10≠3
s ¥ 10≠9

s

Possible switching operations ¥ 1013 1
s ¥ 1018 1

s
Actual switching operations ¥ 1012 1

s ¥ 1010 1
s

Table 1.1: The (flawed) comparison between brain and computer at a glance. Inspired by: [Zel94]

mum, from which the computer is orders

of magnitude away (Table 1.1). Addition-

ally, a computer is static - the brain as

a biological neural network can reorganize

itself during its "lifespan" and therefore is

able to learn, to compensate errors and so

forth.

Within this text I want to outline how

we can use the said characteristics of our

brain for a computer system.

So the study of artificial neural networks

is motivated by their similarity to success-

fully working biological systems, which - in

comparison to the overall system - consist

of very simple but numerous nerve cellssimple
but many

processing
units

that work massively in parallel and (which

is probably one of the most significant

aspects) have the capability to learn.

There is no need to explicitly program a

neural network. For instance, it can learn

from training samples or by means of en-n. network
capable
to learn

couragement - with a carrot and a stick,

so to speak (reinforcement learning).

One result from this learning procedure is

the capability of neural networks to gen-

eralize and associate data: After suc-

cessful training a neural network can find

reasonable solutions for similar problems

of the same class that were not explicitly

trained. This in turn results in a high de-

gree of fault tolerance against noisy in-

put data.

Fault tolerance is closely related to biolog-

ical neural networks, in which this charac-

teristic is very distinct: As previously men-

tioned, a human has about 1011
neurons

that continuously reorganize themselves

or are reorganized by external influences

(about 105
neurons can be destroyed while

in a drunken stupor, some types of food

or environmental influences can also de-

stroy brain cells). Nevertheless, our cogni-

tive abilities are not significantly a�ected. n. network
fault
tolerant

Thus, the brain is tolerant against internal

errors – and also against external errors,

for we can often read a really "dreadful

scrawl" although the individual letters are

nearly impossible to read.

Our modern technology, however, is not

automatically fault-tolerant. I have never

heard that someone forgot to install the

4 D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN)
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hard disk controller into a computer and

therefore the graphics card automatically

took over its tasks, i.e. removed con-

ductors and developed communication, so

that the system as a whole was a�ected

by the missing component, but not com-

pletely destroyed.

A disadvantage of this distributed fault-

tolerant storage is certainly the fact that

we cannot realize at first sight what a neu-

ral neutwork knows and performs or where

its faults lie. Usually, it is easier to per-

form such analyses for conventional algo-

rithms. Most often we can only trans-

fer knowledge into our neural network by

means of a learning procedure, which can

cause several errors and is not always easy

to manage.

Fault tolerance of data, on the other hand,

is already more sophisticated in state-of-

the-art technology: Let us compare a

record and a CD. If there is a scratch on a

record, the audio information on this spot

will be completely lost (you will hear a

pop) and then the music goes on. On a CD

the audio data are distributedly stored: A

scratch causes a blurry sound in its vicin-

ity, but the data stream remains largely

una�ected. The listener won’t notice any-

thing.

So let us summarize the main characteris-

tics we try to adapt from biology:

Û Self-organization and learning capa-

bility,

Û Generalization capability and

Û Fault tolerance.

What types of neural networks particu-

larly develop what kinds of abilities and

can be used for what problem classes will

be discussed in the course of this work.

In the introductory chapter I want to

clarify the following: "The neural net-

work" does not exist. There are di�er- Important!
ent paradigms for neural networks, how

they are trained and where they are used.

My goal is to introduce some of these

paradigms and supplement some remarks

for practical application.

We have already mentioned that our brain

works massively in parallel, in contrast to

the functioning of a computer, i.e. every

component is active at any time. If we

want to state an argument for massive par-

allel processing, then the 100-step rule
can be cited.

1.1.1 The 100-step rule

Experiments showed that a human can

recognize the picture of a familiar object

or person in ¥ 0.1 seconds, which cor-

responds to a neuron switching time of

¥ 10≠3
seconds in ¥ 100 discrete time

steps of parallel processing. parallel
processing

A computer following the von Neumann

architecture, however, can do practically

nothing in 100 time steps of sequential pro-

cessing, which are 100 assembler steps or

cycle steps.

Now we want to look at a simple applica-

tion example for a neural network.

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 5
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Figure 1.1: A small robot with eight sensors
and two motors. The arrow indicates the driv-
ing direction.

1.1.2 Simple application examples

Let us assume that we have a small robot

as shown in fig. 1.1. This robot has eight

distance sensors from which it extracts in-

put data: Three sensors are placed on the

front right, three on the front left, and two

on the back. Each sensor provides a real

numeric value at any time, that means we

are always receiving an input I œ R8
.

Despite its two motors (which will be

needed later) the robot in our simple ex-

ample is not capable to do much: It shall

only drive on but stop when it might col-

lide with an obstacle. Thus, our output

is binary: H = 0 for "Everything is okay,

drive on" and H = 1 for "Stop" (The out-

put is called H for "halt signal"). There-

fore we need a mapping

f : R8
æ B1,

that applies the input signals to a robot

activity.

1.1.2.1 The classical way

There are two ways of realizing this map-

ping. On the one hand, there is the clas-
sical way: We sit down and think for a

while, and finally the result is a circuit or

a small computer program which realizes

the mapping (this is easily possible, since

the example is very simple). After that

we refer to the technical reference of the

sensors, study their characteristic curve in

order to learn the values for the di�erent

obstacle distances, and embed these values

into the aforementioned set of rules. Such

procedures are applied in the classic artifi-

cial intelligence, and if you know the exact

rules of a mapping algorithm, you are al-

ways well advised to follow this scheme.

1.1.2.2 The way of learning

On the other hand, more interesting and

more successful for many mappings and

problems that are hard to comprehend

straightaway is the way of learning: We

show di�erent possible situations to the

robot (fig. 1.2 on page 8), – and the robot

shall learn on its own what to do in the

course of its robot life.

In this example the robot shall simply

learn when to stop. We first treat the

6 D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN)
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Figure 1.3: Initially, we regard the robot control
as a black box whose inner life is unknown. The
black box receives eight real sensor values and
maps these values to a binary output value.

neural network as a kind of black box
(fig. 1.3). This means we do not know its

structure but just regard its behavior in

practice.

The situations in form of simply mea-

sured sensor values (e.g. placing the robot

in front of an obstacle, see illustration),

which we show to the robot and for which

we specify whether to drive on or to stop,

are called training samples. Thus, a train-

ing sample consists of an exemplary input

and a corresponding desired output. Now

the question is how to transfer this knowl-

edge, the information, into the neural net-

work.

The samples can be taught to a neural

network by using a simple learning pro-
cedure (a learning procedure is a simple

algorithm or a mathematical formula. If

we have done everything right and chosen

good samples, the neural network will gen-
eralize from these samples and find a uni-

versal rule when it has to stop.

Our example can be optionally expanded.

For the purpose of direction control it

would be possible to control the motors

of our robot separately
2
, with the sensor

layout being the same. In this case we are

looking for a mapping

f : R8
æ R2,

which gradually controls the two motors

by means of the sensor inputs and thus

cannot only, for example, stop the robot

but also lets it avoid obstacles. Here it

is more di�cult to analytically derive the

rules, and de facto a neural network would

be more appropriate.

Our goal is not to learn the samples by

heart, but to realize the principle behind

them: Ideally, the robot should apply the

neural network in any situation and be

able to avoid obstacles. In particular, the

robot should query the network continu-

ously and repeatedly while driving in order

to continously avoid obstacles. The result

is a constant cycle: The robot queries the

network. As a consequence, it will drive

in one direction, which changes the sen-

sors values. Again the robot queries the

network and changes its position, the sen-

sor values are changed once again, and so

on. It is obvious that this system can also

be adapted to dynamic, i.e changing, en-

vironments (e.g. the moving obstacles in

our example).

2 There is a robot called Khepera with more or less
similar characteristics. It is round-shaped, approx.
7 cm in diameter, has two motors with wheels
and various sensors. For more information I rec-
ommend to refer to the internet.

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 7
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Figure 1.2: The robot is positioned in a landscape that provides sensor values for di�erent situa-
tions. We add the desired output values H and so receive our learning samples. The directions in
which the sensors are oriented are exemplarily applied to two robots.

1.2 A brief history of neural
networks

The field of neural networks has, like any

other field of science, a long history of
development with many ups and downs,

as we will see soon. To continue the style

of my work I will not represent this history

in text form but more compact in form of a

timeline. Citations and bibliographical ref-

erences are added mainly for those topics

that will not be further discussed in this

text. Citations for keywords that will be

explained later are mentioned in the corre-

sponding chapters.

The history of neural networks begins in

the early 1940’s and thus nearly simulta-

neously with the history of programmable

electronic computers. The youth of this

field of research, as with the field of com-

puter science itself, can be easily recog-

nized due to the fact that many of the

cited persons are still with us.

1.2.1 The beginning

As soon as 1943 Warren McCulloch
and Walter Pitts introduced mod-

els of neurological networks, recre-

ated threshold switches based on neu-

rons and showed that even simple

networks of this kind are able to

calculate nearly any logic or arith-

metic function [MP43]. Further-

8 D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN)
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Figure 1.4: Some institutions of the field of neural networks. From left to right: John von Neu-
mann, Donald O. Hebb, Marvin Minsky, Bernard Widrow, Seymour Papert, Teuvo Kohonen, John
Hopfield, "in the order of appearance" as far as possible.

more, the first computer precur-

sors ("electronic brains")were de-

veloped, among others supported by

Konrad Zuse, who was tired of cal-

culating ballistic trajectories by hand.

1947: Walter Pitts and Warren Mc-
Culloch indicated a practical field

of application (which was not men-

tioned in their work from 1943),

namely the recognition of spacial pat-

terns by neural networks [PM47].

1949: Donald O. Hebb formulated the

classical Hebbian rule [Heb49] which

represents in its more generalized

form the basis of nearly all neural

learning procedures. The rule im-

plies that the connection between two

neurons is strengthened when both

neurons are active at the same time.

This change in strength is propor-

tional to the product of the two activ-

ities. Hebb could postulate this rule,

but due to the absence of neurological

research he was not able to verify it.

1950: The neuropsychologist Karl
Lashley defended the thesis that

brain information storage is realized

as a distributed system. His thesis

was based on experiments on rats,

where only the extent but not the

location of the destroyed nerve tissue

influences the rats’ performance to

find their way out of a labyrinth.

1.2.2 Golden age

1951: For his dissertation Marvin Min-
sky developed the neurocomputer

Snark, which has already been capa-

ble to adjust its weights
3

automati-

cally. But it has never been practi-

cally implemented, since it is capable

to busily calculate, but nobody really

knows what it calculates.

1956: Well-known scientists and ambi-

tious students met at the Dart-
mouth Summer Research Project
and discussed, to put it crudely, how

to simulate a brain. Di�erences be-

tween top-down and bottom-up re-

search developed. While the early

3 We will learn soon what weights are.

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 9
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supporters of artificial intelligence
wanted to simulate capabilities by

means of software, supporters of neu-

ral networks wanted to achieve sys-

tem behavior by imitating the small-

est parts of the system – the neurons.

1957-1958: At the MIT, Frank Rosen-
blatt, Charles Wightman and

their coworkers developed the first

successful neurocomputer, the Mark
I perceptron, which was capable todevelopment

accelerates recognize simple numerics by means

of a 20 ◊ 20 pixel image sensor and

electromechanically worked with 512

motor driven potentiometers - each

potentiometer representing one vari-

able weight.

1959: Frank Rosenblatt described dif-

ferent versions of the perceptron, for-

mulated and verified his perceptron
convergence theorem. He described

neuron layers mimicking the retina,

threshold switches, and a learning

rule adjusting the connecting weights.

1960: Bernard Widrow and Mar-
cian E. Hoff introduced the ADA-
LINE (ADAptive LInear NEu-
ron) [WH60], a fast and precise

adaptive learning system being the

first widely commercially used neu-

ral network: It could be found in

nearly every analog telephone for real-

time adaptive echo filtering and was

trained by menas of the Widrow-Ho�first
spread

use
rule or delta rule. At that time Ho�,

later co-founder of Intel Corporation,

was a PhD student of Widrow, who

himself is known as the inventor of

modern microprocessors. One advan-

tage the delta rule had over the origi-

nal perceptron learning algorithm was

its adaptivity: If the di�erence be-

tween the actual output and the cor-

rect solution was large, the connect-

ing weights also changed in larger

steps – the smaller the steps, the

closer the target was. Disadvantage:

missapplication led to infinitesimal

small steps close to the target. In the

following stagnation and out of fear

of scientific unpopularity of the neu-

ral networks ADALINE was renamed

in adaptive linear element – which

was undone again later on.

1961: Karl Steinbuch introduced tech-

nical realizations of associative mem-

ory, which can be seen as predecessors

of today’s neural associative mem-

ories [Ste61]. Additionally, he de-

scribed concepts for neural techniques

and analyzed their possibilities and

limits.

1965: In his book Learning Machines,
Nils Nilsson gave an overview of

the progress and works of this period

of neural network research. It was

assumed that the basic principles of

self-learning and therefore, generally

speaking, "intelligent" systems had al-

ready been discovered. Today this as-

sumption seems to be an exorbitant

overestimation, but at that time it

provided for high popularity and suf-

ficient research funds.

1969: Marvin Minsky and Seymour
Papert published a precise mathe-
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matical analysis of the perceptron

[MP69] to show that the perceptron

model was not capable of representing

many important problems (keywords:

XOR problem and linear separability),

and so put an end to overestimation,

popularity and research funds. Theresearch
funds were

stopped
implication that more powerful mod-

els would show exactly the same prob-

lems and the forecast that the entire

field would be a research dead end re-

sulted in a nearly complete decline in

research funds for the next 15 years

– no matter how incorrect these fore-

casts were from today’s point of view.

1.2.3 Long silence and slow
reconstruction

The research funds were, as previously-

mentioned, extremely short. Everywhere

research went on, but there were neither

conferences nor other events and therefore

only few publications. This isolation of

individual researchers provided for many

independently developed neural network

paradigms: They researched, but there

was no discourse among them.

In spite of the poor appreciation the field

received, the basic theories for the still

continuing renaissance were laid at that

time:

1972: Teuvo Kohonen introduced a

model of the linear associator,

a model of an associative memory

[Koh72]. In the same year, such a

model was presented independently

and from a neurophysiologist’s point

of view by James A. Anderson
[And72].

1973: Christoph von der Malsburg
used a neuron model that was non-

linear and biologically more moti-

vated [vdM73].

1974: For his dissertation in Harvard

Paul Werbos developed a learning

procedure called backpropagation of
error [Wer74], but it was not until

one decade later that this procedure

reached today’s importance. backprop
developed

1976-1980 and thereafter: Stephen
Grossberg presented many papers

(for instance [Gro76]) in which

numerous neural models are analyzed

mathematically. Furthermore, he

dedicated himself to the problem of

keeping a neural network capable

of learning without destroying

already learned associations. Under

cooperation of Gail Carpenter
this led to models of adaptive
resonance theory (ART).

1982: Teuvo Kohonen described the

self-organizing feature maps
(SOM) [Koh82, Koh98] – also

known as Kohonen maps. He was

looking for the mechanisms involving

self-organization in the brain (He

knew that the information about the

creation of a being is stored in the

genome, which has, however, not

enough memory for a structure like

the brain. As a consequence, the

brain has to organize and create

itself for the most part).
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John Hopfield also invented the

so-called Hopfield networks [Hop82]

which are inspired by the laws of mag-

netism in physics. They were not

widely used in technical applications,

but the field of neural networks slowly

regained importance.

1983: Fukushima, Miyake and Ito in-

troduced the neural model of the

Neocognitron which could recognize

handwritten characters [FMI83] and

was an extension of the Cognitron net-

work already developed in 1975.

1.2.4 Renaissance

Through the influence of John Hopfield,

who had personally convinced many re-

searchers of the importance of the field,

and the wide publication of backpro-

pagation by Rumelhart, Hinton and

Williams, the field of neural networks

slowly showed signs of upswing.

1985: John Hopfield published an arti-

cle describing a way of finding accept-

able solutions for the Travelling Sales-

man problem by using Hopfield nets.
Renaissance

1986: The backpropagation of error learn-

ing procedure as a generalization of

the delta rule was separately devel-

oped and widely published by the Par-
allel Distributed Processing Group

[RHW86a]: Non-linearly-separable

problems could be solved by multi-

layer perceptrons, and Marvin Min-

sky’s negative evaluations were dis-

proven at a single blow. At the same

time a certain kind of fatigue spread

in the field of artificial intelligence,

caused by a series of failures and un-

fulfilled hopes.

From this time on, the development of

the field of research has almost been

explosive. It can no longer be item-

ized, but some of its results will be

seen in the following.

Exercises

Exercise 1. Give one example for each

of the following topics:

Û A book on neural networks or neuroin-

formatics,

Û A collaborative group of a university

working with neural networks,

Û A software tool realizing neural net-

works ("simulator"),

Û A company using neural networks,

and

Û A product or service being realized by

means of neural networks.

Exercise 2. Show at least four applica-

tions of technical neural networks: two

from the field of pattern recognition and

two from the field of function approxima-

tion.

Exercise 3. Briefly characterize the four

development phases of neural networks

and give expressive examples for each

phase.
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Chapter 2

Biological neural networks
How do biological systems solve problems? How does a system of neurons

work? How can we understand its functionality? What are di�erent quantities
of neurons able to do? Where in the nervous system does information

processing occur? A short biological overview of the complexity of simple
elements of neural information processing followed by some thoughts about

their simplification in order to technically adapt them.

Before we begin to describe the technical

side of neural networks, it would be use-

ful to briefly discuss the biology of neu-

ral networks and the cognition of living

organisms – the reader may skip the fol-

lowing chapter without missing any tech-

nical information. On the other hand I

recommend to read the said excursus if

you want to learn something about the

underlying neurophysiology and see that

our small approaches, the technical neural

networks, are only caricatures of nature

– and how powerful their natural counter-

parts must be when our small approaches

are already that e�ective. Now we want

to take a brief look at the nervous system

of vertebrates: We will start with a very

rough granularity and then proceed with

the brain and up to the neural level. For

further reading I want to recommend the

books [CR00, KSJ00], which helped me a

lot during this chapter.

2.1 The vertebrate nervous
system

The entire information processing system,

i.e. the vertebrate nervous system, con-

sists of the central nervous system and the

peripheral nervous system, which is only

a first and simple subdivision. In real-

ity, such a rigid subdivision does not make

sense, but here it is helpful to outline the

information processing in a body.

2.1.1 Peripheral and central
nervous system

The peripheral nervous system (PNS)

comprises the nerves that are situated out-

side of the brain or the spinal cord. These

nerves form a branched and very dense net-

work throughout the whole body. The pe-

13
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ripheral nervous system includes, for ex-

ample, the spinal nerves which pass out

of the spinal cord (two within the level of

each vertebra of the spine) and supply ex-

tremities, neck and trunk, but also the cra-

nial nerves directly leading to the brain.

The central nervous system (CNS),

however, is the "main-frame" within the

vertebrate. It is the place where infor-

mation received by the sense organs are

stored and managed. Furthermore, it con-

trols the inner processes in the body and,

last but not least, coordinates the mo-

tor functions of the organism. The ver-

tebrate central nervous system consists of

the brain and the spinal cord (Fig. 2.1).

However, we want to focus on the brain,

which can - for the purpose of simplifica-

tion - be divided into four areas (Fig. 2.2

on the next page) to be discussed here.

2.1.2 The cerebrum is responsible
for abstract thinking
processes.

The cerebrum (telencephalon) is one of

the areas of the brain that changed most

during evolution. Along an axis, running

from the lateral face to the back of the

head, this area is divided into two hemi-

spheres, which are organized in a folded

structure. These cerebral hemispheres

are connected by one strong nerve cord

("bar") and several small ones. A large

number of neurons are located in the cere-
bral cortex (cortex) which is approx. 2-

4 cm thick and divided into di�erent cor-
tical fields, each having a specific task to Figure 2.1: Illustration of the central nervous

system with spinal cord and brain.
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Figure 2.2: Illustration of the brain. The col-
ored areas of the brain are discussed in the text.
The more we turn from abstract information pro-
cessing to direct reflexive processing, the darker
the areas of the brain are colored.

fulfill. Primary cortical fields are re-

sponsible for processing qualitative infor-

mation, such as the management of di�er-

ent perceptions (e.g. the visual cortex
is responsible for the management of vi-

sion). Association cortical fields, how-

ever, perform more abstract association

and thinking processes; they also contain

our memory.

2.1.3 The cerebellum controls and
coordinates motor functions

The cerebellum is located below the cere-

brum, therefore it is closer to the spinal

cord. Accordingly, it serves less abstract

functions with higher priority: Here, large

parts of motor coordination are performed,

i.e., balance and movements are controlled

and errors are continually corrected. For

this purpose, the cerebellum has direct

sensory information about muscle lengths

as well as acoustic and visual informa-

tion. Furthermore, it also receives mes-

sages about more abstract motor signals

coming from the cerebrum.

In the human brain the cerebellum is con-

siderably smaller than the cerebrum, but

this is rather an exception. In many ver-

tebrates this ratio is less pronounced. If

we take a look at vertebrate evolution, we

will notice that the cerebellum is not "too

small" but the cerebum is "too large" (at

least, it is the most highly developed struc-

ture in the vertebrate brain). The two re-

maining brain areas should also be briefly

discussed: the diencephalon and the brain-

stem.

2.1.4 The diencephalon controls
fundamental physiological
processes

The interbrain (diencephalon) includes

parts of which only the thalamus will thalamus
filters
incoming
data

be briefly discussed: This part of the di-

encephalon mediates between sensory and

motor signals and the cerebrum. Particu-

larly, the thalamus decides which part of

the information is transferred to the cere-

brum, so that especially less important

sensory perceptions can be suppressed at

short notice to avoid overloads. Another

part of the diencephalon is the hypotha-
lamus, which controls a number of pro-

cesses within the body. The diencephalon
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is also heavily involved in the human cir-

cadian rhythm ("internal clock") and the

sensation of pain.

2.1.5 The brainstem connects the
brain with the spinal cord and
controls reflexes.

In comparison with the diencephalon the

brainstem or the (truncus cerebri) re-

spectively is phylogenetically much older.

Roughly speaking, it is the "extended

spinal cord" and thus the connection be-

tween brain and spinal cord. The brain-

stem can also be divided into di�erent ar-

eas, some of which will be exemplarily in-

troduced in this chapter. The functions

will be discussed from abstract functions

towards more fundamental ones. One im-

portant component is the pons (=bridge),

a kind of transit station for many nerve sig-

nals from brain to body and vice versa.

If the pons is damaged (e.g. by a cere-

bral infarct), then the result could be the

locked-in syndrome – a condition in

which a patient is "walled-in" within his

own body. He is conscious and aware

with no loss of cognitive function, but can-

not move or communicate by any means.

Only his senses of sight, hearing, smell and

taste are generally working perfectly nor-

mal. Locked-in patients may often be able

to communicate with others by blinking or

moving their eyes.

Furthermore, the brainstem is responsible

for many fundamental reflexes, such as the

blinking reflex or coughing.

All parts of the nervous system have one

thing in common: information processing.

This is accomplished by huge accumula-

tions of billions of very similar cells, whose

structure is very simple but which com-

municate continuously. Large groups of

these cells send coordinated signals and

thus reach the enormous information pro-

cessing capacity we are familiar with from

our brain. We will now leave the level of

brain areas and continue with the cellular

level of the body - the level of neurons.

2.2 Neurons are information
processing cells

Before specifying the functions and pro-

cesses within a neuron, we will give a

rough description of neuron functions: A

neuron is nothing more than a switch with

information input and output. The switch

will be activated if there are enough stim-

uli of other neurons hitting the informa-

tion input. Then, at the information out-

put, a pulse is sent to, for example, other

neurons.

2.2.1 Components of a neuron

Now we want to take a look at the com-

ponents of a neuron (Fig. 2.3 on the fac-

ing page). In doing so, we will follow the

way the electrical information takes within

the neuron. The dendrites of a neuron

receive the information by special connec-

tions, the synapses.
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Figure 2.3: Illustration of a biological neuron with the components discussed in this text.

2.2.1.1 Synapses weight the individual
parts of information

Incoming signals from other neurons or

cells are transferred to a neuron by special

connections, the synapses. Such connec-

tions can usually be found at the dendrites

of a neuron, sometimes also directly at the

soma. We distinguish between electrical

and chemical synapses.

The electrical synapse is the simplerelectrical
synapse:

simple
variant. An electrical signal received by

the synapse, i.e. coming from the presy-
naptic side, is directly transferred to the

postsynaptic nucleus of the cell. Thus,

there is a direct, strong, unadjustable

connection between the signal transmitter

and the signal receiver, which is, for exam-

ple, relevant to shortening reactions that

must be "hard coded" within a living or-

ganism.

The chemical synapse is the more dis-

tinctive variant. Here, the electrical cou-

pling of source and target does not take

place, the coupling is interrupted by the

synaptic cleft. This cleft electrically sep-

arates the presynaptic side from the post-

synaptic one. You might think that, never-

theless, the information has to flow, so we

will discuss how this happens: It is not an

electrical, but a chemical process. On the

presynaptic side of the synaptic cleft the

electrical signal is converted into a chemi-

cal signal, a process induced by chemical

cues released there (the so-called neuro-
transmitters). These neurotransmitters

cross the synaptic cleft and transfer the

information into the nucleus of the cell

(this is a very simple explanation, but later

on we will see how this exactly works),

where it is reconverted into electrical in-

formation. The neurotransmitters are de-

graded very fast, so that it is possible to re-
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lease very precise information pulses here,

too.

In spite of the more complex function-cemical
synapse
is more

complex
but also

more
powerful

ing, the chemical synapse has - compared

with the electrical synapse - utmost advan-

tages:

One-way connection: A chemical

synapse is a one-way connection.

Due to the fact that there is no direct

electrical connection between the

pre- and postsynaptic area, electrical

pulses in the postsynaptic area

cannot flash over to the presynaptic

area.

Adjustability: There is a large number of

di�erent neurotransmitters that can

also be released in various quantities

in a synaptic cleft. There are neuro-

transmitters that stimulate the post-

synaptic cell nucleus, and others that

slow down such stimulation. Some

synapses transfer a strongly stimulat-

ing signal, some only weakly stimu-

lating ones. The adjustability varies

a lot, and one of the central points

in the examination of the learning

ability of the brain is, that here the

synapses are variable, too. That is,

over time they can form a stronger or

weaker connection.

2.2.1.2 Dendrites collect all parts of
information

Dendrites branch like trees from the cell

nucleus of the neuron (which is called

soma) and receive electrical signals from

many di�erent sources, which are then

transferred into the nucleus of the cell.

The amount of branching dendrites is also

called dendrite tree.

2.2.1.3 In the soma the weighted
information is accumulated

After the cell nucleus (soma) has re-

ceived a plenty of activating (=stimulat-

ing) and inhibiting (=diminishing) signals

by synapses or dendrites, the soma accu-

mulates these signals. As soon as the ac-

cumulated signal exceeds a certain value

(called threshold value), the cell nucleus

of the neuron activates an electrical pulse

which then is transmitted to the neurons

connected to the current one.

2.2.1.4 The axon transfers outgoing
pulses

The pulse is transferred to other neurons

by means of the axon. The axon is a

long, slender extension of the soma. In

an extreme case, an axon can stretch up

to one meter (e.g. within the spinal cord).

The axon is electrically isolated in order

to achieve a better conduction of the elec-

trical signal (we will return to this point

later on) and it leads to dendrites, which

transfer the information to, for example,

other neurons. So now we are back at the

beginning of our description of the neuron

elements. An axon can, however, transfer

information to other kinds of cells in order

to control them.
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2.2.2 Electrochemical processes in
the neuron and its
components

After having pursued the path of an elec-

trical signal from the dendrites via the

synapses to the nucleus of the cell and

from there via the axon into other den-

drites, we now want to take a small step

from biology towards technology. In doing

so, a simplified introduction of the electro-

chemical information processing should be

provided.

2.2.2.1 Neurons maintain electrical
membrane potential

One fundamental aspect is the fact that

compared to their environment the neu-

rons show a di�erence in electrical charge,

a potential. In the membrane (=enve-

lope) of the neuron the charge is di�erent

from the charge on the outside. This dif-

ference in charge is a central concept that

is important to understand the processes

within the neuron. The di�erence is called

membrane potential. The membrane

potential, i.e., the di�erence in charge, is

created by several kinds of charged atoms

(ions), whose concentration varies within

and outside of the neuron. If we penetrate

the membrane from the inside outwards,

we will find certain kinds of ions more of-

ten or less often than on the inside. This

descent or ascent of concentration is called

a concentration gradient.

Let us first take a look at the membrane

potential in the resting state of the neu-

ron, i.e., we assume that no electrical sig-

nals are received from the outside. In this

case, the membrane potential is ≠70 mV.

Since we have learned that this potential

depends on the concentration gradients of

various ions, there is of course the central

question of how to maintain these concen-

tration gradients: Normally, di�usion pre-

dominates and therefore each ion is eager

to decrease concentration gradients and

to spread out evenly. If this happens,

the membrane potential will move towards

0 mV, so finally there would be no mem-

brane potential anymore. Thus, the neu-

ron actively maintains its membrane po-

tential to be able to process information.

How does this work?

The secret is the membrane itself, which is

permeable to some ions, but not for others.

To maintain the potential, various mecha-

nisms are in progress at the same time:

Concentration gradient: As described

above the ions try to be as uniformly

distributed as possible. If the

concentration of an ion is higher on

the inside of the neuron than on

the outside, it will try to di�use

to the outside and vice versa.

The positively charged ion K
+

(potassium) occurs very frequently

within the neuron but less frequently

outside of the neuron, and therefore

it slowly di�uses out through the

neuron’s membrane. But another

group of negative ions, collectively

called A
≠

, remains within the neuron

since the membrane is not permeable

to them. Thus, the inside of the

neuron becomes negatively charged.
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Negative A ions remain, positive K

ions disappear, and so the inside of

the cell becomes more negative. The

result is another gradient.

Electrical Gradient: The electrical gradi-

ent acts contrary to the concentration

gradient. The intracellular charge is

now very strong, therefore it attracts

positive ions: K
+

wants to get back

into the cell.

If these two gradients were now left alone,

they would eventually balance out, reach

a steady state, and a membrane poten-

tial of ≠85 mV would develop. But we

want to achieve a resting membrane po-

tential of ≠70 mV, thus there seem to ex-

ist some disturbances which prevent this.

Furthermore, there is another important

ion, Na
+

(sodium), for which the mem-

brane is not very permeable but which,

however, slowly pours through the mem-

brane into the cell. As a result, the sodium

is driven into the cell all the more: On the

one hand, there is less sodium within the

neuron than outside the neuron. On the

other hand, sodium is positively charged

but the interior of the cell has negative

charge, which is a second reason for the

sodium wanting to get into the cell.

Due to the low di�usion of sodium into the

cell the intracellular sodium concentration

increases. But at the same time the inside

of the cell becomes less negative, so that

K
+

pours in more slowly (we can see that

this is a complex mechanism where every-

thing is influenced by everything). The

sodium shifts the intracellular equilibrium

from negative to less negative, compared

with its environment. But even with these

two ions a standstill with all gradients be-

ing balanced out could still be achieved.

Now the last piece of the puzzle gets into

the game: a "pump" (or rather, the protein

ATP) actively transports ions against the

direction they actually want to take!

Sodium is actively pumped out of the cell,

although it tries to get into the cell

along the concentration gradient and

the electrical gradient.

Potassium, however, di�uses strongly out

of the cell, but is actively pumped

back into it.

For this reason the pump is also called

sodium-potassium pump. The pump

maintains the concentration gradient for

the sodium as well as for the potassium,

so that some sort of steady state equilib-

rium is created and finally the resting po-

tential is ≠70 mV as observed. All in all

the membrane potential is maintained by

the fact that the membrane is imperme-

able to some ions and other ions are ac-

tively pumped against the concentration

and electrical gradients. Now that we

know that each neuron has a membrane

potential we want to observe how a neu-

ron receives and transmits signals.

2.2.2.2 The neuron is activated by
changes in the membrane
potential

Above we have learned that sodium and

potassium can di�use through the mem-

brane - sodium slowly, potassium faster.
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They move through channels within the

membrane, the sodium and potassium

channels. In addition to these per-

manently open channels responsible for

di�usion and balanced by the sodium-

potassium pump, there also exist channels

that are not always open but which only

response "if required". Since the opening

of these channels changes the concentra-

tion of ions within and outside of the mem-

brane, it also changes the membrane po-

tential.

These controllable channels are opened as

soon as the accumulated received stimulus

exceeds a certain threshold. For example,

stimuli can be received from other neurons

or have other causes. There exist, for ex-

ample, specialized forms of neurons, the

sensory cells, for which a light incidence

could be such a stimulus. If the incom-

ing amount of light exceeds the threshold,

controllable channels are opened.

The said threshold (the threshold poten-
tial) lies at about ≠55 mV. As soon as the

received stimuli reach this value, the neu-

ron is activated and an electrical signal,

an action potential, is initiated. Then

this signal is transmitted to the cells con-

nected to the observed neuron, i.e. the

cells "listen" to the neuron. Now we want

to take a closer look at the di�erent stages

of the action potential (Fig. 2.4 on the next

page):

Resting state: Only the permanently

open sodium and potassium channels

are permeable. The membrane

potential is at ≠70 mV and actively

kept there by the neuron.

Stimulus up to the threshold: A stimu-
lus opens channels so that sodium

can pour in. The intracellular charge

becomes more positive. As soon as

the membrane potential exceeds the

threshold of ≠55 mV, the action po-

tential is initiated by the opening of

many sodium channels.

Depolarization: Sodium is pouring in. Re-

member: Sodium wants to pour into

the cell because there is a lower in-

tracellular than extracellular concen-

tration of sodium. Additionally, the

cell is dominated by a negative en-

vironment which attracts the posi-

tive sodium ions. This massive in-

flux of sodium drastically increases

the membrane potential - up to ap-

prox. +30 mV - which is the electrical

pulse, i.e., the action potential.

Repolarization: Now the sodium channels

are closed and the potassium channels

are opened. The positively charged

ions want to leave the positive inte-

rior of the cell. Additionally, the intra-

cellular concentration is much higher

than the extracellular one, which in-

creases the e�ux of ions even more.

The interior of the cell is once again

more negatively charged than the ex-

terior.

Hyperpolarization: Sodium as well as

potassium channels are closed again.

At first the membrane potential is

slightly more negative than the rest-

ing potential. This is due to the

fact that the potassium channels close

more slowly. As a result, (positively
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Figure 2.4: Initiation of action potential over time.
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charged) potassium e�uses because of

its lower extracellular concentration.

After a refractory period of 1 ≠ 2
ms the resting state is re-established

so that the neuron can react to newly

applied stimuli with an action poten-

tial. In simple terms, the refractory

period is a mandatory break a neu-

ron has to take in order to regenerate.

The shorter this break is, the more

often a neuron can fire per time.

Then the resulting pulse is transmitted by

the axon.

2.2.2.3 In the axon a pulse is
conducted in a saltatory way

We have already learned that the axon
is used to transmit the action potential

across long distances (remember: You will

find an illustration of a neuron including

an axon in Fig. 2.3 on page 17). The axon

is a long, slender extension of the soma.

In vertebrates it is normally coated by a

myelin sheath that consists of Schwann
cells (in the PNS) or oligodendrocytes
(in the CNS)

1
, which insulate the axon

very well from electrical activity. At a dis-

tance of 0.1≠2mm there are gaps between

these cells, the so-called nodes of Ran-
vier. The said gaps appear where one in-

sulate cell ends and the next one begins.

It is obvious that at such a node the axon

is less insulated.

1 Schwann cells as well as oligodendrocytes are vari-
eties of the glial cells. There are about 50 times
more glial cells than neurons: They surround the
neurons (glia = glue), insulate them from each
other, provide energy, etc.

Now you may assume that these less in-

sulated nodes are a disadvantage of the

axon - however, they are not. At the

nodes, mass can be transferred between

the intracellular and extracellular area, a

transfer that is impossible at those parts

of the axon which are situated between

two nodes (internodes) and therefore in-

sulated by the myelin sheath. This mass

transfer permits the generation of signals

similar to the generation of the action po-

tential within the soma. The action po-

tential is transferred as follows: It does

not continuously travel along the axon but

jumps from node to node. Thus, a series

of depolarization travels along the nodes of

Ranvier. One action potential initiates the

next one, and mostly even several nodes

are active at the same time here. The

pulse "jumping" from node to node is re-

sponsible for the name of this pulse con-

ductor: saltatory conductor.

Obviously, the pulse will move faster if its

jumps are larger. Axons with large in-

ternodes (2 mm) achieve a signal disper-

sion of approx. 180 meters per second.

However, the internodes cannot grow in-

definitely, since the action potential to be

transferred would fade too much until it

reaches the next node. So the nodes have

a task, too: to constantly amplify the sig-

nal. The cells receiving the action poten-

tial are attached to the end of the axon –

often connected by dendrites and synapses.

As already indicated above, the action po-

tentials are not only generated by informa-

tion received by the dendrites from other

neurons.
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2.3 Receptor cells are
modified neurons

Action potentials can also be generated by

sensory information an organism receives

from its environment through its sensory

cells. Specialized receptor cells are able

to perceive specific stimulus energies such

as light, temperature and sound or the ex-

istence of certain molecules (like, for exam-

ple, the sense of smell). This is working

because of the fact that these sensory cells

are actually modified neurons. They do

not receive electrical signals via dendrites

but the existence of the stimulus being

specific for the receptor cell ensures that

the ion channels open and an action po-

tential is developed. This process of trans-

forming stimulus energy into changes in

the membrane potential is called sensory
transduction. Usually, the stimulus en-

ergy itself is too weak to directly cause

nerve signals. Therefore, the signals are

amplified either during transduction or by

means of the stimulus-conducting ap-
paratus. The resulting action potential

can be processed by other neurons and is

then transmitted into the thalamus, which

is, as we have already learned, a gateway

to the cerebral cortex and therefore can re-

ject sensory impressions according to cur-

rent relevance and thus prevent an abun-

dance of information to be managed.

2.3.1 There are di�erent receptor
cells for various types of
perceptions

Primary receptors transmit their pulses

directly to the nervous system. A good

example for this is the sense of pain.

Here, the stimulus intensity is propor-

tional to the amplitude of the action po-

tential. Technically, this is an amplitude

modulation.

Secondary receptors, however, continu-

ously transmit pulses. These pulses con-

trol the amount of the related neurotrans-

mitter, which is responsible for transfer-

ring the stimulus. The stimulus in turn

controls the frequency of the action poten-

tial of the receiving neuron. This process

is a frequency modulation, an encoding of

the stimulus, which allows to better per-

ceive the increase and decrease of a stimu-

lus.

There can be individual receptor cells or

cells forming complex sensory organs (e.g.

eyes or ears). They can receive stimuli

within the body (by means of the intero-
ceptors) as well as stimuli outside of the

body (by means of the exteroceptors).

After having outlined how information is

received from the environment, it will be

interesting to look at how the information

is processed.
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2.3.2 Information is processed on
every level of the nervous
system

There is no reason to believe that all re-

ceived information is transmitted to the

brain and processed there, and that the

brain ensures that it is "output" in the

form of motor pulses (the only thing an

organism can actually do within its envi-

ronment is to move). The information pro-

cessing is entirely decentralized. In order

to illustrate this principle, we want to take

a look at some examples, which leads us

again from the abstract to the fundamen-

tal in our hierarchy of information process-

ing.

Û It is certain that information is pro-

cessed in the cerebrum, which is the

most developed natural information

processing structure.

Û The midbrain and the thalamus,

which serves – as we have already

learned – as a gateway to the cere-

bral cortex, are situated much lower

in the hierarchy. The filtering of in-

formation with respect to the current

relevance executed by the midbrain

is a very important method of infor-

mation processing, too. But even the

thalamus does not receive any prepro-

cessed stimuli from the outside. Now

let us continue with the lowest level,

the sensory cells.

Û On the lowest level, i.e. at the recep-

tor cells, the information is not only

received and transferred but directly

processed. One of the main aspects of

this subject is to prevent the transmis-

sion of "continuous stimuli" to the cen-

tral nervous system because of sen-
sory adaptation: Due to continu-

ous stimulation many receptor cells

automatically become insensitive to

stimuli. Thus, receptor cells are not

a direct mapping of specific stimu-

lus energy onto action potentials but

depend on the past. Other sensors

change their sensitivity according to

the situation: There are taste recep-

tors which respond more or less to the

same stimulus according to the nutri-

tional condition of the organism.

Û Even before a stimulus reaches the

receptor cells, information processing

can already be executed by a preced-

ing signal carrying apparatus, for ex-

ample in the form of amplification:

The external and the internal ear

have a specific shape to amplify the

sound, which also allows – in asso-

ciation with the sensory cells of the

sense of hearing – the sensory stim-

ulus only to increase logarithmically
with the intensity of the heard sig-

nal. On closer examination, this is

necessary, since the sound pressure of

the signals for which the ear is con-

structed can vary over a wide expo-

nential range. Here, a logarithmic

measurement is an advantage. Firstly,

an overload is prevented and secondly,

the fact that the intensity measure-

ment of intensive signals will be less

precise, doesn’t matter as well. If a jet

fighter is starting next to you, small
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changes in the noise level can be ig-

nored.

Just to get a feeling for sensory organs

and information processing in the organ-

ism, we will briefly describe "usual" light

sensing organs, i.e. organs often found in

nature. For the third light sensing organ

described below, the single lens eye, we

will discuss the information processing in

the eye.

2.3.3 An outline of common light
sensing organs

For many organisms it turned out to be ex-

tremely useful to be able to perceive elec-

tromagnetic radiation in certain regions of

the spectrum. Consequently, sensory or-

gans have been developed which can de-

tect such electromagnetic radiation and

the wavelength range of the radiation per-

ceivable by the human eye is called visible
range or simply light. The di�erent wave-

lengths of this electromagnetic radiation

are perceived by the human eye as di�er-

ent colors. The visible range of the elec-

tromagnetic radiation is di�erent for each

organism. Some organisms cannot see the

colors (=wavelength ranges) we can see,

others can even perceive additional wave-

length ranges (e.g. in the UV range). Be-

fore we begin with the human being – in

order to get a broader knowledge of the

sense of sight– we briefly want to look at

two organs of sight which, from an evolu-

tionary point of view, exist much longer

than the human.

2.3.3.1 Compound eyes and pinhole
eyes only provide high temporal
or spatial resolution

Let us first take a look at the so-called

compound eye (Fig. 2.5 on the next

page), which is, for example, common in

insects and crustaceans. The compound Compound eye:
high temp.,
low
spatial
resolution

eye consists of a great number of small,

individual eyes. If we look at the com-

pound eye from the outside, the individ-

ual eyes are clearly visible and arranged

in a hexagonal pattern. Each individual

eye has its own nerve fiber which is con-

nected to the insect brain. Since the indi-

vidual eyes can be distinguished, it is ob-

vious that the number of pixels, i.e. the

spatial resolution, of compound eyes must

be very low and the image is blurred. But

compound eyes have advantages, too, espe-

cially for fast-flying insects. Certain com-

pound eyes process more than 300 images

per second (to the human eye, however,

movies with 25 images per second appear

as a fluent motion).

Pinhole eyes are, for example, found in

octopus species and work – as you can

guess – similar to a pinhole camera. A pinhole
camera:
high spat.,
low
temporal
resolution

pinhole eye has a very small opening for

light entry, which projects a sharp image

onto the sensory cells behind. Thus, the

spatial resolution is much higher than in

the compound eye. But due to the very

small opening for light entry the resulting

image is less bright.
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Figure 2.5: Compound eye of a robber fly

2.3.3.2 Single lens eyes combine the
advantages of the other two
eye types, but they are more
complex

The light sensing organ common in verte-

brates is the single lense eye. The result-

ing image is a sharp, high-resolution image

of the environment at high or variable light

intensity. On the other hand it is more

complex. Similar to the pinhole eye the

light enters through an opening (pupil)
and is projected onto a layer of sensory

cells in the eye. (retina). But in contrastSingle
lense eye:

high temp.
and spat.
resolution

to the pinhole eye, the size of the pupil can

be adapted to the lighting conditions (by

means of the iris muscle, which expands

or contracts the pupil). These di�erences

in pupil dilation require to actively focus

the image. Therefore, the single lens eye

contains an additional adjustable lens.

2.3.3.3 The retina does not only
receive information but is also
responsible for information
processing

The light signals falling on the eye are

received by the retina and directly pre-

processed by several layers of information-

processing cells. We want to briefly dis-

cuss the di�erent steps of this informa-

tion processing and in doing so, we follow

the way of the information carried by the

light:

Photoreceptors receive the light signal

und cause action potentials (there

are di�erent receptors for di�erent

color components and light intensi-

ties). These receptors are the real

light-receiving part of the retina and

they are sensitive to such an extent

that only one single photon falling

on the retina can cause an action po-

tential. Then several photoreceptors

transmit their signals to one single

bipolar cell. This means that here the in-

formation has already been summa-

rized. Finally, the now transformed

light signal travels from several bipo-

lar cells
2

into

ganglion cells. Various bipolar cells can

transmit their information to one gan-

glion cell. The higher the number

of photoreceptors that a�ect the gan-

glion cell, the larger the field of per-

ception, the receptive field, which

covers the ganglions – and the less

2 There are di�erent kinds of bipolar cells, as well,
but to discuss all of them would go too far.
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sharp is the image in the area of this

ganglion cell. So the information is

already reduced directly in the retina

and the overall image is, for exam-

ple, blurred in the peripheral field

of vision. So far, we have learned

about the information processing in

the retina only as a top-down struc-

ture. Now we want to take a look at

the

horizontal and amacrine cells. These

cells are not connected from the

front backwards but laterally. They

allow the light signals to influence

themselves laterally directly during

the information processing in the

retina – a much more powerful

method of information processing

than compressing and blurring.

When the horizontal cells are excited

by a photoreceptor, they are able to

excite other nearby photoreceptors

and at the same time inhibit more

distant bipolar cells and receptors.

This ensures the clear perception of

outlines and bright points. Amacrine

cells can further intensify certain

stimuli by distributing information

from bipolar cells to several ganglion

cells or by inhibiting ganglions.

These first steps of transmitting visual in-

formation to the brain show that informa-

tion is processed from the first moment the

information is received and, on the other

hand, is processed in parallel within mil-

lions of information-processing cells. The

system’s power and resistance to errors

is based upon this massive division of

work.

2.4 The amount of neurons in
living organisms at
di�erent stages of
development

An overview of di�erent organisms and

their neural capacity (in large part from

[RD05]):

302 neurons are required by the nervous

system of a nematode worm, which

serves as a popular model organism

in biology. Nematodes live in the soil

and feed on bacteria.

10
4 neurons make an ant (To simplify

matters we neglect the fact that some

ant species also can have more or less

e�cient nervous systems). Due to the

use of di�erent attractants and odors,

ants are able to engage in complex

social behavior and form huge states

with millions of individuals. If you re-

gard such an ant state as an individ-

ual, it has a cognitive capacity similar

to a chimpanzee or even a human.

With 10
5 neurons the nervous system of

a fly can be constructed. A fly can

evade an object in real-time in three-

dimensional space, it can land upon

the ceiling upside down, has a consid-

erable sensory system because of com-

pound eyes, vibrissae, nerves at the

end of its legs and much more. Thus,

a fly has considerable di�erential and

integral calculus in high dimensions

implemented "in hardware". We all

know that a fly is not easy to catch.

Of course, the bodily functions are

28 D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN)



dkriesel.com 2.4 The amount of neurons in living organisms

also controlled by neurons, but these

should be ignored here.

With 0.8 · 10
6 neurons we have enough

cerebral matter to create a honeybee.

Honeybees build colonies and have

amazing capabilities in the field of

aerial reconnaissance and navigation.

4 · 10
6 neurons result in a mouse, and

here the world of vertebrates already

begins.

1.5 · 10
7 neurons are su�cient for a rat,

an animal which is denounced as be-

ing extremely intelligent and are of-

ten used to participate in a variety

of intelligence tests representative for

the animal world. Rats have an ex-

traordinary sense of smell and orien-

tation, and they also show social be-

havior. The brain of a frog can be

positioned within the same dimension.

The frog has a complex build with

many functions, it can swim and has

evolved complex behavior. A frog

can continuously target the said fly

by means of his eyes while jumping

in three-dimensional space and and

catch it with its tongue with consid-

erable probability.

5 · 10
7 neurons make a bat. The bat can

navigate in total darkness through a

room, exact up to several centime-

ters, by only using their sense of hear-

ing. It uses acoustic signals to localize

self-camouflaging insects (e.g. some

moths have a certain wing structure

that reflects less sound waves and the

echo will be small) and also eats its

prey while flying.

1.6 · 10
8 neurons are required by the

brain of a dog, companion of man for

ages. Now take a look at another pop-

ular companion of man:

3 · 10
8 neurons can be found in a cat,

which is about twice as much as in

a dog. We know that cats are very

elegant, patient carnivores that can

show a variety of behaviors. By the

way, an octopus can be positioned

within the same magnitude. Only

very few people know that, for exam-

ple, in labyrinth orientation the octo-

pus is vastly superior to the rat.

For 6 · 10
9 neurons you already get a

chimpanzee, one of the animals being

very similar to the human.

10
11 neurons make a human. Usually,

the human has considerable cognitive

capabilities, is able to speak, to ab-

stract, to remember and to use tools

as well as the knowledge of other hu-

mans to develop advanced technolo-

gies and manifold social structures.

With 2 · 10
11 neurons there are nervous

systems having more neurons than

the human nervous system. Here we

should mention elephants and certain

whale species.

Our state-of-the-art computers are not

able to keep up with the aforementioned

processing power of a fly. Recent research

results suggest that the processes in ner-

vous systems might be vastly more pow-

erful than people thought until not long

ago: Michaeva et al. describe a separate,

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 29



Chapter 2 Biological neural networks dkriesel.com

synapse-integrated information way of in-

formation processing [MBW
+

10]. Poster-

ity will show if they are right.

2.5 Transition to technical
neurons: neural networks
are a caricature of biology

How do we change from biological neural

networks to the technical ones? Through

radical simplification. I want to briefly

summarize the conclusions relevant for the

technical part:

We have learned that the biological neu-

rons are linked to each other in a weighted

way and when stimulated they electrically

transmit their signal via the axon. From

the axon they are not directly transferred

to the succeeding neurons, but they first

have to cross the synaptic cleft where the

signal is changed again by variable chem-

ical processes. In the receiving neuron

the various inputs that have been post-

processed in the synaptic cleft are summa-

rized or accumulated to one single pulse.

Depending on how the neuron is stimu-

lated by the cumulated input, the neuron

itself emits a pulse or not – thus, the out-

put is non-linear and not proportional to

the cumulated input. Our brief summary

corresponds exactly with the few elements

of biological neural networks we want to

take over into the technical approxima-

tion:

Vectorial input: The input of technical

neurons consists of many components,

therefore it is a vector. In nature a

neuron receives pulses of 103
to 104

other neurons on average.

Scalar output: The output of a neuron is

a scalar, which means that the neu-

ron only consists of one component.

Several scalar outputs in turn form

the vectorial input of another neuron.

This particularly means that some-

where in the neuron the various input

components have to be summarized in

such a way that only one component

remains.

Synapses change input: In technical neu-

ral networks the inputs are prepro-

cessed, too. They are multiplied by

a number (the weight) – they are

weighted. The set of such weights rep-

resents the information storage of a

neural network – in both biological

original and technical adaptation.

Accumulating the inputs: In biology, the

inputs are summarized to a pulse ac-

cording to the chemical change, i.e.,

they are accumulated – on the techni-

cal side this is often realized by the

weighted sum, which we will get to

know later on. This means that after

accumulation we continue with only

one value, a scalar, instead of a vec-

tor.

Non-linear characteristic: The input of

our technical neurons is also not pro-

portional to the output.

Adjustable weights: The weights weight-

ing the inputs are variable, similar to
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the chemical processes at the synap-

tic cleft. This adds a great dynamic

to the network because a large part of

the "knowledge" of a neural network is

saved in the weights and in the form

and power of the chemical processes

in a synaptic cleft.

So our current, only casually formulated

and very simple neuron model receives a

vectorial input

x̨,

with components xi. These are multiplied

by the appropriate weights wi and accumu-

lated: ÿ

i

wixi.

The aforementioned term is called

weighted sum. Then the nonlinear

mapping f defines the scalar output y:

y = f

A
ÿ

i

wixi

B

.

After this transition we now want to spec-

ify more precisely our neuron model and

add some odds and ends. Afterwards we

will take a look at how the weights can be

adjusted.

Exercises

Exercise 4. It is estimated that a hu-

man brain consists of approx. 1011
nerve

cells, each of which has about 103
to 104

synapses. For this exercise we assume 103

synapses per neuron. Let us further as-

sume that a single synapse could save 4

bits of information. Naïvely calculated:

How much storage capacity does the brain

have? Note: The information which neu-

ron is connected to which other neuron is

also important.
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Chapter 3

Components of artificial neural networks
Formal definitions and colloquial explanations of the components that realize
the technical adaptations of biological neural networks. Initial descriptions of

how to combine these components into a neural network.

This chapter contains the formal defini-

tions for most of the neural network com-

ponents used later in the text. After this

chapter you will be able to read the indi-

vidual chapters of this work without hav-

ing to know the preceding ones (although

this would be useful).

3.1 The concept of time in
neural networks

In some definitions of this text we use the

term time or the number of cycles of the

neural network, respectively. Time is di-

vided into discrete time steps:discrete
time steps

Definition 3.1 (The concept of time).

The current time (present time) is referred

to as (t), the next time step as (t + 1),
(t)I

the preceding one as (t ≠ 1). All other

time steps are referred to analogously. If in

the following chapters several mathemati-

cal variables (e.g. netj or oi) refer to a

certain point in time, the notation will be,

for example, netj(t ≠ 1) or oi(t).

From a biological point of view this is, of

course, not very plausible (in the human

brain a neuron does not wait for another

one), but it significantly simplifies the im-

plementation.

3.2 Components of neural
networks

A technical neural network consists of sim-

ple processing units, the neurons, and

directed, weighted connections between

those neurons. Here, the strength of a

connection (or the connecting weight) be-
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tween two neurons i and j is referred to as

wi,j
1
.

Definition 3.2 (Neural network). A

neural network is a sorted triple

(N, V, w) with two sets N , V and a func-

tion w, where N is the set of neurons and

V a set {(i, j)|i, j œ N} whose elements are

called connections between neuron i and

neuron j. The function w : V æ R definesn. network
= neurons

+ weighted
connection

the weights, where w((i, j)), the weight of

the connection between neuron i and neu-

ron j, is shortened to wi,j . Depending on
wi,jI

the point of view it is either undefined or

0 for connections that do not exist in the

network.

SNIPE: In Snipe, an instance of the class

NeuralNetworkDescriptor is created in

the first place. The descriptor object

roughly outlines a class of neural networks,

e.g. it defines the number of neuron lay-

ers in a neural network. In a second step,

the descriptor object is used to instantiate

an arbitrary number of NeuralNetwork ob-

jects. To get started with Snipe program-

ming, the documentations of exactly these

two classes are – in that order – the right

thing to read. The presented layout involv-

ing descriptor and dependent neural net-

works is very reasonable from the imple-

mentation point of view, because it is en-

ables to create and maintain general param-

eters of even very large sets of similar (but

not neccessarily equal) networks.

So the weights can be implemented in a

square weight matrix W or, optionally,

in a weight vector W with the row num-
WI

1 Note: In some of the cited literature i and j could
be interchanged in wi,j . Here, a consistent stan-
dard does not exist. But in this text I try to use
the notation I found more frequently and in the
more significant citations.

ber of the matrix indicating where the con-

nection begins, and the column number of

the matrix indicating, which neuron is the

target. Indeed, in this case the numeric

0 marks a non-existing connection. This

matrix representation is also called Hin-
ton diagram2

.

The neurons and connections comprise the

following components and variables (I’m

following the path of the data within a

neuron, which is according to fig. 3.1 on

the facing page in top-down direction):

3.2.1 Connections carry information
that is processed by neurons

Data are transferred between neurons via

connections with the connecting weight be-

ing either excitatory or inhibitory. The

definition of connections has already been

included in the definition of the neural net-

work.

SNIPE: Connection weights

can be set using the method

NeuralNetwork.setSynapse.

3.2.2 The propagation function
converts vector inputs to
scalar network inputs

Looking at a neuron j, we will usually find

a lot of neurons with a connection to j, i.e.

which transfer their output to j.

2 Note that, here again, in some of the cited liter-
ature axes and rows could be interchanged. The
published literature is not consistent here, as well.
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Propagierungsfunktion 
(oft gewichtete Summe, verarbeitet 

Eingaben zur Netzeingabe) 

Ausgabefunktion 
(Erzeugt aus Aktivierung die Ausgabe, 

ist oft Identität) 

Aktivierungsfunktion 
(Erzeugt aus Netzeingabe und alter 

Aktivierung die neue Aktivierung)

Eingaben anderer 
Neuronen Netzeingabe

Aktivierung Ausgabe zu 
anderen Neuronen 

Propagation function 
(often weighted sum, transforms 

outputs of other neurons to net input) 

Output function 
(often identity function, transforms 

activation to output for other neurons) 

Activation function 
(Transforms net input and sometimes 

old activation to new activation)

Data Input of 
other Neurons 

Network Input

Activation

Data Output to 
other Neurons 

Figure 3.1: Data processing of a neuron. The
activation function of a neuron implies the
threshold value.

For a neuron j the propagation func-
tion receives the outputs oi1 , . . . , oin

of

other neurons i1, i2, . . . , in (which are con-

nected to j), and transforms them in con- manages
inputssideration of the connecting weights wi,j

into the network input netj that can be fur-

ther processed by the activation function.

Thus, the network input is the result of

the propagation function.

Definition 3.3 (Propagation func-

tion and network input). Let

I = {i1, i2, . . . , in} be the set of neurons,

such that ’z œ {1, . . . , n} : ÷wiz ,j . Then

the network input of j, called netj , is

calculated by the propagation function

fprop as follows:

netj = fprop(oi1 , . . . , oin
, wi1,j , . . . , win,j)

(3.1)

Here the weighted sum is very popular:

The multiplication of the output of each

neuron i by wi,j , and the summation of

the results:

netj =
ÿ

iœI

(oi · wi,j) (3.2)

SNIPE: The propagation function in

Snipe was implemented using the weighted

sum.

3.2.3 The activation is the
"switching status" of a
neuron

Based on the model of nature every neuron

is, to a certain extent, at all times active,

excited or whatever you will call it. The
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reactions of the neurons to the input val-

ues depend on this activation state. TheHow active
is a

neuron?
activation state indicates the extent of a

neuron’s activation and is often shortly re-

ferred to as activation. Its formal defini-

tion is included in the following definition

of the activation function. But generally,

it can be defined as follows:

Definition 3.4 (Activation state / activa-

tion in general). Let j be a neuron. The

activation state aj , in short activation, is

explicitly assigned to j, indicates the ex-

tent of the neuron’s activity and results

from the activation function.

SNIPE: It is possible to get and set activa-

tion states of neurons by using the meth-

ods getActivation or setActivation in

the class NeuralNetwork.

3.2.4 Neurons get activated if the
network input exceeds their
treshold value

Near the threshold value, the activation

function of a neuron reacts particularly

sensitive. From the biological point of

view the threshold value represents the

threshold at which a neuron starts fir-

ing. The threshold value is also mostlyhighest
point of

sensation
included in the definition of the activation

function, but generally the definition is the

following:

Definition 3.5 (Threshold value in gen-

eral). Let j be a neuron. The threshold
value �j is uniquely assigned to j and

�I
marks the position of the maximum gradi-

ent value of the activation function.

3.2.5 The activation function
determines the activation of a
neuron dependent on network
input and treshold value

At a certain time – as we have already

learned – the activation aj of a neuron j
depends on the previous3

activation state

of the neuron and the external input.

Definition 3.6 (Activation function and

Activation). Let j be a neuron. The ac- calculates
activationtivation function is defined as

aj(t) = fact(netj(t), aj(t ≠ 1), �j). (3.3)

It transforms the network input netj , Jfact
as well as the previous activation state
aj(t ≠ 1) into a new activation state aj(t),
with the threshold value � playing an im-

portant role, as already mentioned.

Unlike the other variables within the neu-

ral network (particularly unlike the ones

defined so far) the activation function is

often defined globally for all neurons or

at least for a set of neurons and only the

threshold values are di�erent for each neu-

ron. We should also keep in mind that

the threshold values can be changed, for

example by a learning procedure. So it

can in particular become necessary to re-

late the threshold value to the time and to

write, for instance �j as �j(t) (but for rea-

sons of clarity, I omitted this here). The

activation function is also called transfer
function.

3 The previous activation is not always relevant for
the current – we will see examples for both vari-
ants.
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SNIPE: In Snipe, activation functions are

generalized to neuron behaviors. Such

behaviors can represent just normal acti-

vation functions, or even incorporate in-

ternal states and dynamics. Correspond-

ing parts of Snipe can be found in the

package neuronbehavior, which also con-

tains some of the activation functions in-

troduced in the next section. The inter-

face NeuronBehavior allows for implemen-

tation of custom behaviors. Objects that

inherit from this interface can be passed to

a NeuralNetworkDescriptor instance. It

is possible to define individual behaviors

per neuron layer.

3.2.6 Common activation functions

The simplest activation function is the bi-
nary threshold function (fig. 3.2 on the

next page), which can only take on two val-

ues (also referred to as Heaviside func-
tion). If the input is above a certain

threshold, the function changes from one

value to another, but otherwise remains

constant. This implies that the function

is not di�erentiable at the threshold and

for the rest the derivative is 0. Due to

this fact, backpropagation learning, for ex-

ample, is impossible (as we will see later).

Also very popular is the Fermi function
or logistic function (fig. 3.2)

1
1 + e≠x

, (3.4)

which maps to the range of values of (0, 1)
and the hyperbolic tangent (fig. 3.2)

which maps to (≠1, 1). Both functions are

di�erentiable. The Fermi function can be

expanded by a temperature parameter
T into the form

TI

1
1 + e

≠x

T

. (3.5)

The smaller this parameter, the more does

it compress the function on the x axis.

Thus, one can arbitrarily approximate the

Heaviside function. Incidentally, there ex-

ist activation functions which are not ex-

plicitly defined but depend on the input ac-

cording to a random distribution (stochas-
tic activation function).

A alternative to the hypberbolic tangent

that is really worth mentioning was sug-

gested by Anguita et al. [APZ93], who

have been tired of the slowness of the work-

stations back in 1993. Thinking about

how to make neural network propagations

faster, they quickly identified the approx-

imation of the e-function used in the hy-

perbolic tangent as one of the causes of

slowness. Consequently, they "engineered"

an approximation to the hyperbolic tan-

gent, just using two parabola pieces and

two half-lines. At the price of delivering

a slightly smaller range of values than the

hyperbolic tangent ([≠0.96016; 0.96016] in-

stead of [≠1; 1]), dependent on what CPU

one uses, it can be calculated 200 times

faster because it just needs two multipli-

cations and one addition. What’s more,

it has some other advantages that will be

mentioned later.

SNIPE: The activation functions intro-

duced here are implemented within the

classes Fermi and TangensHyperbolicus,

both of which are located in the package

neuronbehavior. The fast hyperbolic tan-

gent approximation is located within the

class TangensHyperbolicusAnguita.
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Figure 3.2: Various popular activation func-
tions, from top to bottom: Heaviside or binary
threshold function, Fermi function, hyperbolic
tangent. The Fermi function was expanded by
a temperature parameter. The original Fermi
function is represented by dark colors, the tem-
perature parameters of the modified Fermi func-
tions are, ordered ascending by steepness, 1

2 , 1
5 ,

1
10 und 1

25 .

3.2.7 An output function may be
used to process the activation
once again

The output function of a neuron j cal-

culates the values which are transferred to

the other neurons connected to j. More

formally:

Definition 3.7 (Output function). Let j informs
other
neurons

be a neuron. The output function

fout(aj) = oj (3.6)

calculates the output value oj of the neu- Jfout
ron j from its activation state aj .

Generally, the output function is defined

globally, too. Often this function is the

identity, i.e. the activation aj is directly

output
4
:

fout(aj) = aj , so oj = aj (3.7)

Unless explicitly specified di�erently, we

will use the identity as output function

within this text.

3.2.8 Learning strategies adjust a
network to fit our needs

Since we will address this subject later in

detail and at first want to get to know the

principles of neural network structures, I

will only provide a brief and general defi-

nition here:

4 Other definitions of output functions may be use-
ful if the range of values of the activation function
is not su�cient.
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Definition 3.8 (General learning rule).

The learning strategy is an algorithm

that can be used to change and thereby

train the neural network, so that the net-

work produces a desired output for a given

input.

3.3 Network topologies

After we have become acquainted with the

composition of the elements of a neural

network, I want to give an overview of

the usual topologies (= designs) of neural

networks, i.e. to construct networks con-

sisting of these elements. Every topology

described in this text is illustrated by a

map and its Hinton diagram so that the

reader can immediately see the character-

istics and apply them to other networks.

In the Hinton diagram the dotted weights

are represented by light grey fields, the

solid ones by dark grey fields. The input

and output arrows, which were added for

reasons of clarity, cannot be found in the

Hinton diagram. In order to clarify that

the connections are between the line neu-

rons and the column neurons, I have in-

serted the small arrow � in the upper-left

cell.

SNIPE: Snipe is designed for realization

of arbitrary network topologies. In this

respect, Snipe defines di�erent kinds of

synapses depending on their source and

their target. Any kind of synapse can sep-

arately be allowed or forbidden for a set of

networks using the setAllowed methods in

a NeuralNetworkDescriptor instance.

3.3.1 Feedforward networks consist
of layers and connections
towards each following layer

Feedforward In this text feedforward net-

works (fig. 3.3 on the following page) are

the networks we will first explore (even if

we will use di�erent topologies later). The

neurons are grouped in the following lay-
ers: One input layer, n hidden pro- network of

layerscessing layers (invisible from the out-

side, that’s why the neurons are also re-

ferred to as hidden neurons) and one out-
put layer. In a feedforward network each

neuron in one layer has only directed con-

nections to the neurons of the next layer

(towards the output layer). In fig. 3.3 on

the next page the connections permitted

for a feedforward network are represented

by solid lines. We will often be confronted

with feedforward networks in which every

neuron i is connected to all neurons of the

next layer (these layers are called com-
pletely linked). To prevent naming con-

flicts the output neurons are often referred

to as �.

Definition 3.9 (Feedforward network).

The neuron layers of a feedforward net-

work (fig. 3.3 on the following page) are

clearly separated: One input layer, one

output layer and one or more processing

layers which are invisible from the outside

(also called hidden layers). Connections

are only permitted to neurons of the fol-

lowing layer.
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Figure 3.3: A feedforward network with three
layers: two input neurons, three hidden neurons
and two output neurons. Characteristic for the
Hinton diagram of completely linked feedforward
networks is the formation of blocks above the
diagonal.

3.3.1.1 Shortcut connections skip layers
Shortcuts
skip
layersSome feedforward networks permit the so-

called shortcut connections (fig. 3.4 on

the next page): connections that skip one

or more levels. These connections may

only be directed towards the output layer,

too.

Definition 3.10 (Feedforward network

with shortcut connections). Similar to the

feedforward network, but the connections

may not only be directed towards the next

layer but also towards any other subse-

quent layer.

3.3.2 Recurrent networks have
influence on themselves

Recurrence is defined as the process of a

neuron influencing itself by any means or

by any connection. Recurrent networks do

not always have explicitly defined input or

output neurons. Therefore in the figures

I omitted all markings that concern this

matter and only numbered the neurons.

3.3.2.1 Direct recurrences start and
end at the same neuron

Some networks allow for neurons to be

connected to themselves, which is called

direct recurrence (or sometimes self-
recurrence (fig. 3.5 on the facing page).

As a result, neurons inhibit and therefore

strengthen themselves in order to reach

their activation limits.
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Figure 3.5: A network similar to a feedforward
network with directly recurrent neurons. The di-
rect recurrences are represented by solid lines and
exactly correspond to the diagonal in the Hinton
diagram matrix.

Definition 3.11 (Direct recurrence).

Now we expand the feedforward network neurons
influence
themselves

by connecting a neuron j to itself, with the

weights of these connections being referred

to as wj,j . In other words: the diagonal

of the weight matrix W may be di�erent

from 0.
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3.3.2.2 Indirect recurrences can
influence their starting neuron
only by making detours

If connections are allowed towards the in-

put layer, they will be called indirect re-
currences. Then a neuron j can use in-

direct forwards connections to influence it-

self, for example, by influencing the neu-

rons of the next layer and the neurons of

this next layer influencing j (fig. 3.6).

Definition 3.12 (Indirect recurrence).

Again our network is based on a feedfor-

ward network, now with additional connec-

tions between neurons and their preceding
layer being allowed. Therefore, below the

diagonal of W is di�erent from 0.

3.3.2.3 Lateral recurrences connect
neurons within one layer

Connections between neurons within one
layer are called lateral recurrences
(fig. 3.7 on the facing page). Here, each

neuron often inhibits the other neurons of

the layer and strengthens itself. As a re-

sult only the strongest neuron becomes ac-

tive (winner-takes-all scheme).

Definition 3.13 (Lateral recurrence). A

laterally recurrent network permits con-

nections within one layer.

3.3.3 Completely linked networks
allow any possible connection

Completely linked networks permit connec-

tions between all neurons, except for direct
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Figure 3.6: A network similar to a feedforward
network with indirectly recurrent neurons. The
indirect recurrences are represented by solid lines.
As we can see, connections to the preceding lay-
ers can exist here, too. The fields that are sym-
metric to the feedforward blocks in the Hinton
diagram are now occupied.
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Figure 3.7: A network similar to a feedforward
network with laterally recurrent neurons. The
direct recurrences are represented by solid lines.
Here, recurrences only exist within the layer.
In the Hinton diagram, filled squares are con-
centrated around the diagonal in the height of
the feedforward blocks, but the diagonal is left
uncovered.

recurrences. Furthermore, the connections

must be symmetric (fig. 3.8 on the next

page). A popular example are the self-
organizing maps, which will be introduced

in chapter 10.

Definition 3.14 (Complete interconnec-

tion). In this case, every neuron is always

allowed to be connected to every other neu-

ron – but as a result every neuron can

become an input neuron. Therefore, di-

rect recurrences normally cannot be ap-

plied here and clearly defined layers do not

longer exist. Thus, the matrix W may be

unequal to 0 everywhere, except along its

diagonal.

3.4 The bias neuron is a
technical trick to consider
threshold values as
connection weights

By now we know that in many network

paradigms neurons have a threshold value
that indicates when a neuron becomes ac-

tive. Thus, the threshold value is an

activation function parameter of a neu-

ron. From the biological point of view

this sounds most plausible, but it is com-

plicated to access the activation function

at runtime in order to train the threshold

value.

But threshold values �j1 , . . . , �jn
for neu-

rons j1, j2, . . . , jn can also be realized as

connecting weight of a continuously fir-
ing neuron: For this purpose an addi-

tional bias neuron whose output value
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Figure 3.8: A completely linked network with
symmetric connections and without direct recur-
rences. In the Hinton diagram only the diagonal
is left blank.

is always 1 is integrated in the network

and connected to the neurons j1, j2, . . . , jn.

These new connections get the weights

≠�j1 , . . . , ≠�jn
, i.e. they get the negative

threshold values.

Definition 3.15. A bias neuron is a

neuron whose output value is always 1 and

which is represented by

GFED@ABCBIAS .

It is used to represent neuron biases as con-

nection weights, which enables any weight-

training algorithm to train the biases at

the same time.

Then the threshold value of the neurons

j1, j2, . . . , jn is set to 0. Now the thresh-

old values are implemented as connection

weights (fig. 3.9 on page 46) and can di-

rectly be trained together with the con-

nection weights, which considerably facil-

itates the learning process.

In other words: Instead of including the

threshold value in the activation function,

it is now included in the propagation func-

tion. Or even shorter: The threshold value

is subtracted from the network input, i.e.

it is part of the network input. More for-

mally: bias neuron
replaces
thresh. value
with weights

Let j1, j2, . . . , jn be neurons with thresh-

old values �j1 , . . . , �jn
. By inserting a

bias neuron whose output value is always

1, generating connections between the said

bias neuron and the neurons j1, j2, . . . , jn

and weighting these connections

wBIAS,j1 , . . . , wBIAS,jn
with ≠�j1 , . . . , ≠�jn

,

we can set �j1 = . . . = �jn
= 0 and
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receive an equivalent neural network

whose threshold values are realized by

connection weights.

Undoubtedly, the advantage of the bias

neuron is the fact that it is much easier

to implement it in the network. One dis-

advantage is that the representation of the

network already becomes quite ugly with

only a few neurons, let alone with a great

number of them. By the way, a bias neu-

ron is often referred to as on neuron.

From now on, the bias neuron is omit-

ted for clarity in the following illustrations,

but we know that it exists and that the

threshold values can simply be treated as

weights because of it.

SNIPE: In Snipe, a bias neuron was imple-

mented instead of neuron-individual biases.

The neuron index of the bias neuron is 0.

3.5 Representing neurons

We have already seen that we can either

write its name or its threshold value into

a neuron. Another useful representation,

which we will use several times in the

following, is to illustrate neurons accord-

ing to their type of data processing. See

fig. 3.10 for some examples without fur-

ther explanation – the di�erent types of

neurons are explained as soon as we need

them.

WVUTPQRS||c,x||
Gauß

GFED@ABC� ONMLHIJK�
�

WVUTPQRS�

WVUTPQRS�
Tanh

WVUTPQRS�
Fermi

ONMLHIJK�
fact

GFED@ABCBIAS

Figure 3.10: Di�erent types of neurons that will
appear in the following text.

3.6 Take care of the order in
which neuron activations
are calculated

For a neural network it is very important

in which order the individual neurons re-

ceive and process the input and output the

results. Here, we distinguish two model

classes:

3.6.1 Synchronous activation

All neurons change their values syn-
chronously, i.e. they simultaneously cal-

culate network inputs, activation and out-

put, and pass them on. Synchronous ac-

tivation corresponds closest to its biolog-

ical counterpart, but it is – if to be im-

plemented in hardware – only useful on

certain parallel computers and especially

not for feedforward networks. This order

of activation is the most generic and can

be used with networks of arbitrary topol-

ogy.
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Figure 3.9: Two equivalent neural networks, one without bias neuron on the left, one with bias
neuron on the right. The neuron threshold values can be found in the neurons, the connecting
weights at the connections. Furthermore, I omitted the weights of the already existing connections
(represented by dotted lines on the right side).

Definition 3.16 (Synchronous activa-

tion). All neurons of a network calculatebiologically
plausible network inputs at the same time by means

of the propagation function, activation by

means of the activation function and out-

put by means of the output function. Af-

ter that the activation cycle is complete.

SNIPE: When implementing in software,

one could model this very general activa-

tion order by every time step calculating

and caching every single network input,

and after that calculating all activations.

This is exactly how it is done in Snipe, be-

cause Snipe has to be able to realize arbi-

trary network topologies.

3.6.2 Asynchronous activation

Here, the neurons do not change their val-

ues simultaneously but at di�erent points

of time. For this, there exist di�erent or-

ders, some of which I want to introduce in

the following: easier to
implement

3.6.2.1 Random order

Definition 3.17 (Random order of acti-

vation). With random order of acti-
vation a neuron i is randomly chosen and

its neti, ai and oi are updated. For n neu-

rons a cycle is the n-fold execution of this

step. Obviously, some neurons are repeat-

edly updated during one cycle, and others,

however, not at all.

Apparently, this order of activation is not

always useful.
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3.6.2.2 Random permutation

With random permutation each neuron

is chosen exactly once, but in random or-

der, during one cycle.

Definition 3.18 (Random permutation).

Initially, a permutation of the neurons is

calculated randomly and therefore defines

the order of activation. Then the neurons

are successively processed in this order.

This order of activation is as well used

rarely because firstly, the order is gener-

ally useless and, secondly, it is very time-

consuming to compute a new permutation

for every cycle. A Hopfield network (chap-

ter 8) is a topology nominally having a

random or a randomly permuted order of

activation. But note that in practice, for

the previously mentioned reasons, a fixed

order of activation is preferred.

For all orders either the previous neuron

activations at time t or, if already existing,

the neuron activations at time t + 1, for

which we are calculating the activations,

can be taken as a starting point.

3.6.2.3 Topological order

Definition 3.19 (Topological activation).

With topological order of activationoften very
useful the neurons are updated during one cycle

and according to a fixed order. The order

is defined by the network topology.

This procedure can only be considered for

non-cyclic, i.e. non-recurrent, networks,

since otherwise there is no order of activa-

tion. Thus, in feedforward networks (for

which the procedure is very reasonable)

the input neurons would be updated first,

then the inner neurons and finally the out-

put neurons. This may save us a lot of

time: Given a synchronous activation or-

der, a feedforward network with n layers

of neurons would need n full propagation

cycles in order to enable input data to

have influence on the output of the net-

work. Given the topological activation or-

der, we just need one single propagation.

However, not every network topology al-

lows for finding a special activation order

that enables saving time.

SNIPE: Those who want to use Snipe

for implementing feedforward networks

may save some calculation time by us-

ing the feature fastprop (mentioned

within the documentation of the class

NeuralNetworkDescriptor. Once fastprop

is enabled, it will cause the data propaga-

tion to be carried out in a slightly di�erent

way. In the standard mode, all net inputs

are calculated first, followed by all activa-

tions. In the fastprop mode, for every neu-

ron, the activation is calculated right after

the net input. The neuron values are calcu-

lated in ascending neuron index order. The

neuron numbers are ascending from input

to output layer, which provides us with the

perfect topological activation order for feed-

forward networks.

3.6.2.4 Fixed orders of activation
during implementation

Obviously, fixed orders of activation
can be defined as well. Therefore, when

implementing, for instance, feedforward
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networks it is very popular to determine

the order of activation once according to

the topology and to use this order without

further verification at runtime. But this is

not necessarily useful for networks that are

capable to change their topology.

3.7 Communication with the
outside world: input and
output of data in and
from neural networks

Finally, let us take a look at the fact that,

of course, many types of neural networks

permit the input of data. Then these data

are processed and can produce output.

Let us, for example, regard the feedfor-

ward network shown in fig. 3.3 on page 40:

It has two input neurons and two output

neurons, which means that it also has two

numerical inputs x1, x2 and outputs y1, y2.

As a simplification we summarize the in-

put and output components for n input

or output neurons within the vectors x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Definition 3.20 (Input vector). A net-
xI

work with n input neurons needs n inputs

x1, x2, . . . , xn. They are considered as in-
put vector x = (x1, x2, . . . , xn). As a

consequence, the input dimension is re-

ferred to as n. Data is put into a neural
nI

network by using the components of the in-

put vector as network inputs of the input

neurons.

Definition 3.21 (Output vector). A net-
yI

work with m output neurons provides m

outputs y1, y2, . . . , ym. They are regarded

as output vector y = (y1, y2, . . . , ym).
Thus, the output dimension is referred

to as m. Data is output by a neural net- Jm
work by the output neurons adopting the

components of the output vector in their

output values.

SNIPE: In order to propagate data through

a NeuralNetwork-instance, the propagate
method is used. It receives the input vector

as array of doubles, and returns the output

vector in the same way.

Now we have defined and closely examined

the basic components of neural networks –

without having seen a network in action.

But first we will continue with theoretical

explanations and generally describe how a

neural network could learn.

Exercises

Exercise 5. Would it be useful (from

your point of view) to insert one bias neu-

ron in each layer of a layer-based network,

such as a feedforward network? Discuss

this in relation to the representation and

implementation of the network. Will the

result of the network change?

Exercise 6. Show for the Fermi function

f(x) as well as for the hyperbolic tangent

tanh(x), that their derivatives can be ex-

pressed by the respective functions them-

selves so that the two statements

1. f Õ(x) = f(x) · (1 ≠ f(x)) and

2. tanhÕ(x) = 1 ≠ tanh2(x)
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are true.
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Chapter 4

Fundamentals on learning and training
samples

Approaches and thoughts of how to teach machines. Should neural networks
be corrected? Should they only be encouraged? Or should they even learn

without any help? Thoughts about what we want to change during the
learning procedure and how we will change it, about the measurement of

errors and when we have learned enough.

As written above, the most interesting

characteristic of neural networks is their

capability to familiarize with problems

by means of training and, after su�cient

training, to be able to solve unknown prob-

lems of the same class. This approach is re-

ferred to as generalization. Before intro-

ducing specific learning procedures, I want

to propose some basic principles about the

learning procedure in this chapter.

4.1 There are di�erent
paradigms of learning

Learning is a comprehensive term. A

learning system changes itself in order to

adapt to e.g. environmental changes. A

neural network could learn from many

things but, of course, there will always beFrom what
do we learn?

the question of how to implement it. In

principle, a neural network changes when

its components are changing, as we have

learned above. Theoretically, a neural net-

work could learn by

1. developing new connections,

2. deleting existing connections,

3. changing connecting weights,

4. changing the threshold values of neu-

rons,

5. varying one or more of the three neu-

ron functions (remember: activation

function, propagation function and

output function),

6. developing new neurons, or

7. deleting existing neurons (and so, of

course, existing connections).
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As mentioned above, we assume the

change in weight to be the most common

procedure. Furthermore, deletion of con-

nections can be realized by additionally

taking care that a connection is no longer

trained when it is set to 0. Moreover, we

can develop further connections by setting

a non-existing connection (with the value

0 in the connection matrix) to a value dif-

ferent from 0. As for the modification of

threshold values I refer to the possibility

of implementing them as weights (section

3.4). Thus, we perform any of the first four

of the learning paradigms by just training

synaptic weights.

The change of neuron functions is di�cult

to implement, not very intuitive and not

exactly biologically motivated. Therefore

it is not very popular and I will omit this

topic here. The possibilities to develop or

delete neurons do not only provide well

adjusted weights during the training of a

neural network, but also optimize the net-

work topology. Thus, they attract a grow-

ing interest and are often realized by using

evolutionary procedures. But, since we ac-

cept that a large part of learning possibil-

ities can already be covered by changes in

weight, they are also not the subject mat-

ter of this text (however, it is planned to

extend the text towards those aspects of

training).

SNIPE: Methods of the class

NeuralNetwork allow for changes in

connection weights, and addition and

removal of both connections and neurons.

Methods in NeuralNetworkDescriptor
enable the change of neuron behaviors,

respectively activation functions per

layer.

Thus, we let our neural network learn by

modifying the connecting weights accord-

ing to rules that can be formulated as al- Learning
by changes
in weight

gorithms. Therefore a learning procedure

is always an algorithm that can easily be

implemented by means of a programming

language. Later in the text I will assume

that the definition of the term desired out-
put which is worth learning is known (and

I will define formally what a training pat-
tern is) and that we have a training set

of learning samples. Let a training set be

defined as follows:

Definition 4.1 (Training set). A train- JPing set (named P ) is a set of training

patterns, which we use to train our neu-

ral net.

I will now introduce the three essential

paradigms of learning by presenting the

di�erences between their regarding train-

ing sets.

4.1.1 Unsupervised learning
provides input patterns to the
network, but no learning aides

Unsupervised learning is the biologi-

cally most plausible method, but is not

suitable for all problems. Only the in-

put patterns are given; the network tries

to identify similar patterns and to classify

them into similar categories.

Definition 4.2 (Unsupervised learning).

The training set only consists of input
patterns, the network tries by itself to de-

tect similarities and to generate pattern

classes.
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Here I want to refer again to the popu-

lar example of Kohonen’s self-organising

maps (chapter 10).

4.1.2 Reinforcement learning
methods provide feedback to
the network, whether it
behaves well or bad

In reinforcement learning the network

receives a logical or a real value afternetwork
receives

reward or
punishment

completion of a sequence, which defines

whether the result is right or wrong. Intu-

itively it is clear that this procedure should

be more e�ective than unsupervised learn-

ing since the network receives specific crit-

era for problem-solving.

Definition 4.3 (Reinforcement learning).

The training set consists of input patterns,
after completion of a sequence a value is re-

turned to the network indicating whether

the result was right or wrong and, possibly,

how right or wrong it was.

4.1.3 Supervised learning methods
provide training patterns
together with appropriate
desired outputs

In supervised learning the training set

consists of input patterns as well as their

correct results in the form of the precise ac-

tivation of all output neurons. Thus, for

each training set that is fed into the net-

work the output, for instance, can directlynetwork
receives
correct

results for
samples

be compared with the correct solution and

and the network weights can be changed

according to their di�erence. The objec-

tive is to change the weights to the e�ect

that the network cannot only associate in-

put and output patterns independently af-

ter the training, but can provide plausible

results to unknown, similar input patterns,

i.e. it generalises.

Definition 4.4 (Supervised learning).

The training set consists of input patterns
with correct results so that the network can

receive a precise error vector1
can be re-

turned.

This learning procedure is not always bio-

logically plausible, but it is extremely ef-

fective and therefore very practicable.

At first we want to look at the the su-

pervised learning procedures in general,

which - in this text - are corresponding

to the following steps:

Entering the input pattern (activation of

input neurons),

Forward propagation of the input by the

network, generation of the output, learning
scheme

Comparing the output with the desired

output (teaching input), provides er-

ror vector (di�erence vector),

Corrections of the network are

calculated based on the error vector,

Corrections are applied.

1 The term error vector will be defined in section
4.2, where mathematical formalisation of learning
is discussed.
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4.1.4 O�ine or online learning?

It must be noted that learning can be

o�ine (a set of training samples is pre-

sented, then the weights are changed, the

total error is calculated by means of a error

function operation or simply accumulated -

see also section 4.4) or online (after every

sample presented the weights are changed).

Both procedures have advantages and dis-

advantages, which will be discussed in the

learning procedures section if necessary.

O�ine training procedures are also called

batch training procedures since a batch

of results is corrected all at once. Such a

training section of a whole batch of train-

ing samples including the related change

in weight values is called epoch.

Definition 4.5 (O�ine learning). Sev-

eral training patterns are entered into the

network at once, the errors are accumu-

lated and it learns for all patterns at the

same time.

Definition 4.6 (Online learning). The

network learns directly from the errors of

each training sample.

4.1.5 Questions you should answer
before learning

The application of such schemes certainly

requires preliminary thoughts about some

questions, which I want to introduce now

as a check list and, if possible, answer

them in the course of this text:

Û Where does the learning input come

from and in what form?

Û How must the weights be modified to

allow fast and reliable learning?

Û How can the success of a learning pro-

cess be measured in an objective way?

Û Is it possible to determine the "best"

learning procedure?

Û Is it possible to predict if a learning

procedure terminates, i.e. whether it

will reach an optimal state after a fi-

nite time or if it, for example, will os-

cillate between di�erent states?

Û How can the learned patterns be

stored in the network?

Û Is it possible to avoid that newly

learned patterns destroy previously

learned associations (the so-called sta-

bility/plasticity dilemma)?

We will see that all these questions cannot

be generally answered but that they have JJJ
no easy
answers!

to be discussed for each learning procedure

and each network topology individually.

4.2 Training patterns and
teaching input

Before we get to know our first learning

rule, we need to introduce the teaching
input. In (this) case of supervised learn-

ing we assume a training set consisting

of training patterns and the correspond-

ing correct output values we want to see desired
outputat the output neurons after the training.

While the network has not finished train-

ing, i.e. as long as it is generating wrong

outputs, these output values are referred
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to as teaching input, and that for each neu-

ron individually. Thus, for a neuron j with

the incorrect output oj , tj is the teaching

input, which means it is the correct or de-

sired output for a training pattern p.

Definition 4.7 (Training patterns). A
pI training pattern is an input vector p

with the components p1, p2, . . . , pn whose

desired output is known. By entering the

training pattern into the network we re-

ceive an output that can be compared with

the teaching input, which is the desired

output. The set of training patterns is

called P . It contains a finite number of or-

dered pairs(p, t) of training patterns with

corresponding desired output.

Training patterns are often simply called

patterns, that is why they are referred

to as p. In the literature as well as in

this text they are called synonymously pat-

terns, training samples etc.

Definition 4.8 (Teaching input). Let j
tI

be an output neuron. The teaching in-
put tj is the desired and correct value jdesired

output should output after the input of a certain

training pattern. Analogously to the vec-

tor p the teaching inputs t1, t2, . . . , tn of

the neurons can also be combined into a

vector t. t always refers to a specific train-

ing pattern p and is, as already mentioned,

contained in the set P of the training pat-

terns.

SNIPE: Classes that are relevant

for training data are located in

the package training. The class

TrainingSampleLesson allows for storage

of training patterns and teaching inputs,

as well as simple preprocessing of the

training data.

Definition 4.9 (Error vector). For sev- JEp
eral output neurons �1, �2, . . . , �n the dif-

ference between output vector and teach-

ing input under a training input p

Ep =

Q

ca
t1 ≠ y1

.

.

.

tn ≠ yn

R

db

is referred to as error vector, sometimes

it is also called di�erence vector. De-

pending on whether you are learning of-

fline or online, the di�erence vector refers

to a specific training pattern, or to the er-

ror of a set of training patterns which is

normalized in a certain way.

Now I want to briefly summarize the vec-

tors we have yet defined. There is the

input vector x, which can be entered into

the neural network. Depending on

the type of network being used the

neural network will output an

output vector y. Basically, the

training sample p is nothing more than

an input vector. We only use it for

training purposes because we know

the corresponding

teaching input t which is nothing more

than the desired output vector to the

training sample. The

error vector Ep is the di�erence between

the teaching input t and the actural

output y.
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So, what x and y are for the general net-

work operation are p and t for the networkImportant!
training - and during training we try to

bring y as close to t as possible. One ad-

vice concerning notation: We referred to

the output values of a neuron i as oi. Thus,

the output of an output neuron � is called

o�. But the output values of a network are

referred to as y�. Certainly, these network

outputs are only neuron outputs, too, but

they are outputs of output neurons. In

this respect

y� = o�

is true.

4.3 Using training samples

We have seen how we can learn in prin-

ciple and which steps are required to do

so. Now we should take a look at the se-

lection of training data and the learning

curve. After successful learning it is par-

ticularly interesting whether the network

has only memorized – i.e. whether it can

use our training samples to quite exactly

produce the right output but to provide

wrong answers for all other problems of

the same class.

Suppose that we want the network to train

a mapping R2
æ B1

and therefor use the

training samples from fig. 4.1: Then there

could be a chance that, finally, the net-

work will exactly mark the colored areas

around the training samples with the out-

put 1 (fig. 4.1, top), and otherwise will

output 0 . Thus, it has su�cient storage

capacity to concentrate on the six training

Figure 4.1: Visualization of training results of
the same training set on networks with a capacity
being too high (top), correct (middle) or too low
(bottom).
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samples with the output 1. This implies

an oversized network with too much free

storage capacity.

On the other hand a network could have

insu�cient capacity (fig. 4.1, bottom) –

this rough presentation of input data does

not correspond to the good generalization

performance we desire. Thus, we have to

find the balance (fig. 4.1, middle).

4.3.1 It is useful to divide the set of
training samples

An often proposed solution for these prob-

lems is to divide, the training set into

Û one training set really used to train ,

Û and one verification set to test our

progress

– provided that there are enough train-

ing samples. The usual division relations

are, for instance, 70% for training data

and 30% for verification data (randomly

chosen). We can finish the training when

the network provides good results on the

training data as well as on the verification

data.

SNIPE: The method splitLesson within

the class TrainingSampleLesson allows for

splitting a TrainingSampleLesson with re-

spect to a given ratio.

But note: If the verification data provide

poor results, do not modify the network

structure until these data provide good re-

sults – otherwise you run the risk of tai-

loring the network to the verification data.

This means, that these data are included

in the training, even if they are not used

explicitly for the training. The solution

is a third set of validation data used only

for validation after a supposably success-

ful training.

By training less patterns, we obviously

withhold information from the network

and risk to worsen the learning perfor-

mance. But this text is not about 100%

exact reproduction of given samples but

about successful generalization and ap-

proximation of a whole function – for

which it can definitely be useful to train

less information into the network.

4.3.2 Order of pattern
representation

You can find di�erent strategies to choose

the order of pattern presentation: If pat-

terns are presented in random sequence,

there is no guarantee that the patterns

are learned equally well (however, this is

the standard method). Always the same

sequence of patterns, on the other hand,

provokes that the patterns will be memo-

rized when using recurrent networks (later,

we will learn more about this type of net-

works). A random permutation would

solve both problems, but it is – as already

mentioned – very time-consuming to cal-

culate such a permutation.

SNIPE: The method shuffleSamples lo-

cated in the class TrainingSampleLesson
permutes a lesson.
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4.4 Learning curve and error
measurement

The learning curve indicates the progress

of the error, which can be determined innorm
to

compare
various ways. The motivation to create a

learning curve is that such a curve can in-

dicate whether the network is progressing

or not. For this, the error should be nor-

malized, i.e. represent a distance measure

between the correct and the current out-

put of the network. For example, we can

take the same pattern-specific, squared er-

ror with a prefactor, which we are also go-

ing to use to derive the backpropagation

of error (let � be output neurons and O

the set of output neurons):

Errp = 1
2

ÿ

�œO

(t� ≠ y�)2 (4.1)

Definition 4.10 (Specific error). The

specific error Errp is based on a single
ErrpI

training sample, which means it is gener-

ated online.

Additionally, the root mean square (ab-

breviated: RMS) and the Euclidean
distance are often used.

The Euclidean distance (generalization of

the theorem of Pythagoras) is useful for

lower dimensions where we can still visual-

ize its usefulness.

Definition 4.11 (Euclidean distance).

The Euclidean distance between two vec-

tors t and y is defined as

Errp =
Û ÿ

�œO

(t� ≠ y�)2. (4.2)

Generally, the root mean square is com-

monly used since it considers extreme out-

liers to a greater extent.

Definition 4.12 (Root mean square).

The root mean square of two vectors t and

y is defined as

Errp =
Ûq

�œO(t� ≠ y�)2

|O|
. (4.3)

As for o�ine learning, the total error in

the course of one training epoch is inter-

esting and useful, too:

Err =
ÿ

pœP

Errp (4.4)

Definition 4.13 (Total error). The total
error Err is based on all training samples, JErr
that means it is generated o�ine.

Analogously we can generate a total RMS

and a total Euclidean distance in the

course of a whole epoch. Of course, it is

possible to use other types of error mea-

surement. To get used to further error

measurement methods, I suggest to have a

look into the technical report of Prechelt

[Pre94]. In this report, both error mea-

surement methods and sample problems

are discussed (this is why there will be a

simmilar suggestion during the discussion

of exemplary problems).

SNIPE: There are several static meth-

ods representing di�erent methods of er-

ror measurement implemented in the class

ErrorMeasurement.

Depending on our method of error mea-

surement our learning curve certainly
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changes, too. A perfect learning curve

looks like a negative exponential func-

tion, that means it is proportional to e≠t

(fig. 4.2 on the following page). Thus, the

representation of the learning curve can be

illustrated by means of a logarithmic scale

(fig. 4.2, second diagram from the bot-

tom) – with the said scaling combination

a descending line implies an exponential

descent of the error.

With the network doing a good job, the

problems being not too di�cult and the

logarithmic representation of Err you can

see - metaphorically speaking - a descend-

ing line that often forms "spikes" at the

bottom – here, we reach the limit of the

64-bit resolution of our computer and our

network has actually learned the optimum

of what it is capable of learning.

Typical learning curves can show a few flat

areas as well, i.e. they can show some

steps, which is no sign of a malfunctioning

learning process. As we can also see in fig.

4.2, a well-suited representation can make

any slightly decreasing learning curve look

good – so just be cautious when reading

the literature.

4.4.1 When do we stop learning?

Now, the big question is: When do we

stop learning? Generally, the training is

stopped when the user in front of the learn-

ing computer "thinks" the error was small

enough. Indeed, there is no easy answer

and thus I can once again only give you

something to think about, which, however,

depends on a more objective view on the

comparison of several learning curves.

Confidence in the results, for example, is

boosted, when the network always reaches objectivity
nearly the same final error-rate for di�er-

ent random initializations – so repeated

initialization and training will provide a

more objective result.

On the other hand, it can be possible that

a curve descending fast in the beginning

can, after a longer time of learning, be

overtaken by another curve: This can indi-

cate that either the learning rate of the

worse curve was too high or the worse

curve itself simply got stuck in a local min-

imum, but was the first to find it.

Remember: Larger error values are worse

than the small ones.

But, in any case, note: Many people only

generate a learning curve in respect of the

training data (and then they are surprised

that only a few things will work) – but for

reasons of objectivity and clarity it should

not be forgotten to plot the verification

data on a second learning curve, which

generally provides values that are slightly

worse and with stronger oscillation. But

with good generalization the curve can de-

crease, too.

When the network eventually begins to

memorize the samples, the shape of the

learning curve can provide an indication:

If the learning curve of the verification

samples is suddenly and rapidly rising

while the learning curve of the verification
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Figure 4.2: All four illustrations show the same (idealized, because very smooth) learning curve.
Note the alternating logarithmic and linear scalings! Also note the small "inaccurate spikes" visible
in the sharp bend of the curve in the first and second diagram from bottom.
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data is continuously falling, this could indi-

cate memorizing and a generalization get-

ting poorer and poorer. At this point it

could be decided whether the network has

already learned well enough at the next

point of the two curves, and maybe the

final point of learning is to be applied

here (this procedure is called early stop-
ping).

Once again I want to remind you that they

are all acting as indicators and not to draw

If-Then conclusions.

4.5 Gradient optimization
procedures

In order to establish the mathematical ba-

sis for some of the following learning pro-

cedures I want to explain briefly what is

meant by gradient descent: the backpro-
pagation of error learning procedure, for

example, involves this mathematical basis

and thus inherits the advantages and dis-

advantages of the gradient descent.

Gradient descent procedures are generally

used where we want to maximize or mini-

mize n-dimensional functions. Due to clar-

ity the illustration (fig. 4.3 on the next

page) shows only two dimensions, but prin-

cipally there is no limit to the number of

dimensions.

The gradient is a vector g that is de-

fined for any di�erentiable point of a func-

tion, that points from this point exactly

towards the steepest ascent and indicates

the gradient in this direction by means

of its norm |g|. Thus, the gradient is a

generalization of the derivative for multi-
dimensional functions. Accordingly, the

negative gradient ≠g exactly points to-

wards the steepest descent. The gradient

operator Ò is referred to as nabla op- JÒ

gradient is
multi-dim.
derivative

erator, the overall notation of the the

gradient g of the point (x, y) of a two-

dimensional function f being g(x, y) =
Òf(x, y).
Definition 4.14 (Gradient). Let g be

a gradient. Then g is a vector with n
components that is defined for any point

of a (di�erential) n-dimensional function

f(x1, x2, . . . , xn). The gradient operator

notation is defined as

g(x1, x2, . . . , xn) = Òf(x1, x2, . . . , xn).

g directs from any point of f towards

the steepest ascent from this point, with

|g| corresponding to the degree of this as-

cent.

Gradient descent means to going downhill
in small steps from any starting point of

our function towards the gradient g (which

means, vividly speaking, the direction to

which a ball would roll from the starting

point), with the size of the steps being pro-

portional to |g| (the steeper the descent,

the longer the steps). Therefore, we move

slowly on a flat plateau, and on a steep as-

cent we run downhill rapidly. If we came

into a valley, we would - depending on the

size of our steps - jump over it or we would

return into the valley across the opposite

hillside in order to come closer and closer

to the deepest point of the valley by walk-

ing back and forth, similar to our ball mov-

ing within a round bowl.
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Figure 4.3: Visualization of the gradient descent on a two-dimensional error function. We
move forward in the opposite direction of g, i.e. with the steepest descent towards the lowest
point, with the step width being proportional to |g| (the steeper the descent, the faster the
steps). On the left the area is shown in 3D, on the right the steps over the contour lines are
shown in 2D. Here it is obvious how a movement is made in the opposite direction of g towards
the minimum of the function and continuously slows down proportionally to |g|. Source:
http://webster.fhs-hagenberg.ac.at/staff/sdreisei/Teaching/WS2001-2002/

PatternClassification/graddescent.pdf

Definition 4.15 (Gradient descent).

Let f be an n-dimensional function andWe go
towards the

gradient
s = (s1, s2, . . . , sn) the given starting

point. Gradient descent means going

from f(s) against the direction of g, i.e.

towards ≠g with steps of the size of |g|

towards smaller and smaller values of f .

Gradient descent procedures are not an er-

rorless optimization procedure at all (as

we will see in the following sections) – how-

ever, they work still well on many prob-

lems, which makes them an optimization

paradigm that is frequently used. Anyway,

let us have a look on their potential disad-

vantages so we can keep them in mind a

bit.

4.5.1 Gradient procedures
incorporate several problems

As already implied in section 4.5, the gra-

dient descent (and therefore the backpro-

pagation) is promising but not foolproof.

One problem, is that the result does not

always reveal if an error has occurred. gradient
descent
with errors

4.5.1.1 Often, gradient descents
converge against suboptimal
minima

Every gradient descent procedure can, for

example, get stuck within a local mini-

mum (part a of fig. 4.4 on the facing page).
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Figure 4.4: Possible errors during a gradient descent: a) Detecting bad minima, b) Quasi-standstill
with small gradient, c) Oscillation in canyons, d) Leaving good minima.

This problem is increasing proportionally

to the size of the error surface, and there

is no universal solution. In reality, one

cannot know if the optimal minimum is

reached and considers a training success-

ful, if an acceptable minimum is found.

4.5.1.2 Flat plataeus on the error
surface may cause training
slowness

When passing a flat plateau, for instance,

the gradient also becomes negligibly small

because there is hardly a descent (part b

of fig. 4.4), which requires many further

steps. A hypothetically possible gradient

of 0 would completely stop the descent.

4.5.1.3 Even if good minima are
reached, they may be left
afterwards

On the other hand the gradient is very

large at a steep slope so that large steps

can be made and a good minimum can pos-

sibly be missed (part d of fig. 4.4).

4.5.1.4 Steep canyons in the error
surface may cause oscillations

A sudden alternation from one very strong

negative gradient to a very strong positive

one can even result in oscillation (part c

of fig. 4.4). In nature, such an error does

not occur very often so that we can think

about the possibilities b and d.

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 63



Chapter 4 Fundamentals on learning and training samples (fundamental) dkriesel.com

4.6 Exemplary problems allow
for testing self-coded
learning strategies

We looked at learning from the formal

point of view – not much yet but a little.

Now it is time to look at a few exemplary

problem you can later use to test imple-

mented networks and learning rules.

4.6.1 Boolean functions

A popular example is the one that did

not work in the nineteen-sixties: the XOR

function (B2
æ B1

). We need a hidden

neuron layer, which we have discussed in

detail. Thus, we need at least two neu-

rons in the inner layer. Let the activation

function in all layers (except in the input

layer, of course) be the hyperbolic tangent.

Trivially, we now expect the outputs 1.0
or ≠1.0, depending on whether the func-

tion XOR outputs 1 or 0 - and exactly

here is where the first beginner’s mistake

occurs.

For outputs close to 1 or -1, i.e. close to

the limits of the hyperbolic tangent (or

in case of the Fermi function 0 or 1), we

need very large network inputs. The only

chance to reach these network inputs are

large weights, which have to be learned:

The learning process is largely extended.

Therefore it is wiser to enter the teaching

inputs 0.9 or ≠0.9 as desired outputs or

to be satisfied when the network outputs

those values instead of 1 and ≠1.

i1 i2 i3 �

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Table 4.1: Illustration of the parity function
with three inputs.

Another favourite example for singlelayer

perceptrons are the boolean functions

AND and OR.

4.6.2 The parity function

The parity function maps a set of bits to 1

or 0, depending on whether an even num-

ber of input bits is set to 1 or not. Ba-

sically, this is the function Bn
æ B1

. It

is characterized by easy learnability up to

approx. n = 3 (shown in table 4.1), but

the learning e�ort rapidly increases from

n = 4. The reader may create a score ta-

ble for the 2-bit parity function. What is

conspicuous?

4.6.3 The 2-spiral problem

As a training sample for a function let

us take two spirals coiled into each other

(fig. 4.5 on the facing page) with the

function certainly representing a mapping
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Figure 4.5: Illustration of the training samples
of the 2-spiral problem

R2
æ B1

. One of the spirals is assigned

to the output value 1, the other spiral to

0. Here, memorizing does not help. The

network has to understand the mapping it-

self. This example can be solved by means

of an MLP, too.

4.6.4 The checkerboard problem

We again create a two-dimensional func-

tion of the form R2
æ B1

and specify

checkered training samples (fig. 4.6) with

one colored field representing 1 and all the

rest of them representing 0. The di�culty

increases proportionally to the size of the

function: While a 3◊3 field is easy to learn,

the larger fields are more di�cult (here

we eventually use methods that are more

Figure 4.6: Illustration of training samples for
the checkerboard problem

suitable for this kind of problems than the

MLP).

The 2-spiral problem is very similar to the

checkerboard problem, only that, mathe-

matically speaking, the first problem is us-

ing polar coordinates instead of Cartesian

coordinates. I just want to introduce as

an example one last trivial case: the iden-

tity.

4.6.5 The identity function

By using linear activation functions the

identity mapping from R1
to R1

(of course

only within the parameters of the used ac-

tivation function) is no problem for the

network, but we put some obstacles in its

way by using our sigmoid functions so that
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it would be di�cult for the network to

learn the identity. Just try it for the fun

of it.

Now, it is time to hava a look at our first

mathematical learning rule.

4.6.6 There are lots of other
exemplary problems

For lots and lots of further exemplary prob-

lems, I want to recommend the technical

report written by prechelt [Pre94] which

also has been named in the sections about

error measurement procedures..

4.7 The Hebbian learning rule
is the basis for most
other learning rules

In 1949, Donald O. Hebb formulated

the Hebbian rule [Heb49] which is the ba-

sis for most of the more complicated learn-

ing rules we will discuss in this text. We

distinguish between the original form and

the more general form, which is a kind of

principle for other learning rules.

4.7.1 Original rule

Definition 4.16 (Hebbian rule). "If neu-

ron j receives an input from neuron i and

if both neurons are strongly active at the

same time, then increase the weight wi,j

(i.e. the strength of the connection be-

tween i and j)." Mathematically speaking,

the rule is:early
form of
the rule

�wi,j ≥ ÷oiaj (4.5)

with �wi,j being the change in weight
from i to j , which is proportional to the J�wi,j
following factors:

Û the output oi of the predecessor neu-

ron i, as well as,

Û the activation aj of the successor neu-

ron j,

Û a constant ÷, i.e. the learning rate,

which will be discussed in section

5.4.3.

The changes in weight �wi,j are simply

added to the weight wi,j .

Why am I speaking twice about activation,

but in the formula I am using oi and aj , i.e.

the output of neuron of neuron i and the ac-

tivation of neuron j? Remember that the

identity is often used as output function

and therefore ai and oi of a neuron are of-

ten the same. Besides, Hebb postulated

his rule long before the specification of

technical neurons. Considering that this

learning rule was preferred in binary acti-

vations, it is clear that with the possible

activations (1, 0) the weights will either in-

crease or remain constant. Sooner or later weights
go ad
infinitum

they would go ad infinitum, since they can

only be corrected "upwards" when an error

occurs. This can be compensated by using

the activations (-1,1)
2
. Thus, the weights

are decreased when the activation of the

predecessor neuron dissents from the one

of the successor neuron, otherwise they are

increased.

2 But that is no longer the "original version" of the
Hebbian rule.
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4.7.2 Generalized form

Most of the learning rules discussed before

are a specialization of the mathematically

more general form [MR86] of the Hebbian

rule.

Definition 4.17 (Hebbian rule, more gen-

eral). The generalized form of the
Hebbian Rule only specifies the propor-

tionality of the change in weight to the

product of two undefined functions, but

with defined input values.

�wi,j = ÷ · h(oi, wi,j) · g(aj , tj) (4.6)

Thus, the product of the functions

Û g(aj , tj) and

Û h(oi, wi,j)

Û as well as the constant learning rate

÷

results in the change in weight. As you

can see, h receives the output of the pre-

decessor cell oi as well as the weight from

predecessor to successor wi,j while g ex-

pects the actual and desired activation of

the successor aj and tj (here t stands for

the aforementioned teaching input). As al-

ready mentioned g and h are not specified

in this general definition. Therefore, we

will now return to the path of specializa-

tion we discussed before equation 4.6. Af-

ter we have had a short picture of what

a learning rule could look like and of our

thoughts about learning itself, we will be

introduced to our first network paradigm

including the learning procedure.

Exercises

Exercise 7. Calculate the average value

µ and the standard deviation ‡ for the fol-

lowing data points.

p1 = (2, 2, 2)
p2 = (3, 3, 3)
p3 = (4, 4, 4)
p4 = (6, 0, 0)
p5 = (0, 6, 0)
p6 = (0, 0, 6)
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Chapter 5

The perceptron, backpropagation and its
variants

A classic among the neural networks. If we talk about a neural network, then
in the majority of cases we speak about a percepton or a variation of it.

Perceptrons are multilayer networks without recurrence and with fixed input
and output layers. Description of a perceptron, its limits and extensions that

should avoid the limitations. Derivation of learning procedures and discussion
of their problems.

As already mentioned in the history of neu-

ral networks, the perceptron was described

by Frank Rosenblatt in 1958 [Ros58].

Initially, Rosenblatt defined the already

discussed weighted sum and a non-linear

activation function as components of the

perceptron.

There is no established definition for a per-

ceptron, but most of the time the term

is used to describe a feedforward network
with shortcut connections. This network

has a layer of scanner neurons (retina)

with statically weighted connections to

the following layer and is called input

layer (fig. 5.1 on the next page); but the

weights of all other layers are allowed to be

changed. All neurons subordinate to the

retina are pattern detectors. Here we ini-

tially use a binary perceptron with every

output neuron having exactly two possi-

ble output values (e.g. {0, 1} or {≠1, 1}).

Thus, a binary threshold function is used

as activation function, depending on the

threshold value � of the output neuron.

In a way, the binary activation function

represents an IF query which can also

be negated by means of negative weights.

The perceptron can thus be used to ac-

complish true logical information process-

ing.

Whether this method is reasonable is an-

other matter – of course, this is not the

easiest way to achieve Boolean logic. I just

want to illustrate that perceptrons can

be used as simple logical components and

that, theoretically speaking, any Boolean

function can be realized by means of per-

ceptrons being connected in series or in-

terconnected in a sophisticated way. But
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Abbildung 5.1: Aufbau eines Perceptrons mit einer Schicht variabler Verbindungen in verschiede-
nen Ansichten. Die durchgezogene Gewichtsschicht in den unteren beiden Abbildungen ist trainier-
bar.
Oben: Am Beispiel der Informationsabtastung im Auge.
Mitte: Skizze desselben mit eingezeichneter fester Gewichtsschicht unter Verwendung der definier-
ten funktionsbeschreibenden Designs für Neurone.
Unten: Ohne eingezeichnete feste Gewichtsschicht, mit Benennung der einzelnen Neuronen nach
unserer Konvention. Wir werden die feste Gewichtschicht im weiteren Verlauf der Arbeit nicht mehr
betrachten.
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Figure 5.1: Architecture of a perceptron with one layer of variable connections in di�erent views.
The solid-drawn weight layer in the two illustrations on the bottom can be trained.
Left side: Example of scanning information in the eye.
Right side, upper part: Drawing of the same example with indicated fixed-weight layer using the
defined designs of the functional descriptions for neurons.
Right side, lower part: Without indicated fixed-weight layer, with the name of each neuron
corresponding to our convention. The fixed-weight layer will no longer be taken into account in the
course of this work.
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we will see that this is not possible without

connecting them serially. Before providing

the definition of the perceptron, I want to

define some types of neurons used in this

chapter.

Definition 5.1 (Input neuron). An in-
put neuron is an identity neuron. It

exactly forwards the information received.

Thus, it represents the identity function,input neuron
only forwards

data
which should be indicated by the symbol

�. Therefore the input neuron is repre-

sented by the symbol GFED@ABC� .

Definition 5.2 (Information process-

ing neuron). Information processing
neurons somehow process the input infor-

mation, i.e. do not represent the identity

function. A binary neuron sums up all

inputs by using the weighted sum as prop-

agation function, which we want to illus-

trate by the sign �. Then the activation

function of the neuron is the binary thresh-

old function, which can be illustrated by

. This leads us to the complete de-

piction of information processing neurons,

namely WVUTPQRS�
. Other neurons that use

the weighted sum as propagation function

but the activation functions hyperbolic tan-
gent or Fermi function, or with a sepa-

rately defined activation function fact, are

similarly represented by

WVUTPQRS�
Tanh

WVUTPQRS�
Fermi

ONMLHIJK�
fact .

These neurons are also referred to as

Fermi neurons or Tanh neuron.

Now that we know the components of a

perceptron we should be able to define

it.

Definition 5.3 (Perceptron). The per-
ceptron (fig. 5.1 on the facing page) is

1
a

feedforward network containing a retina
that is used only for data acquisition and

which has fixed-weighted connections with

the first neuron layer (input layer). The

fixed-weight layer is followed by at least

one trainable weight layer. One neuron

layer is completely linked with the follow-

ing layer. The first layer of the percep-

tron consists of the input neurons defined

above.

A feedforward network often contains

shortcuts which does not exactly corre-

spond to the original description and there-

fore is not included in the definition. We

can see that the retina is not included in

the lower part of fig. 5.1. As a matter

of fact the first neuron layer is often un-

derstood (simplified and su�cient for this

method) as input layer, because this layer retina is
unconsideredonly forwards the input values. The retina

itself and the static weights behind it are

no longer mentioned or displayed, since

they do not process information in any

case. So, the depiction of a perceptron

starts with the input neurons.

1 It may confuse some readers that I claim that there
is no definition of a perceptron but then define the
perceptron in the following section. I therefore
suggest keeping my definition in the back of your
mind and just take it for granted in the course of
this work.
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SNIPE: The methods

setSettingsTopologyFeedForward
and the variation -WithShortcuts in

a NeuralNetworkDescriptor-Instance

apply settings to a descriptor, which

are appropriate for feedforward networks

or feedforward networks with shortcuts.

The respective kinds of connections are

allowed, all others are not, and fastprop is

activated.

5.1 The singlelayer
perceptron provides only
one trainable weight layer

Here, connections with trainable weights

go from the input layer to an output

neuron �, which returns the information1 trainable
layer whether the pattern entered at the input

neurons was recognized or not. Thus, a

singlelayer perception (abbreviated SLP)

has only one level of trainable weights

(fig. 5.1 on page 72).

Definition 5.4 (Singlelayer perceptron).

A singlelayer perceptron (SLP) is a

perceptron having only one layer of vari-

able weights and one layer of output neu-

rons �. The technical view of an SLP is

shown in fig. 5.2.

Certainly, the existence of several output

neurons �1, �2, . . . , �n does not consider-

ably change the concept of the perceptronImportant!
(fig. 5.3): A perceptron with several out-

put neurons can also be regarded as sev-

eral di�erent perceptrons with the same

input.
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Figure 5.2: A singlelayer perceptron with two in-
put neurons and one output neuron. The net-
work returns the output by means of the ar-
row leaving the network. The trainable layer of
weights is situated in the center (labeled). As a
reminder, the bias neuron is again included here.
Although the weight wBIAS,� is a normal weight
and also treated like this, I have represented it
by a dotted line – which significantly increases
the clarity of larger networks. In future, the bias
neuron will no longer be included.
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Figure 5.3: Singlelayer perceptron with several
output neurons
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Figure 5.4: Two singlelayer perceptrons for
Boolean functions. The upper singlelayer per-
ceptron realizes an AND, the lower one realizes
an OR. The activation function of the informa-
tion processing neuron is the binary threshold
function. Where available, the threshold values
are written into the neurons.

The Boolean functions AND and OR shown

in fig. 5.4 are trivial examples that can eas-

ily be composed.

Now we want to know how to train a single-

layer perceptron. We will therefore at first

take a look at the perceptron learning al-

gorithm and then we will look at the delta

rule.

5.1.1 Perceptron learning algorithm
and convergence theorem

The original perceptron learning algo-
rithm with binary neuron activation func-

tion is described in alg. 1. It has been

proven that the algorithm converges in

finite time – so in finite time the per-

ceptron can learn anything it can repre-

sent (perceptron convergence theorem,

[Ros62]). But please do not get your hopes

up too soon! What the perceptron is capa-

ble to represent will be explored later.

During the exploration of linear separabil-

ity of problems we will cover the fact that

at least the singlelayer perceptron unfor-

tunately cannot represent a lot of prob-

lems.

5.1.2 The delta rule as a gradient
based learning strategy for
SLPs

In the following we deviate from our bi-

nary threshold value as activation function

because at least for backpropagation of er-
ror we need, as you will see, a di�eren-

fact now di�er-
entiabletiable or even a semi-linear activation func-

tion. For the now following delta rule (like

backpropagation derived in [MR86]) it is

not always necessary but useful. This fact,

however, will also be pointed out in the

appropriate part of this work. Compared

with the aforementioned perceptron learn-

ing algorithm, the delta rule has the ad-

vantage to be suitable for non-binary acti-

vation functions and, being far away from
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1: while ÷p œ P and error too large do

2: Input p into the network, calculate output y {P set of training patterns}

3: for all output neurons � do

4: if y� = t� then

5: Output is okay, no correction of weights

6: else

7: if y� = 0 then

8: for all input neurons i do

9: wi,� := wi,� + oi {...increase weight towards � by oi}

10: end for

11: end if

12: if y� = 1 then

13: for all input neurons i do

14: wi,� := wi,� ≠ oi {...decrease weight towards � by oi}

15: end for

16: end if

17: end if

18: end for

19: end while

Algorithm 1: Perceptron learning algorithm. The perceptron learning algorithm

reduces the weights to output neurons that return 1 instead of 0, and in the inverse

case increases weights.
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the learning target, to automatically learn

faster.

Suppose that we have a singlelayer percep-

tron with randomly set weights which we

want to teach a function by means of train-

ing samples. The set of these training sam-

ples is called P . It contains, as already de-

fined, the pairs (p, t) of the training sam-

ples p and the associated teaching input t.
I also want to remind you that

Û x is the input vector and

Û y is the output vector of a neural net-

work,

Û output neurons are referred to as

�1, �2, . . . , �|O|,

Û i is the input and

Û o is the output of a neuron.

Additionally, we defined that

Û the error vector Ep represents the dif-

ference (t≠y) under a certain training

sample p.

Û Furthermore, let O be the set of out-

put neurons and

Û I be the set of input neurons.

Another naming convention shall be that,

for example, for an output o and a teach-

ing input t an additional index p may be

set in order to indicate that these values

are pattern-specific. Sometimes this will

considerably enhance clarity.

Now our learning target will certainly be,

that for all training samples the output y

of the network is approximately the de-

sired output t, i.e. formally it is true

that

’p : y ¥ t or ’p : Ep ¥ 0.

This means we first have to understand the

total error Err as a function of the weights:

The total error increases or decreases de-

pending on how we change the weights.

Definition 5.5 (Error function). The er-
ror function JErr(W )

Err : W æ R

regards the set
2

of weights W as a vector

and maps the values onto the normalized error as
functionoutput error (normalized because other-

wise not all errors can be mapped onto

one single e œ R to perform a gradient de-

scent). It is obvious that a specific error
function can analogously be generated JErrp(W )
for a single pattern p.

As already shown in section 4.5, gradient

descent procedures calculate the gradient

of an arbitrary but finite-dimensional func-

tion (here: of the error function Err(W ))
and move down against the direction of

the gradient until a minimum is reached.

Err(W ) is defined on the set of all weights

which we here regard as the vector W .

So we try to decrease or to minimize the

error by simply tweaking the weights –

thus one receives information about how

to change the weights (the change in all

2 Following the tradition of the literature, I previ-
ously defined W as a weight matrix. I am aware
of this conflict but it should not bother us here.

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 77



Chapter 5 The perceptron, backpropagation and its variants dkriesel.com

−2
−1

 0
 1

 2
w1

−2
−1

 0
 1

 2

w2

 0
 1
 2
 3
 4
 5

Figure 5.5: Exemplary error surface of a neural
network with two trainable connections w1 und
w2. Generally, neural networks have more than
two connections, but this would have made the
illustration too complex. And most of the time
the error surface is too craggy, which complicates
the search for the minimum.

weights is referred to as �W ) by calcu-

lating the gradient ÒErr(W ) of the error

function Err(W ):

�W ≥ ≠ÒErr(W ). (5.1)

Due to this relation there is a proportional-

ity constant ÷ for which equality holds (÷
will soon get another meaning and a real

practical use beyond the mere meaning of

a proportionality constant. I just ask the

reader to be patient for a while.):

�W = ≠÷ÒErr(W ). (5.2)

To simplify further analysis, we now

rewrite the gradient of the error-function

according to all weights as an usual par-

tial derivative according to a single weight

wi,� (the only variable weights exists be-

tween the hidden and the output layer �).

Thus, we tweak every single weight and ob-

serve how the error function changes, i.e.

we derive the error function according to

a weight wi,� and obtain the value �wi,�
of how to change this weight.

�wi,� = ≠÷
ˆErr(W )

ˆwi,�
. (5.3)

Now the following question arises: How

is our error function defined exactly? It

is not good if many results are far away

from the desired ones; the error function

should then provide large values – on the

other hand, it is similarly bad if many

results are close to the desired ones but

there exists an extremely far outlying re-

sult. The squared distance between the

output vector y and the teaching input t
appears adequate to our needs. It provides

the error Errp that is specific for a train-

ing sample p over the output of all output

neurons �:

Errp(W ) = 1
2

ÿ

�œO

(tp,� ≠ yp,�)2. (5.4)

Thus, we calculate the squared di�erence

of the components of the vectors t and

y, given the pattern p, and sum up these

squares. The summation of the specific er-

rors Errp(W ) of all patterns p then yields

the definition of the error Err and there-
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fore the definition of the error function

Err(W ):

Err(W ) =
ÿ

pœP

Errp(W ) (5.5)

= 1
2

sum over all p˙ ˝¸ ˚
ÿ

pœP

Q

a
ÿ

�œO

(tp,� ≠ yp,�)2

R

b

¸ ˚˙ ˝
sum over all �

.

(5.6)

The observant reader will certainly wonder

where the factor
1
2 in equation 5.4 on the

preceding page suddenly came from and

why there is no root in the equation, as

this formula looks very similar to the Eu-

clidean distance. Both facts result from

simple pragmatics: Our intention is to

minimize the error. Because the root func-

tion decreases with its argument, we can

simply omit it for reasons of calculation

and implementation e�orts, since we do

not need it for minimization. Similarly, it

does not matter if the term to be mini-

mized is divided by 2: Therefore I am al-

lowed to multiply by
1
2 . This is just done

so that it cancels with a 2 in the course of

our calculation.

Now we want to continue deriving the

delta rule for linear activation functions.

We have already discussed that we tweak

the individual weights wi,� a bit and see

how the error Err(W ) is changing – which

corresponds to the derivative of the er-

ror function Err(W ) according to the very

same weight wi,�. This derivative cor-

responds to the sum of the derivatives

of all specific errors Errp according to

this weight (since the total error Err(W )

results from the sum of the specific er-

rors):

�wi,� = ≠÷
ˆErr(W )

ˆwi,�
(5.7)

=
ÿ

pœP

≠÷
ˆErrp(W )

ˆwi,�
. (5.8)

Once again I want to think about the ques-

tion of how a neural network processes

data. Basically, the data is only trans-

ferred through a function, the result of the

function is sent through another one, and

so on. If we ignore the output function,

the path of the neuron outputs oi1 and oi2 ,

which the neurons i1 and i2 entered into a

neuron �, initially is the propagation func-

tion (here weighted sum), from which the

network input is going to be received. This

is then sent through the activation func-

tion of the neuron � so that we receive

the output of this neuron which is at the

same time a component of the output vec-

tor y:

net� æ fact

= fact(net�)
= o�

= y�.

As we can see, this output results from

many nested functions:

o� = fact(net�) (5.9)

= fact(oi1 · wi1,� + oi2 · wi2,�). (5.10)

It is clear that we could break down the

output into the single input neurons (this

is unnecessary here, since they do not
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process information in an SLP). Thus,

we want to calculate the derivatives of

equation 5.8 on the preceding page and

due to the nested functions we can apply

the chain rule to factorize the derivative
ˆErrp(W )

ˆwi,�
in equation 5.8 on the previous

page.

ˆErrp(W )
ˆwi,�

= ˆErrp(W )
ˆop,�

·
ˆop,�
ˆwi,�

. (5.11)

Let us take a look at the first multiplica-

tive factor of the above equation 5.11

which represents the derivative of the spe-

cific error Errp(W ) according to the out-

put, i.e. the change of the error Errp

with an output op,�: The examination

of Errp (equation 5.4 on page 78) clearly

shows that this change is exactly the dif-

ference between teaching input and out-

put (tp,� ≠ op,�) (remember: Since � is an

output neuron, op,� = yp,�). The closer

the output is to the teaching input, the

smaller is the specific error. Thus we can

replace one by the other. This di�erence

is also called ”p,� (which is the reason for

the name delta rule):

ˆErrp(W )
ˆwi,�

= ≠(tp,� ≠ op,�) ·
ˆop,�
ˆwi,�

(5.12)

= ≠”p,� ·
ˆop,�
ˆwi,�

(5.13)

The second multiplicative factor of equa-

tion 5.11 and of the following one is the

derivative of the output specific to the pat-

tern p of the neuron � according to the

weight wi,�. So how does op,� change

when the weight from i to � is changed?

Due to the requirement at the beginning of

the derivation, we only have a linear acti-

vation function fact, therefore we can just

as well look at the change of the network

input when wi,� is changing:

ˆErrp(W )
ˆwi,�

= ≠”p,� ·
ˆ

q
iœI(op,iwi,�)
ˆwi,�

.

(5.14)

The resulting derivative
ˆ

q
iœI

(op,iwi,�)
ˆwi,�

can now be simplified: The functionq
iœI(op,iwi,�) to be derived consists of

many summands, and only the sum-

mand op,iwi,� contains the variable wi,�,

according to which we derive. Thus,

ˆ
q

iœI
(op,iwi,�)

ˆwi,�
= op,i and therefore:

ˆErrp(W )
ˆwi,�

= ≠”p,� · op,i (5.15)

= ≠op,i · ”p,�. (5.16)

We insert this in equation 5.8 on the previ-

ous page, which results in our modification

rule for a weight wi,�:

�wi,� = ÷ ·

ÿ

pœP

op,i · ”p,�. (5.17)

However: From the very beginning the

derivation has been intended as an o�ine

rule by means of the question of how to

add the errors of all patterns and how to

learn them after all patterns have been

represented. Although this approach is

mathematically correct, the implementa-

tion is far more time-consuming and, as

we will see later in this chapter, partially
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needs a lot of compuational e�ort during

training.

The "online-learning version" of the delta

rule simply omits the summation and

learning is realized immediately after the

presentation of each pattern, this also sim-

plifies the notation (which is no longer nec-

essarily related to a pattern p):

�wi,� = ÷ · oi · ”�. (5.18)

This version of the delta rule shall be used

for the following definition:

Definition 5.6 (Delta rule). If we deter-

mine, analogously to the aforementioned

derivation, that the function h of the Heb-

bian theory (equation 4.6 on page 67) only

provides the output oi of the predecessor

neuron i and if the function g is the di�er-

ence between the desired activation t� and

the actual activation a�, we will receive

the delta rule, also known as Widrow-
Ho� rule:

�wi,� = ÷ · oi · (t� ≠ a�) = ÷oi”� (5.19)

If we use the desired output (instead of the

activation) as teaching input, and there-

fore the output function of the output neu-

rons does not represent an identity, we ob-

tain

�wi,� = ÷ · oi · (t� ≠ o�) = ÷oi”� (5.20)

and ”� then corresponds to the di�erence

between t� and o�.

In the case of the delta rule, the change

of all weights to an output neuron � is

proportional

In. 1 In. 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

Table 5.1: Definition of the logical XOR. The
input values are shown of the left, the output
values on the right.

Û to the di�erence between the current

activation or output a� or o� and the

corresponding teaching input t�. We

want to refer to this factor as ”� , J”
which is also referred to as "Delta".

Apparently the delta rule only applies for

SLPs, since the formula is always related

to the teaching input, and there is no delta rule
only for SLPteaching input for the inner processing lay-

ers of neurons.

5.2 A SLP is only capable of
representing linearly
separable data

Let f be the XOR function which expects

two binary inputs and generates a binary

output (for the precise definition see ta-

ble 5.1).

Let us try to represent the XOR func-

tion by means of an SLP with two input

neurons i1, i2 and one output neuron �
(fig. 5.6 on the following page).
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Figure 5.6: Sketch of a singlelayer perceptron
that shall represent the XOR function - which is
impossible.

Here we use the weighted sum as propaga-

tion function, a binary activation function

with the threshold value � and the iden-

tity as output function. Depending on i1
and i2, � has to output the value 1 if the

following holds:

net� = oi1wi1,� + oi2wi2,� Ø �� (5.21)

We assume a positive weight wi2,�, the in-

equality 5.21 is then equivalent to

oi1 Ø
1

wi1,�
(�� ≠ oi2wi2,�) (5.22)

With a constant threshold value ��, the

right part of inequation 5.22 is a straight

line through a coordinate system defined

by the possible outputs oi1 und oi2 of the

input neurons i1 and i2 (fig. 5.7).

For a (as required for inequation 5.22) pos-

itive wi2,� the output neuron � fires for

Figure 5.7: Linear separation of n = 2 inputs of
the input neurons i1 and i2 by a 1-dimensional
straight line. A and B show the corners belong-
ing to the sets of the XOR function that are to
be separated.
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n number of

binary

functions

lin.

separable

ones

share

1 4 4 100%
2 16 14 87.5%
3 256 104 40.6%
4 65, 536 1, 772 2.7%
5 4.3 · 109 94, 572 0.002%
6 1.8 · 1019 5, 028, 134 ¥ 0%

Table 5.2: Number of functions concerning n bi-
nary inputs, and number and proportion of the
functions thereof which can be linearly separated.
In accordance with [Zel94,Wid89,Was89].

input combinations lying above the gener-

ated straight line. For a negative wi2,� it

would fire for all input combinations lying

below the straight line. Note that only the

four corners of the unit square are possi-

ble inputs because the XOR function only

knows binary inputs.

In order to solve the XOR problem, we

have to turn and move the straight line so

that input set A = {(0, 0), (1, 1)} is sepa-

rated from input set B = {(0, 1), (1, 0)} –

this is, obviously, impossible.

Generally, the input parameters of n many

input neurons can be represented in an n-

dimensional cube which is separated by anSLP cannot
do everything SLP through an (n≠1)-dimensional hyper-

plane (fig. 5.8). Only sets that can be sep-

arated by such a hyperplane, i.e. which

are linearly separable, can be classified

by an SLP.

Figure 5.8: Linear separation of n = 3 inputs
from input neurons i1, i2 and i3 by 2-dimensional
plane.

Unfortunately, it seems that the percent-

age of the linearly separable problems

rapidly decreases with increasing n (see

table 5.2), which limits the functionality few tasks
are linearly
separable

of the SLP. Additionally, tests for linear

separability are di�cult. Thus, for more

di�cult tasks with more inputs we need

something more powerful than SLP. The

XOR problem itself is one of these tasks,

since a perceptron that is supposed to rep-

resent the XOR function already needs a

hidden layer (fig. 5.9 on the next page).

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 83



Chapter 5 The perceptron, backpropagation and its variants dkriesel.com

GFED@ABC�

1
A

A

A

A

  

A

A

A

A

1
1

1

1

1

1

1

1

1

⇠⇠

1

1

1

1

1

1

1

1

GFED@ABC�

1}
}

}

}

~~
}

}

}

}

1�
�

�

�

�

�

�

�

⌃⌃�

�

�

�

�

�

�

�

GFED@ABC1.5

≠2
✏✏

GFED@ABC0.5

✏✏

XOR

Figure 5.9: Neural network realizing the XOR
function. Threshold values (as far as they are
existing) are located within the neurons.

5.3 A multilayer perceptron
contains more trainable
weight layers

A perceptron with two or more trainable

weight layers (called multilayer perceptron

or MLP) is more powerful than an SLP. As

we know, a singlelayer perceptron can di-

vide the input space by means of a hyper-

plane (in a two-dimensional input space

by means of a straight line). A two-

stage perceptron (two trainable weight lay-more planes
ers, three neuron layers) can classify con-
vex polygons by further processing these

straight lines, e.g. in the form "recognize

patterns lying above straight line 1, be-

low straight line 2 and below straight line

3". Thus, we – metaphorically speaking

- took an SLP with several output neu-

rons and "attached" another SLP (upper

part of fig. 5.10 on the facing page). A

multilayer perceptron represents an uni-
versal function approximator, which

is proven by the Theorem of Cybenko
[Cyb89].

Another trainable weight layer proceeds

analogously, now with the convex poly-

gons. Those can be added, subtracted or

somehow processed with other operations

(lower part of fig. 5.10 on the next page).

Generally, it can be mathematically

proven that even a multilayer perceptron

with one layer of hidden neurons can ar-

bitrarily precisely approximate functions

with only finitely many discontinuities as

well as their first derivatives. Unfortu-

nately, this proof is not constructive and

therefore it is left to us to find the correct

number of neurons and weights.

In the following we want to use a

widespread abbreviated form for di�erent

multilayer perceptrons: We denote a two-

stage perceptron with 5 neurons in the in-

put layer, 3 neurons in the hidden layer

and 4 neurons in the output layer as a 5-

3-4-MLP.

Definition 5.7 (Multilayer perceptron).

Perceptrons with more than one layer of

variably weighted connections are referred

to as multilayer perceptrons (MLP).

An n-layer or n-stage perceptron has

thereby exactly n variable weight layers

and n + 1 neuron layers (the retina is dis-

regarded here) with neuron layer 1 being

the input layer.

Since three-stage perceptrons can classify

sets of any form by combining and sepa- 3-stage
MLP is
su�cient
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Figure 5.10: We know that an SLP represents a straight line. With 2 trainable weight layers,
several straight lines can be combined to form convex polygons (above). By using 3 trainable
weight layers several polygons can be formed into arbitrary sets (below).
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n classifiable sets

1 hyperplane

2 convex polygon

3 any set

4 any set as well, i.e. no

advantage

Table 5.3: Representation of which perceptron
can classify which types of sets with n being the
number of trainable weight layers.

rating arbitrarily many convex polygons,

another step will not be advantageous

with respect to function representations.

Be cautious when reading the literature:

There are many di�erent definitions of

what is counted as a layer. Some sources

count the neuron layers, some count the

weight layers. Some sources include the

retina, some the trainable weight layers.

Some exclude (for some reason) the out-

put neuron layer. In this work, I chose

the definition that provides, in my opinion,

the most information about the learning

capabilities – and I will use it cosistently.

Remember: An n-stage perceptron has ex-

actly n trainable weight layers. You can

find a summary of which perceptrons can

classify which types of sets in table 5.3.

We now want to face the challenge of train-

ing perceptrons with more than one weight

layer.

5.4 Backpropagation of error
generalizes the delta rule
to allow for MLP training

Next, I want to derive and explain the

backpropagation of error learning rule

(abbreviated: backpropagation, backprop

or BP), which can be used to train multi-

stage perceptrons with semi-linear3
activa-

tion functions. Binary threshold functions

and other non-di�erentiable functions are

no longer supported, but that doesn’t mat-

ter: We have seen that the Fermi func-

tion or the hyperbolic tangent can arbi-

trarily approximate the binary threshold

function by means of a temperature pa-

rameter T . To a large extent I will fol-

low the derivation according to [Zel94] and

[MR86]. Once again I want to point out

that this procedure had previously been

published by Paul Werbos in [Wer74]

but had consideraby less readers than in

[MR86].

Backpropagation is a gradient descent pro-

cedure (including all strengths and weak-

nesses of the gradient descent) with the

error function Err(W ) receiving all n
weights as arguments (fig. 5.5 on page 78)

and assigning them to the output error, i.e.

being n-dimensional. On Err(W ) a point

of small error or even a point of the small-

est error is sought by means of the gradi-

ent descent. Thus, in analogy to the delta

rule, backpropagation trains the weights

of the neural network. And it is exactly

3 Semilinear functions are monotonous and di�eren-
tiable – but generally they are not linear.
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the delta rule or its variable ”i for a neu-

ron i which is expanded from one trainable

weight layer to several ones by backpropa-

gation.

5.4.1 The derivation is similar to
the one of the delta rule, but
with a generalized delta

Let us define in advance that the network

input of the individual neurons i results

from the weighted sum. Furthermore, as

with the derivation of the delta rule, let

op,i, netp,i etc. be defined as the already

familiar oi, neti, etc. under the input pat-

tern p we used for the training. Let the

output function be the identity again, thus

oi = fact(netp,i) holds for any neuron i.
Since this is a generalization of the delta

rule, we use the same formula framework

as with the delta rule (equation 5.20 ongeneral-
ization

of ”

page 81). As already indicated, we have

to generalize the variable ” for every neu-

ron.

First of all: Where is the neuron for which

we want to calculate ”? It is obvious to

select an arbitrary inner neuron h having

a set K of predecessor neurons k as well

as a set of L successor neurons l, which

are also inner neurons (see fig. 5.11). It

is therefore irrelevant whether the prede-

cessor neurons are already the input neu-

rons.

Now we perform the same derivation as

for the delta rule and split functions by

means the chain rule. I will not discuss

this derivation in great detail, but the prin-

cipal is similar to that of the delta rule (the
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Figure 5.11: Illustration of the position of our
neuron h within the neural network. It is lying in
layer H, the preceding layer is K, the subsequent
layer is L.

di�erences are, as already mentioned, in

the generalized ”). We initially derive the

error function Err according to a weight

wk,h.

ˆErr(wk,h)
ˆwk,h

= ˆErr

ˆneth¸ ˚˙ ˝
=≠”h

·
ˆneth

ˆwk,h
(5.23)

The first factor of equation 5.23 is ≠”h,

which we will deal with later in this text.

The numerator of the second factor of the

equation includes the network input, i.e.

the weighted sum is included in the numer-

ator so that we can immediately derive it.

Again, all summands of the sum drop out

apart from the summand containing wk,h.

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 87



Chapter 5 The perceptron, backpropagation and its variants dkriesel.com

This summand is referred to as wk,h ·ok. If

we calculate the derivative, the output of

neuron k becomes:

ˆneth

ˆwk,h
= ˆ

q
kœK wk,hok

ˆwk,h
(5.24)

= ok (5.25)

As promised, we will now discuss the ≠”h

of equation 5.23 on the previous page,

which is split up again according of the

chain rule:

”h = ≠
ˆErr

ˆneth
(5.26)

= ≠
ˆErr

ˆoh
·

ˆoh

ˆneth
(5.27)

The derivation of the output according to

the network input (the second factor in

equation 5.27) clearly equals the deriva-

tion of the activation function according

to the network input:

ˆoh

ˆneth
= ˆfact(neth)

ˆneth
(5.28)

= fact
Õ(neth) (5.29)

Consider this an important passage! We

now analogously derive the first factor in

equation 5.27. Therefore, we have to point

out that the derivation of the error func-

tion according to the output of an inner

neuron layer depends on the vector of all

network inputs of the next following layer.

This is reflected in equation 5.30:

≠
ˆErr

ˆoh
= ≠

ˆErr(netl1 , . . . , netl|L|)
ˆoh

(5.30)

According to the definition of the multi-

dimensional chain rule, we immediately ob-

tain equation 5.31:

≠
ˆErr

ˆoh
=

ÿ

lœL

3
≠

ˆErr

ˆnetl
·

ˆnetl

ˆoh

4
(5.31)

The sum in equation 5.31 contains two fac-

tors. Now we want to discuss these factors

being added over the subsequent layer L.

We simply calculate the second factor in

the following equation 5.33:

ˆnetl

ˆoh
= ˆ

q
hœH wh,l · oh

ˆoh
(5.32)

= wh,l (5.33)

The same applies for the first factor accord-

ing to the definition of our ”:

≠
ˆErr

ˆnetl
= ”l (5.34)

Now we insert:

∆ ≠
ˆErr

ˆoh
=

ÿ

lœL

”lwh,l (5.35)

You can find a graphic version of the ”
generalization including all splittings in

fig. 5.12 on the facing page.

The reader might already have noticed

that some intermediate results were shown

in frames. Exactly those intermediate re-

sults were highlighted in that way, which

are a factor in the change in weight of

wk,h. If the aforementioned equations are
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”h

≠
ˆErr
ˆneth

↵↵

✓✓

ˆoh

ˆneth

≠
ˆErr
ˆoh

��

◆◆

f Õ
act(neth) ≠

ˆErr
ˆnetl

q
lœL

ˆnetl

ˆoh

”l
ˆ

q
hœH

wh,l·oh

ˆoh

wh,l

Figure 5.12: Graphical representation of the equations (by equal signs) and chain rule splittings
(by arrows) in the framework of the backpropagation derivation. The leaves of the tree reflect the
final results from the generalization of ”, which are framed in the derivation.
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combined with the highlighted intermedi-

ate results, the outcome of this will be the

wanted change in weight �wk,h to

�wk,h = ÷ok”h with (5.36)

”h = f Õ
act(neth) ·

ÿ

lœL

(”lwh,l)

– of course only in case of h being an inner

neuron (otherweise there would not be a

subsequent layer L).

The case of h being an output neuron has

already been discussed during the deriva-

tion of the delta rule. All in all, the re-

sult is the generalization of the delta rule,

called backpropagation of error :

�wk,h = ÷ok”h with

”h =
I

f Õ
act(neth) · (th ≠ yh) (h outside)

f Õ
act(neth) ·

q
lœL(”lwh,l) (h inside)

(5.37)

In contrast to the delta rule, ” is treated

di�erently depending on whether h is an

output or an inner (i.e. hidden) neuron:

1. If h is an output neuron, then

”p,h = f Õ
act(netp,h) · (tp,h ≠ yp,h)

(5.38)

Thus, under our training pattern p
the weight wk,h from k to h is changed

proportionally according to

Û the learning rate ÷,

Û the output op,k of the predeces-

sor neuron k,

Û the gradient of the activation

function at the position of the

network input of the successor

neuron f Õ
act(netp,h) and

Û the di�erence between teaching

input tp,h and output yp,h of the

successor neuron h. Teach. Input
changed for
the outer
weight layer

In this case, backpropagation is work-
ing on two neuron layers, the output

layer with the successor neuron h and

the preceding layer with the predeces-

sor neuron k.

2. If h is an inner, hidden neuron, then

”p,h = f Õ
act(netp,h) ·

ÿ

lœL

(”p,l · wh,l)

(5.39)

holds. I want to explicitly mention back-
propagation
for inner
layers

that backpropagation is now working
on three layers. Here, neuron k is

the predecessor of the connection to

be changed with the weight wk,h, the

neuron h is the successor of the con-

nection to be changed and the neu-

rons l are lying in the layer follow-
ing the successor neuron. Thus, ac-

cording to our training pattern p, the

weight wk,h from k to h is proportion-

ally changed according to

Û the learning rate ÷,

Û the output of the predecessor

neuron op,k,

Û the gradient of the activation

function at the position of the

network input of the successor

neuron f Õ
act(netp,h),

Û as well as, and this is the

di�erence, according to the

weighted sum of the changes in

weight to all neurons following h,q
lœL(”p,l · wh,l).
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Definition 5.8 (Backpropagation). If we

summarize formulas 5.38 on the preceding

page and 5.39 on the facing page, we re-

ceive the following final formula for back-
propagation (the identifiers p are om-

mited for reasons of clarity):

�wk,h = ÷ok”h with

”h =
I

f Õ
act(neth) · (th ≠ yh) (h outside)

f Õ
act(neth) ·

q
lœL(”lwh,l) (h inside)

(5.40)

SNIPE: An online variant of backpro-

pagation is implemented in the method

trainBackpropagationOfError within the

class NeuralNetwork.

It is obvious that backpropagation ini-

tially processes the last weight layer di-

rectly by means of the teaching input and

then works backwards from layer to layer

while considering each preceding change in

weights. Thus, the teaching input leaves
traces in all weight layers. Here I describe

the first (delta rule) and the second part

of backpropagation (generalized delta rule

on more layers) in one go, which may meet

the requirements of the matter but not

of the research. The first part is obvious,

which you will soon see in the framework

of a mathematical gimmick. Decades of
development time and work lie between the
first and the second, recursive part. Like

many groundbreaking inventions, it was

not until its development that it was recog-

nized how plausible this invention was.

5.4.2 Heading back: Boiling
backpropagation down to
delta rule

As explained above, the delta rule is a

special case of backpropagation for one-

stage perceptrons and linear activation

functions – I want to briefly explain this backprop
expands
delta rule

circumstance and develop the delta rule

out of backpropagation in order to aug-

ment the understanding of both rules. We

have seen that backpropagation is defined

by

�wk,h = ÷ok”h with

”h =
I

f Õ
act(neth) · (th ≠ yh) (h outside)

f Õ
act(neth) ·

q
lœL(”lwh,l) (h inside)

(5.41)

Since we only use it for one-stage percep-

trons, the second part of backpropagation

(light-colored) is omitted without substitu-

tion. The result is:

�wk,h = ÷ok”h with

”h = f Õ
act(neth) · (th ≠ oh) (5.42)

Furthermore, we only want to use linear

activation functions so that f Õ
act (light-

colored) is constant. As is generally

known, constants can be combined, and

therefore we directly merge the constant

derivative f Õ
act and (being constant for at

least one lerning cycle) the learning rate ÷
(also light-colored) in ÷. Thus, the result

is:

�wk,h = ÷ok”h = ÷ok · (th ≠ oh) (5.43)

This exactly corresponds to the delta rule

definition.
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5.4.3 The selection of the learning
rate has heavy influence on
the learning process

In the meantime we have often seen that

the change in weight is, in any case, pro-

portional to the learning rate ÷. Thus, the

selection of ÷ is crucial for the behaviour

of backpropagation and for learning proce-

dures in general.how fast
will be

learned? Definition 5.9 (Learning rate). Speed

and accuracy of a learning procedure can

always be controlled by and are always pro-

portional to a learning rate which is writ-

ten as ÷.
÷I

If the value of the chosen ÷ is too large,

the jumps on the error surface are also

too large and, for example, narrow valleys

could simply be jumped over. Addition-

ally, the movements across the error sur-

face would be very uncontrolled. Thus, a

small ÷ is the desired input, which, how-

ever, can cost a huge, often unacceptable

amount of time. Experience shows that

good learning rate values are in the range

of

0.01 Æ ÷ Æ 0.9.

The selection of ÷ significantly depends on

the problem, the network and the training

data, so that it is barely possible to give

practical advise. But for instance it is pop-

ular to start with a relatively large ÷, e.g.

0.9, and to slowly decrease it down to 0.1.

For simpler problems ÷ can often be kept

constant.

5.4.3.1 Variation of the learning rate
over time

During training, another stylistic device

can be a variable learning rate: In the

beginning, a large learning rate leads to

good results, but later it results in inac-

curate learning. A smaller learning rate

is more time-consuming, but the result is

more precise. Thus, during the learning

process the learning rate needs to be de-

creased by one order of magnitude once or

repeatedly.

A common error (which also seems to be a

very neat solution at first glance) is to con-

tinually decrease the learning rate. Here

it quickly happens that the descent of the

learning rate is larger than the ascent of

a hill of the error function we are climb-

ing. The result is that we simply get stuck

at this ascent. Solution: Rather reduce

the learning rate gradually as mentioned

above.

5.4.3.2 Di�erent layers – Di�erent
learning rates

The farer we move away from the out-

put layer during the learning process, the

slower backpropagation is learning. Thus,

it is a good idea to select a larger learning

rate for the weight layers close to the in-

put layer than for the weight layers close

to the output layer.
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5.5 Resilient backpropagation
is an extension to
backpropagation of error

We have just raised two backpropagation-

specific properties that can occasionally be

a problem (in addition to those which are

already caused by gradient descent itself):

On the one hand, users of backpropaga-

tion can choose a bad learning rate. On

the other hand, the further the weights are

from the output layer, the slower backpro-

pagation learns. For this reason, Mar-
tin Riedmiller et al. enhanced back-

propagation and called their version re-
silient backpropagation (short Rprop)

[RB93, Rie94]. I want to compare back-

propagation and Rprop, without explic-

itly declaring one version superior to the

other. Before actually dealing with formu-

las, let us informally compare the two pri-

mary ideas behind Rprop (and their con-

sequences) to the already familiar backpro-

pagation.

Learning rates: Backpropagation uses by

default a learning rate ÷, which is se-

lected by the user, and applies to the

entire network. It remains static un-

til it is manually changed. We have

already explored the disadvantages of

this approach. Here, Rprop pursues a

completely di�erent approach: there

is no global learning rate. First, each

weight wi,j has its own learning rateOne learning-
rate per

weight

÷i,jI
÷i,j , and second, these learning rates

are not chosen by the user, but are au-

tomatically set by Rprop itself. Third,

automatic
learning rate

adjustment

the weight changes are not static but

are adapted for each time step of

Rprop. To account for the temporal

change, we have to correctly call it

÷i,j(t). This not only enables more

focused learning, also the problem of

an increasingly slowed down learning

throughout the layers is solved in an

elegant way.

Weight change: When using backpropa-

gation, weights are changed propor-

tionally to the gradient of the error

function. At first glance, this is really

intuitive. However, we incorporate ev-

ery jagged feature of the error surface

into the weight changes. It is at least

questionable, whether this is always

useful. Here, Rprop takes other ways

as well: the amount of weight change

�wi,j simply directly corresponds to

the automatically adjusted learning

rate ÷i,j . Thus the change in weight is

not proportional to the gradient, it is

only influenced by the sign of the gra-

dient. Until now we still do not know

how exactly the ÷i,j are adapted at

run time, but let me anticipate that

the resulting process looks consider- Much
smoother learningably less rugged than an error func-

tion.

In contrast to backprop the weight update

step is replaced and an additional step

for the adjustment of the learning rate is

added. Now how exactly are these ideas

being implemented?
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5.5.1 Weight changes are not
proportional to the gradient

Let us first consider the change in weight.

We have already noticed that the weight-

specific learning rates directly serve as ab-

solute values for the changes of the re-

spective weights. There remains the ques-

tion of where the sign comes from – this

is a point at which the gradient comes

into play. As with the derivation of back-

propagation, we derive the error function

Err(W ) by the individual weights wi,j and

obtain gradients
ˆErr(W )

ˆwi,j
. Now, the big

di�erence: rather than multiplicatively

incorporating the absolute value of the

gradient into the weight change, we con-

sider only the sign of the gradient. The

gradient hence no longer determines thegradient
determines only
direction of the

updates

strength, but only the direction of the

weight change.

If the sign of the gradient
ˆErr(W )

ˆwi,j
is pos-

itive, we must decrease the weight wi,j .

So the weight is reduced by ÷i,j . If the

sign of the gradient is negative, the weight

needs to be increased. So ÷i,j is added to

it. If the gradient is exactly 0, nothing

happens at all. Let us now create a for-

mula from this colloquial description. The

corresponding terms are a�xed with a (t)
to show that everything happens at the

same time step. This might decrease clar-

ity at first glance, but is nevertheless im-

portant because we will soon look at an-

other formula that operates on di�erent

time steps. Instead, we shorten the gra-

dient to: g = ˆErr(W )
ˆwi,j

.

Definition 5.10 (Weight change in

Rprop).

�wi,j(t) =

Y
__]

__[

≠÷i,j(t), if g(t) > 0
+÷i,j(t), if g(t) < 0
0 otherwise.

(5.44)

We now know how the weights are changed

– now remains the question how the learn-

ing rates are adjusted. Finally, once we

have understood the overall system, we

will deal with the remaining details like ini-

tialization and some specific constants.

5.5.2 Many dynamically adjusted
learning rates instead of one
static

To adjust the learning rate ÷i,j , we again

have to consider the associated gradients

g of two time steps: the gradient that has

just passed (t ≠ 1) and the current one

(t). Again, only the sign of the gradient

matters, and we now must ask ourselves:

What can happen to the sign over two time

steps? It can stay the same, and it can

flip.

If the sign changes from g(t ≠ 1) to g(t),
we have skipped a local minimum in the

gradient. Hence, the last update was too

large and ÷i,j(t) has to be reduced as com-

pared to the previous ÷i,j(t ≠ 1). One can

say, that the search needs to be more accu-

rate. In mathematical terms, we obtain a

new ÷i,j(t) by multiplying the old ÷i,j(t≠1)
with a constant ÷¿

, which is between 1 and J÷¿
0. In this case we know that in the last

time step (t ≠ 1) something went wrong –
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hence we additionally reset the weight up-

date for the weight wi,j at time step (t) to

0, so that it not applied at all (not shown

in the following formula).

However, if the sign remains the same, one

can perform a (careful!) increase of ÷i,j to

get past shallow areas of the error function.

Here we obtain our new ÷i,j(t) by multiply-

ing the old ÷i,j(t ≠ 1) with a constant ÷ø
÷øI

which is greater than 1.

Definition 5.11 (Adaptation of learning

rates in Rprop).

÷i,j(t) =

Y
__]

__[

÷ø÷i,j(t ≠ 1), g(t ≠ 1)g(t) > 0
÷¿÷i,j(t ≠ 1), g(t ≠ 1)g(t) < 0
÷i,j(t ≠ 1) otherwise.

(5.45)

Caution: This also implies that Rprop isRprop only
learns
o�ine

exclusively designed for o�ine. If the gra-

dients do not have a certain continuity, the

learning process slows down to the lowest

rates (and remains there). When learning

online, one changes – loosely speaking –

the error function with each new epoch,

since it is based on only one training pat-

tern. This may be often well applicable

in backpropagation and it is very often

even faster than the o�ine version, which

is why it is used there frequently. It lacks,

however, a clear mathematical motivation,

and that is exactly what we need here.

5.5.3 We are still missing a few
details to use Rprop in
practice

A few minor issues remain unanswered,

namely

1. How large are ÷ø
and ÷¿

(i.e. how

much are learning rates reinforced or

weakened)?

2. How to choose ÷i,j(0) (i.e. how are

the weight-specific learning rates ini-

tialized)?
4

3. What are the upper and lower bounds

÷min and ÷max for ÷i,j set? J÷min
J÷maxWe now answer these questions with a

quick motivation. The initial value for the

learning rates should be somewhere in the

order of the initialization of the weights.

÷i,j(0) = 0.1 has proven to be a good

choice. The authors of the Rprop paper

explain in an obvious way that this value

– as long as it is positive and without an ex-

orbitantly high absolute value – does not

need to be dealt with very critically, as

it will be quickly overridden by the auto-

matic adaptation anyway.

Equally uncritical is ÷max, for which they

recommend, without further mathemati-

cal justification, a value of 50 which is used

throughout most of the literature. One

can set this parameter to lower values in

order to allow only very cautious updates.

Small update steps should be allowed in

any case, so we set ÷min = 10≠6
.

4 Protipp: since the ÷i,j can be changed only by
multiplication, 0 would be a rather suboptimal ini-
tialization :-)
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Now we have left only the parameters ÷ø

and ÷¿
. Let us start with ÷¿

: If this value

is used, we have skipped a minimum, from

which we do not know where exactly it lies

on the skipped track. Analogous to the

procedure of binary search, where the tar-

get object is often skipped as well, we as-

sume it was in the middle of the skipped

track. So we need to halve the learning

rate, which is why the canonical choice

÷¿ = 0.5 is being selected. If the value

of ÷ø
is used, learning rates shall be in-

creased with caution. Here we cannot gen-

eralize the principle of binary search and

simply use the value 2.0, otherwise the

learning rate update will end up consist-

ing almost exclusively of changes in direc-

tion. Independent of the particular prob-

lems, a value of ÷ø = 1.2 has proven to

be promising. Slight changes of this value

have not significantly a�ected the rate of

convergence. This fact allowed for setting

this value as a constant as well.

With advancing computational capabili-

ties of computers one can observe a more

and more widespread distribution of net-

works that consist of a big number of lay-

ers, i.e. deep networks. For such net-Rprop is very
good for

deep networks
works it is crucial to prefer Rprop over the

original backpropagation, because back-

prop, as already indicated, learns very

slowly at weights wich are far from the

output layer. For problems with a smaller

number of layers, I would recommend test-

ing the more widespread backpropagation

(with both o�ine and online learning) and

the less common Rprop equivalently.

SNIPE: In Snipe resilient backpropa-

gation is supported via the method

trainResilientBackpropagation of the

class NeuralNetwork. Furthermore, you

can also use an additional improvement

to resilient propagation, which is, however,

not dealt with in this work. There are get-

ters and setters for the di�erent parameters

of Rprop.

5.6 Backpropagation has
often been extended and
altered besides Rprop

Backpropagation has often been extended.

Many of these extensions can simply be im-

plemented as optional features of backpro-

pagation in order to have a larger scope for

testing. In the following I want to briefly

describe some of them.

5.6.1 Adding momentum to
learning

Let us assume to descent a steep slope

on skis - what prevents us from immedi-

ately stopping at the edge of the slope

to the plateau? Exactly - our momen-
tum. With backpropagation the momen-
tum term [RHW86b] is responsible for the

fact that a kind of moment of inertia
(momentum) is added to every step size

(fig. 5.13 on the next page), by always

adding a fraction of the previous change

to every new change in weight:

(�pwi,j)now = ÷op,i”p,j+–·(�pwi,j)previous.

96 D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN)



dkriesel.com 5.6 Further variations and extensions to backpropagation

Of course, this notation is only used for

a better understanding. Generally, as al-

ready defined by the concept of time, when

referring to the current cycle as (t), then

the previous cycle is identified by (t ≠ 1),
which is continued successively. And now

we come to the formal definition of the mo-

mentum term:

Definition 5.12 (Momentum term). Themoment of
inertia variation of backpropagation by means of

the momentum term is defined as fol-

lows:

�wi,j(t) = ÷oi”j + – · �wi,j(t ≠ 1) (5.46)

We accelerate on plateaus (avoiding quasi-

standstill on plateaus) and slow down on

craggy surfaces (preventing oscillations).

Moreover, the e�ect of inertia can be var-

ied via the prefactor –, common val-
–I

ues are between 0.6 und 0.9. Addition-

ally, the momentum enables the positive

e�ect that our skier swings back and

forth several times in a minimum, and fi-

nally lands in the minimum. Despite its

nice one-dimensional appearance, the oth-

erwise very rare error of leaving good min-

ima unfortunately occurs more frequently

because of the momentum term – which

means that this is again no optimal solu-

tion (but we are by now accustomed to

this condition).

5.6.2 Flat spot elimination prevents
neurons from getting stuck

It must be pointed out that with the hy-
perbolic tangent as well as with the Fermi

Figure 5.13: We want to execute the gradient
descent like a skier crossing a slope, who would
hardly stop immediately at the edge to the
plateau.

function the derivative outside of the close

proximity of � is nearly 0. This results

in the fact that it becomes very di�cult

to move neurons away from the limits of

the activation (flat spots), which could ex- neurons
get stucktremely extend the learning time. This

problem can be dealt with by modifying

the derivative, for example by adding a

constant (e.g. 0.1), which is called flat
spot elimination or – more colloquial –

fudging.

It is an interesting observation, that suc-

cess has also been achieved by using deriva-

tives defined as constants [Fah88]. A nice

example making use of this e�ect is the

fast hyperbolic tangent approximation by

Anguita et al. introduced in section 3.2.6

on page 37. In the outer regions of it’s (as
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well approximated and accelerated) deriva-

tive, it makes use of a small constant.

5.6.3 The second derivative can be
used, too

According to David Parker [Par87],

Second order backpropagation also us-

ese the second gradient, i.e. the second

multi-dimensional derivative of the error

function, to obtain more precise estimates

of the correct �wi,j . Even higher deriva-

tives only rarely improve the estimations.

Thus, less training cycles are needed but

those require much more computational ef-

fort.

In general, we use further derivatives (i.e.

Hessian matrices, since the functions are

multidimensional) for higher order meth-

ods. As expected, the procedures reduce

the number of learning epochs, but signifi-

cantly increase the computational e�ort of

the individual epochs. So in the end these

procedures often need more learning time

than backpropagation.

The quickpropagation learning proce-

dure [Fah88] uses the second derivative of

the error propagation and locally under-

stands the error function to be a parabola.

We analytically determine the vertex (i.e.

the lowest point) of the said parabola and

directly jump to this point. Thus, this

learning procedure is a second-order proce-

dure. Of course, this does not work with

error surfaces that cannot locally be ap-

proximated by a parabola (certainly it is

not always possible to directly say whether

this is the case).

5.6.4 Weight decay: Punishment of
large weights

The weight decay according to Paul
Werbos [Wer88] is a modification that ex-

tends the error by a term punishing large

weights. So the error under weight de-

cay

ErrWD

does not only increase proportionally to JErrWD
the actual error but also proportionally to

the square of the weights. As a result the

network is keeping the weights small dur-

ing learning.

ErrWD = Err + — ·
1
2

ÿ

wœW

(w)2

¸ ˚˙ ˝
punishment

(5.47)

This approach is inspired by nature where

synaptic weights cannot become infinitely

strong as well. Additionally, due to these keep weights
smallsmall weights, the error function often

shows weaker fluctuations, allowing easier

and more controlled learning.

The prefactor
1
2 again resulted from sim-

ple pragmatics. The factor — controls the J—
strength of punishment: Values from 0.001

to 0.02 are often used here.

5.6.5 Cutting networks down:
Pruning and Optimal Brain
Damage

If we have executed the weight decay long

enough and notice that for a neuron in

the input layer all successor weights are prune the
network0 or close to 0, we can remove the neuron,
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hence losing this neuron and some weights

and thereby reduce the possibility that the

network will memorize. This procedure is

called pruning.

Such a method to detect and delete un-

necessary weights and neurons is referred

to as optimal brain damage [lCDS90].

I only want to describe it briefly: The

mean error per output neuron is composed

of two competing terms. While one term,

as usual, considers the di�erence between

output and teaching input, the other one

tries to "press" a weight towards 0. If a

weight is strongly needed to minimize the

error, the first term will win. If this is not

the case, the second term will win. Neu-

rons which only have zero weights can be

pruned again in the end.

There are many other variations of back-

prop and whole books only about this

subject, but since my aim is to o�er an

overview of neural networks, I just want

to mention the variations above as a moti-

vation to read on.

For some of these extensions it is obvi-

ous that they cannot only be applied to

feedforward networks with backpropaga-

tion learning procedures.

We have gotten to know backpropagation

and feedforward topology – now we have

to learn how to build a neural network. It

is of course impossible to fully communi-

cate this experience in the framework of

this work. To obtain at least some of

this knowledge, I now advise you to deal

with some of the exemplary problems from

4.6.

5.7 Getting started – Initial
configuration of a
multilayer perceptron

After having discussed the backpropaga-

tion of error learning procedure and know-

ing how to train an existing network, it

would be useful to consider how to imple-

ment such a network.

5.7.1 Number of layers: Two or
three may often do the job,
but more are also used

Let us begin with the trivial circumstance

that a network should have one layer of in-

put neurons and one layer of output neu-

rons, which results in at least two layers.

Additionally, we need – as we have already

learned during the examination of linear

separability – at least one hidden layer of

neurons, if our problem is not linearly sep-

arable (which is, as we have seen, very

likely).

It is possible, as already mentioned, to

mathematically prove that this MLP with

one hidden neuron layer is already capable

of approximating arbitrary functions with

any accuracy
5

– but it is necessary not

only to discuss the representability of a

problem by means of a perceptron but also

the learnability. Representability means

that a perceptron can, in principle, realize

5 Note: We have not indicated the number of neu-
rons in the hidden layer, we only mentioned the
hypothetical possibility.
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a mapping - but learnability means that

we are also able to teach it.

In this respect, experience shows that two

hidden neuron layers (or three trainable

weight layers) can be very useful to solve

a problem, since many problems can be

represented by a hidden layer but are very

di�cult to learn.

One should keep in mind that any ad-

ditional layer generates additional sub-

minima of the error function in which we

can get stuck. All these things consid-

ered, a promising way is to try it with

one hidden layer at first and if that fails,

retry with two layers. Only if that fails,

one should consider more layers. However,

given the increasing calculation power of

current computers, deep networks with

a lot of layers are also used with success.

5.7.2 The number of neurons has
to be tested

The number of neurons (apart from input

and output layer, where the number of in-

put and output neurons is already defined

by the problem statement) principally cor-

responds to the number of free parameters

of the problem to be represented.

Since we have already discussed the net-

work capacity with respect to memorizing

or a too imprecise problem representation,

it is clear that our goal is to have as few
free parameters as possible but as many as

necessary.

But we also know that there is no stan-

dard solution for the question of how many

neurons should be used. Thus, the most

useful approach is to initially train with

only a few neurons and to repeatedly train

new networks with more neurons until the

result significantly improves and, particu-

larly, the generalization performance is not

a�ected (bottom-up approach).

5.7.3 Selecting an activation
function

Another very important parameter for the

way of information processing of a neural

network is the selection of an activa-
tion function. The activation function

for input neurons is fixed to the identity

function, since they do not process infor-

mation.

The first question to be asked is whether

we actually want to use the same acti-

vation function in the hidden layer and

in the ouput layer – no one prevents us

from choosing di�erent functions. Gener-

ally, the activation function is the same for

all hidden neurons as well as for the output

neurons respectively.

For tasks of function approximation it

has been found reasonable to use the hy-

perbolic tangent (left part of fig. 5.14 on

page 102) as activation function of the hid-

den neurons, while a linear activation func-

tion is used in the output. The latter is

absolutely necessary so that we do not gen-

erate a limited output intervall. Contrary

to the input layer which uses linear acti-

vation functions as well, the output layer

still processes information, because it has
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threshold values. However, linear activa-

tion functions in the output can also cause

huge learning steps and jumping over good

minima in the error surface. This can be

avoided by setting the learning rate to very

small values in the output layer.

An unlimited output interval is not essen-

tial for pattern recognition tasks
6
. If

the hyperbolic tangent is used in any case,

the output interval will be a bit larger. Un-

like with the hyperbolic tangent, with the

Fermi function (right part of fig. 5.14 on

the following page) it is di�cult to learn

something far from the threshold value

(where its result is close to 0). However,

here a lot of freedom is given for selecting

an activation function. But generally, the

disadvantage of sigmoid functions is the

fact that they hardly learn something for

values far from thei threshold value, unless

the network is modified.

5.7.4 Weights should be initialized
with small, randomly chosen
values

The initialization of weights is not as triv-

ial as one might think. If they are simply

initialized with 0, there will be no change

in weights at all. If they are all initialized

by the same value, they will all change

equally during training. The simple so-

lution of this problem is called symme-
try breaking, which is the initialization

of weights with small random values. Therandom
initial

weights 6 Generally, pattern recognition is understood as a
special case of function approximation with a few
discrete output possibilities.

range of random values could be the in-

terval [≠0.5; 0.5] not including 0 or values

very close to 0. This random initialization

has a nice side e�ect: Chances are that

the average of network inputs is close to 0,

a value that hits (in most activation func-

tions) the region of the greatest derivative,

allowing for strong learning impulses right

from the start of learning.

SNIPE: In Snipe, weights are initial-

ized randomly (if a synapse initial-

ization is wanted). The maximum

absolute weight value of a synapse

initialized at random can be set in

a NeuralNetworkDescriptor using the

method setSynapseInitialRange.

5.8 The 8-3-8 encoding
problem and related
problems

The 8-3-8 encoding problem is a clas-

sic among the multilayer perceptron test

training problems. In our MLP we

have an input layer with eight neurons

i1, i2, . . . , i8, an output layer with eight

neurons �1, �2, . . . , �8 and one hidden

layer with three neurons. Thus, this net-

work represents a function B8
æ B8

. Now

the training task is that an input of a value

1 into the neuron ij should lead to an out-

put of a value 1 from the neuron �j (only

one neuron should be activated, which re-

sults in 8 training samples.

During the analysis of the trained network

we will see that the network with the 3
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Figure 5.14: As a reminder the illustration of the hyperbolic tangent (left) and the Fermi function
(right). The Fermi function was expanded by a temperature parameter. The original Fermi function
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hidden neurons represents some kind of bi-

nary encoding and that the above map-

ping is possible (assumed training time:

¥ 104
epochs). Thus, our network is a ma-

chine in which the input is first encoded

and afterwards decoded again.

Analogously, we can train a 1024-10-1024

encoding problem. But is it possible to

improve the e�ciency of this procedure?

Could there be, for example, a 1024-9-

1024- or an 8-2-8-encoding network?

Yes, even that is possible, since the net-

work does not depend on binary encodings:

Thus, an 8-2-8 network is su�cient for our

problem. But the encoding of the network

is far more di�cult to understand (fig. 5.15

on the next page) and the training of the

networks requires a lot more time.

SNIPE: The static method

getEncoderSampleLesson in the class

TrainingSampleLesson allows for creating

simple training sample lessons of arbitrary

dimensionality for encoder problems like

the above.

An 8-1-8 network, however, does not work,

since the possibility that the output of one

neuron is compensated by another one is

essential, and if there is only one hidden

neuron, there is certainly no compensatory

neuron.

Exercises

Exercise 8. Fig. 5.4 on page 75 shows

a small network for the boolean functions

AND and OR. Write tables with all computa-

tional parameters of neural networks (e.g.

network input, activation etc.). Perform

the calculations for the four possible in-

puts of the networks and write down the

values of these variables for each input. Do

the same for the XOR network (fig. 5.9 on

page 84).
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Figure 5.15: Illustration of the functionality of
8-2-8 network encoding. The marked points rep-
resent the vectors of the inner neuron activation
associated to the samples. As you can see, it
is possible to find inner activation formations so
that each point can be separated from the rest
of the points by a straight line. The illustration
shows an exemplary separation of one point.

Exercise 9.

1. List all boolean functions B3
æ B1

,

that are linearly separable and char-

acterize them exactly.

2. List those that are not linearly sepa-

rable and characterize them exactly,

too.

Exercise 10. A simple 2-1 network shall

be trained with one single pattern by

means of backpropagation of error and

÷ = 0.1. Verify if the error

Err = Errp = 1
2(t ≠ y)2

converges and if so, at what value. How

does the error curve look like? Let the

pattern (p, t) be defined by p = (p1, p2) =
(0.3, 0.7) and t� = 0.4. Randomly initalize

the weights in the interval [1; ≠1].

Exercise 11. A one-stage perceptron

with two input neurons, bias neuron

and binary threshold function as activa-

tion function divides the two-dimensional

space into two regions by means of a

straight line g. Analytically calculate a

set of weight values for such a perceptron

so that the following set P of the 6 pat-

terns of the form (p1, p2, t�) with Á π 1 is

correctly classified.

P ={(0, 0, ≠1);
(2, ≠1, 1);
(7 + Á, 3 ≠ Á, 1);
(7 ≠ Á, 3 + Á, ≠1);
(0, ≠2 ≠ Á, 1);
(0 ≠ Á, ≠2, ≠1)}

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 103



Chapter 5 The perceptron, backpropagation and its variants dkriesel.com

Exercise 12. Calculate in a comprehen-

sible way one vector �W of all changes in

weight by means of the backpropagation of
error procedure with ÷ = 1. Let a 2-2-1

MLP with bias neuron be given and let the

pattern be defined by

p = (p1, p2, t�) = (2, 0, 0.1).

For all weights with the target � the ini-

tial value of the weights should be 1. For

all other weights the initial value should

be 0.5. What is conspicuous about the

changes?
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Radial basis functions
RBF networks approximate functions by stretching and compressing Gaussian
bells and then summing them spatially shifted. Description of their functions

and their learning process. Comparison with multilayer perceptrons.

According to Poggio and Girosi [PG89]

radial basis function networks (RBF net-

works) are a paradigm of neural networks,

which was developed considerably later

than that of perceptrons. Like percep-

trons, the RBF networks are built in layers.

But in this case, they have exactly three

layers, i.e. only one single layer of hidden

neurons.

Like perceptrons, the networks have a

feedforward structure and their layers are

completely linked. Here, the input layer

again does not participate in information

processing. The RBF networks are -

like MLPs - universal function approxima-

tors.

Despite all things in common: What is the

di�erence between RBF networks and per-

ceptrons? The di�erence lies in the infor-

mation processing itself and in the compu-

tational rules within the neurons outside

of the input layer. So, in a moment we

will define a so far unknown type of neu-

rons.

6.1 Components and
structure of an RBF
network

Initially, we want to discuss colloquially

and then define some concepts concerning

RBF networks.

Output neurons: In an RBF network the

output neurons only contain the iden-

tity as activation function and one

weighted sum as propagation func-

tion. Thus, they do little more than

adding all input values and returning

the sum.

Hidden neurons are also called RBF neu-

rons (as well as the layer in which

they are located is referred to as RBF

layer). As propagation function, each

hidden neuron calculates a norm that

represents the distance between the

input to the network and the so-called

position of the neuron (center). This

is inserted into a radial activation
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function which calculates and outputs

the activation of the neuron.

Definition 6.1 (RBF input neuron). Def-

inition and representation is identical toinput
is linear

again
the definition 5.1 on page 73 of the input

neuron.

Definition 6.2 (Center of an RBF neu-

ron). The center ch of an RBF neuron
cI h is the point in the input space where

the RBF neuron is located . In general,Position
in the input

space
the closer the input vector is to the center

vector of an RBF neuron, the higher is its

activation.

Definition 6.3 (RBF neuron). The so-

called RBF neurons h have a propaga-

tion function fprop that determines the dis-
tance between the center ch of a neuronImportant!
and the input vector y. This distance rep-

resents the network input. Then the net-

work input is sent through a radial basis

function fact which returns the activation

or the output of the neuron. RBF neurons

are represented by the symbol WVUTPQRS||c,x||
Gauß

.

Definition 6.4 (RBF output neuron).

RBF output neurons � use the

weighted sum as propagation function

fprop, and the identity as activation func-only sums
up tion fact. They are represented by the sym-

bol ONMLHIJK�
� .

Definition 6.5 (RBF network). An

RBF network has exactly three layers in

the following order: The input layer con-

sisting of input neurons, the hidden layer

(also called RBF layer) consisting of RBF

neurons and the output layer consisting of

RBF output neurons. Each layer is com- 3 layers,
feedforwardpletely linked with the following one, short-

cuts do not exist (fig. 6.1 on the next page)

– it is a feedforward topology. The connec-

tions between input layer and RBF layer

are unweighted, i.e. they only transmit

the input. The connections between RBF

layer and output layer are weighted. The

original definition of an RBF network only

referred to an output neuron, but – in anal-

ogy to the perceptrons – it is apparent that

such a definition can be generalized. A

bias neuron is not used in RBF networks.

The set of input neurons shall be repre-

sented by I, the set of hidden neurons by JI, H, OH and the set of output neurons by O.

Therefore, the inner neurons are called ra-

dial basis neurons because from their def-

inition follows directly that all input vec-

tors with the same distance from the cen-

ter of a neuron also produce the same out-

put value (fig. 6.2 on page 108).

6.2 Information processing of
an RBF network

Now the question is, what can be realized

by such a network and what is its purpose.

Let us go over the RBF network from top

to bottom: An RBF network receives the

input by means of the unweighted con-

nections. Then the input vector is sent

through a norm so that the result is a

scalar. This scalar (which, by the way, can

only be positive due to the norm) is pro-

cessed by a radial basis function, for exam-
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Figure 6.1: An exemplary RBF network with two input neurons, five hidden neurons and three
output neurons. The connections to the hidden neurons are not weighted, they only transmit the
input. Right of the illustration you can find the names of the neurons, which coincide with the
names of the MLP neurons: Input neurons are called i, hidden neurons are called h and output
neurons are called �. The associated sets are referred to as I, H and O.
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Figure 6.2: Let ch be the center of an RBF neu-
ron h. Then the activation function facth is ra-
dially symmetric around ch.

ple by a Gaussian bell (fig. 6.3 on the next

page) .input
æ distance

æ Gaussian bell
æ sum

æ output

The output values of the di�erent neurons

of the RBF layer or of the di�erent Gaus-

sian bells are added within the third layer:

basically, in relation to the whole input

space, Gaussian bells are added here.

Suppose that we have a second, a third

and a fourth RBF neuron and therefore

four di�erently located centers. Each of

these neurons now measures another dis-

tance from the input to its own center

and de facto provides di�erent values, even

if the Gaussian bell is the same. Since

these values are finally simply accumu-

lated in the output layer, one can easily

see that any surface can be shaped by drag-

ging, compressing and removing Gaussian

bells and subsequently accumulating them.

Here, the parameters for the superposition

of the Gaussian bells are in the weights

of the connections between the RBF layer

and the output layer.

Furthermore, the network architecture of-

fers the possibility to freely define or train

height and width of the Gaussian bells –

due to which the network paradigm be-

comes even more versatile. We will get

to know methods and approches for this

later.

6.2.1 Information processing in
RBF neurons

RBF neurons process information by using

norms and radial basis functions

At first, let us take as an example a sim-

ple 1-4-1 RBF network. It is apparent

that we will receive a one-dimensional out-

put which can be represented as a func-

tion (fig. 6.4 on the facing page). Ad-

ditionally, the network includes the cen-

ters c1, c2, . . . , c4 of the four inner neurons

h1, h2, . . . , h4, and therefore it has Gaus-

sian bells which are finally added within

the output neuron �. The network also

possesses four values ‡1, ‡2, . . . , ‡4 which

influence the width of the Gaussian bells.

On the contrary, the height of the Gaus-

sian bell is influenced by the subsequent

weights, since the individual output val-

ues of the bells are multiplied by those

weights.
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Figure 6.3: Two individual one- or two-dimensional Gaussian bells. In both cases ‡ = 0.4 holds
and the centers of the Gaussian bells lie in the coordinate origin. The distance r to the center (0, 0)
is simply calculated according to the Pythagorean theorem: r =


x2 + y2.
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Figure 6.4: Four di�erent Gaussian bells in one-dimensional space generated by means of RBF
neurons are added by an output neuron of the RBF network. The Gaussian bells have di�erent
heights, widths and positions. Their centers c1, c2, . . . , c4 are located at 0, 1, 3, 4, the widths
‡1, ‡2, . . . , ‡4 at 0.4, 1, 0.2, 0.8. You can see a two-dimensional example in fig. 6.5 on the following
page.
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Figure 6.5: Four di�erent Gaussian bells in two-dimensional space generated by means of RBF
neurons are added by an output neuron of the RBF network. Once again r =


x2 + y2 applies for

the distance. The heights w, widths ‡ and centers c = (x, y) are: w1 = 1, ‡1 = 0.4, c1 = (0.5, 0.5),
w2 = ≠1, ‡2 = 0.6, c2 = (1.15, ≠1.15), w3 = 1.5, ‡3 = 0.2, c3 = (≠0.5, ≠1), w4 = 0.8, ‡4 =
1.4, c4 = (≠2, 0).
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Since we use a norm to calculate the dis-

tance between the input vector and the

center of a neuron h, we have di�erent

choices: Often the Euclidian norm is cho-

sen to calculate the distance:

rh = ||x ≠ ch|| (6.1)

=
Ûÿ

iœI

(xi ≠ ch,i)2 (6.2)

Remember: The input vector was referred

to as x. Here, the index i runs through

the input neurons and thereby through the

input vector components and the neuron

center components. As we can see, the

Euclidean distance generates the squared

di�erences of all vector components, adds

them and extracts the root of the sum.

In two-dimensional space this corresponds

to the Pythagorean theorem. From the

definition of a norm directly follows that

the distance can only be positive. Strictly

speaking, we hence only use the positive

part of the activation function. By the

way, activation functions other than the

Gaussian bell are possible. Normally, func-

tions that are monotonically decreasing

over the interval [0; Œ] are chosen.

Now that we know the distance rh be-
rhI

tween the input vector x and the center

ch of the RBF neuron h, this distance has

to be passed through the activation func-

tion. Here we use, as already mentioned,

a Gaussian bell:

fact(rh) = e

3
≠r

2
h

2‡
2
h

4

(6.3)

It is obvious that both the center ch and

the width ‡h can be seen as part of the

activation function fact, and hence the ac-

tivation functions should not be referred

to as fact simultaneously. One solution

would be to number the activation func-

tions like fact1, fact2, . . . , fact|H| with H be-

ing the set of hidden neurons. But as a

result the explanation would be very con-

fusing. So I simply use the name fact for

all activation functions and regard ‡ and

c as variables that are defined for individ-

ual neurons but no directly included in the

activation function.

The reader will certainly notice that in the

literature the Gaussian bell is often nor-

malized by a multiplicative factor. We

can, however, avoid this factor because

we are multiplying anyway with the subse-

quent weights and consecutive multiplica-

tions, first by a normalization factor and

then by the connections’ weights, would

only yield di�erent factors there. We do

not need this factor (especially because for

our purpose the integral of the Gaussian

bell must not always be 1) and therefore

simply leave it out.

6.2.2 Some analytical thoughts
prior to the training

The output y� of an RBF output neuron

� results from combining the functions of

an RBF neuron to

y� =
ÿ

hœH

wh,� · fact (||x ≠ ch||) . (6.4)

Suppose that similar to the multilayer per-

ceptron we have a set P , that contains |P |
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training samples (p, t). Then we obtain

|P | functions of the form

y� =
ÿ

hœH

wh,� · fact (||p ≠ ch||) , (6.5)

i.e. one function for each training sam-

ple.

Of course, with this e�ort we are aiming

at letting the output y for all training

patterns p converge to the corresponding

teaching input t.

6.2.2.1 Weights can simply be
computed as solution of a
system of equations

Thus, we have |P | equations. Now let us

assume that the widths ‡1, ‡2, . . . , ‡k, the

centers c1, c2, . . . , ck and the training sam-

ples p including the teaching input t are

given. We are looking for the weights wh,�
with |H| weights for one output neuron

�. Thus, our problem can be seen as a

system of equations since the only thing

we want to change at the moment are the

weights.

This demands a distinction of cases con-

cerning the number of training samples |P |

and the number of RBF neurons |H|:

|P | = |H|: If the number of RBF neurons

equals the number of patterns, i.e.

|P | = |H|, the equation can be re-

duced to a matrix multiplicationsimply
calculate

weights

T = M · G (6.6)

… M≠1
· T = M≠1

· M · G (6.7)

… M≠1
· T = E · G (6.8)

… M≠1
· T = G, (6.9)

where

Û T is the vector of the teaching JT
inputs for all training samples,

Û M is the |P | ◊ |H| matrix of JM
the outputs of all |H| RBF neu-

rons to |P | samples (remember:

|P | = |H|, the matrix is squared

and we can therefore attempt to

invert it),

Û G is the vector of the desired JG
weights and

Û E is a unit matrix with the same JE
size as G.

Mathematically speaking, we can sim-

ply calculate the weights: In the case

of |P | = |H| there is exactly one RBF

neuron available per training sample.

This means, that the network exactly

meets the |P | existing nodes after hav-

ing calculated the weights, i.e. it per-

forms a precise interpolation. To

calculate such an equation we cer-

tainly do not need an RBF network,

and therefore we can proceed to the

next case.

Exact interpolation must not be mis-

taken for the memorizing ability men-

tioned with the MLPs: First, we are

not talking about the training of RBF
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networks at the moment. Second,

it could be advantageous for us and

might in fact be intended if the net-

work exactly interpolates between the

nodes.

|P | < |H|: The system of equations is

under-determined, there are more

RBF neurons than training samples,

i.e. |P | < |H|. Certainly, this case

normally does not occur very often.

In this case, there is a huge variety

of solutions which we do not need in

such detail. We can select one set of

weights out of many obviously possi-

ble ones.

|P | > |H|: But most interesting for fur-

ther discussion is the case if there

are significantly more training sam-

ples than RBF neurons, that means

|P | > |H|. Thus, we again want

to use the generalization capability of

the neural network.

If we have more training samples than

RBF neurons, we cannot assume that

every training sample is exactly hit.

So, if we cannot exactly hit the points

and therefore cannot just interpolate
as in the aforementioned ideal case

with |P | = |H|, we must try to find

a function that approximates our

training set P as closely as possible:

As with the MLP we try to reduce

the sum of the squared error to a min-

imum.

How do we continue the calculation

in the case of |P | > |H|? As above,

to solve the system of equations, we

have to find the solution M of a ma-

trix multiplication

T = M · G. (6.10)

The problem is that this time we can-

not invert the |P | ◊ |H| matrix M be-

cause it is not a square matrix (here,

|P | ”= |H| is true). Here, we have

to use the Moore-Penrose pseudo
inverse M+

which is defined by JM+
M+ = (MT

· M)≠1
· MT (6.11)

Although the Moore-Penrose pseudo

inverse is not the inverse of a matrix,

it can be used similarly in this case
1
.

We get equations that are very similar

to those in the case of |P | = |H|:

T = M · G (6.12)

… M+
· T = M+

· M · G (6.13)

… M+
· T = E · G (6.14)

… M+
· T = G (6.15)

Another reason for the use of the

Moore-Penrose pseudo inverse is the

fact that it minimizes the squared

error (which is our goal): The esti-

mate of the vector G in equation 6.15

corresponds to the Gauss-Markov
model known from statistics, which

is used to minimize the squared error.

In the aforementioned equations 6.11

and the following ones please do not

mistake the T in MT
(of the trans-

pose of the matrix M) for the T of

the vector of all teaching inputs.

1 Particularly, M+
= M≠1 is true if M is invertible.

I do not want to go into detail of the reasons for
these circumstances and applications of M+ - they
can easily be found in literature for linear algebra.
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6.2.2.2 The generalization on several
outputs is trivial and not quite
computationally expensive

We have found a mathematically exact

way to directly calculate the weights.

What will happen if there are several out-

put neurons, i.e. |O| > 1, with O being, as

usual, the set of the output neurons �? In

this case, as we have already indicated, it

does not change much: The additional out-

put neurons have their own set of weights

while we do not change the ‡ and c of the

RBF layer. Thus, in an RBF network it is

easy for given ‡ and c to realize a lot of

output neurons since we only have to cal-

culate the individual vector of weights

G� = M+
· T� (6.16)

for every new output neuron �, whereas

the matrix M+
, which generally requires

a lot of computational e�ort, always stays

the same: So it is quite inexpensive – atinexpensive
output

dimension
least concerning the computational com-

plexity – to add more output neurons.

6.2.2.3 Computational e�ort and
accuracy

For realistic problems it normally applies

that there are considerably more training

samples than RBF neurons, i.e. |P | ∫

|H|: You can, without any di�culty, use

106
training samples, if you like. Theoreti-

cally, we could find the terms for the math-

ematically correct solution on the black-

board (after a very long time), but such

calculations often seem to be imprecise

and very time-consuming (matrix inver-

sions require a lot of computational ef-

fort).

Furthermore, our Moore-Penrose pseudo-

inverse is, in spite of numeric stabil-

ity, no guarantee that the output vector
M+ complex
and imprecisecorresponds to the teaching vector, be-

cause such extensive computations can be

prone to many inaccuracies, even though

the calculation is mathematically correct:

Our computers can only provide us with

(nonetheless very good) approximations of

the pseudo-inverse matrices. This means

that we also get only approximations of

the correct weights (maybe with a lot of

accumulated numerical errors) and there-

fore only an approximation (maybe very

rough or even unrecognizable) of the de-

sired output.

If we have enough computing power to an-

alytically determine a weight vector, we

should use it nevertheless only as an initial

value for our learning process, which leads

us to the real training methods – but oth-

erwise it would be boring, wouldn’t it?

6.3 Combinations of equation
system and gradient
strategies are useful for
training

Analogous to the MLP we perform a gra-

dient descent to find the suitable weights

by means of the already well known delta retraining
delta rulerule. Here, backpropagation is unneces-

sary since we only have to train one single

114 D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN)



dkriesel.com 6.3 Training of RBF networks

weight layer – which requires less comput-

ing time.

We know that the delta rule is

�wh,� = ÷ · ”� · oh, (6.17)

in which we now insert as follows:

�wh,� = ÷ · (t� ≠ y�) · fact(||p ≠ ch||)
(6.18)

Here again I explicitly want to mention

that it is very popular to divide the train-

ing into two phases by analytically com-

puting a set of weights and then refining

it by training with the delta rule.

There is still the question whether to learn

o�ine or online. Here, the answer is sim-

ilar to the answer for the multilayer per-

ceptron: Initially, one often trains onlinetraining
in phases (faster movement across the error surface).

Then, after having approximated the so-

lution, the errors are once again accumu-

lated and, for a more precise approxima-

tion, one trains o�ine in a third learn-

ing phase. However, similar to the MLPs,

you can be successful by using many meth-

ods.

As already indicated, in an RBF network

not only the weights between the hidden

and the output layer can be optimized. So

let us now take a look at the possibility to

vary ‡ and c.

6.3.1 It is not always trivial to
determine centers and widths
of RBF neurons

It is obvious that the approximation accu-

racy of RBF networks can be increased by

adapting the widths and positions of the

Gaussian bells in the input space to the

problem that needs to be approximated.

There are several methods to deal with the

centers c and the widths ‡ of the Gaussian vary
‡ and cbells:

Fixed selection: The centers and widths

can be selected in a fixed manner and

regardless of the training samples –

this is what we have assumed until

now.

Conditional, fixed selection: Again cen-

ters and widths are selected fixedly,

but we have previous knowledge

about the functions to be approxi-

mated and comply with it.

Adaptive to the learning process: This

is definitely the most elegant variant,

but certainly the most challenging

one, too. A realization of this

approach will not be discussed in

this chapter but it can be found in

connection with another network

topology (section 10.6.1).

6.3.1.1 Fixed selection

In any case, the goal is to cover the in-

put space as evenly as possible. Here,

widths of
2
3 of the distance between the
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Figure 6.6: Example for an even coverage of a
two-dimensional input space by applying radial
basis functions.

centers can be selected so that the Gaus-

sian bells overlap by approx. "one third"
2

(fig. 6.6). The closer the bells are set the

more precise but the more time-consuming

the whole thing becomes.

This may seem to be very inelegant, but

in the field of function approximation we

cannot avoid even coverage. Here it is

useless if the function to be approximated

is precisely represented at some positions

but at other positions the return value is

only 0. However, the high input dimen-

sion requires a great many RBF neurons,

which increases the computational e�ortinput
dimension

very expensive
exponentially with the dimension – and is

2 It is apparent that a Gaussian bell is mathemati-
cally infinitely wide, therefore I ask the reader to
apologize this sloppy formulation.

responsible for the fact that six- to ten-

dimensional problems in RBF networks

are already called "high-dimensional" (an

MLP, for example, does not cause any

problems here).

6.3.1.2 Conditional, fixed selection

Suppose that our training samples are not

evenly distributed across the input space.

It then seems obvious to arrange the cen-

ters and sigmas of the RBF neurons by

means of the pattern distribution. So the

training patterns can be analyzed by statis-

tical techniques such as a cluster analysis,
and so it can be determined whether there

are statistical factors according to which

we should distribute the centers and sig-

mas (fig. 6.7 on the facing page).

A more trivial alternative would be to

set |H| centers on positions randomly se-

lected from the set of patterns. So this

method would allow for every training pat-

tern p to be directly in the center of a neu-

ron (fig. 6.8 on the next page). This is

not yet very elegant but a good solution

when time is an issue. Generally, for this

method the widths are fixedly selected.

If we have reason to believe that the set

of training samples is clustered, we can

use clustering methods to determine them.

There are di�erent methods to determine

clusters in an arbitrarily dimensional set

of points. We will be introduced to some

of them in excursus A. One neural cluster-

ing method are the so-called ROLFs (sec-

tion A.5), and self-organizing maps are
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Figure 6.7: Example of an uneven coverage of
a two-dimensional input space, of which we
have previous knowledge, by applying radial ba-
sis functions.

also useful in connection with determin-

ing the position of RBF neurons (section

10.6.1). Using ROLFs, one can also receive

indicators for useful radii of the RBF neu-

rons. Learning vector quantisation (chap-

ter 9) has also provided good results. All

these methods have nothing to do with

the RBF networks themselves but are only

used to generate some previous knowledge.

Therefore we will not discuss them in this

chapter but independently in the indicated

chapters.

Another approach is to use the approved

methods: We could slightly move the po-

sitions of the centers and observe how our

error function Err is changing – a gradient

descent, as already known from the MLPs.

Figure 6.8: Example of an uneven coverage of
a two-dimensional input space by applying radial
basis functions. The widths were fixedly selected,
the centers of the neurons were randomly dis-
tributed throughout the training patterns. This
distribution can certainly lead to slightly unrepre-
sentative results, which can be seen at the single
data point down to the left.
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In a similar manner we could look how the

error depends on the values ‡. Analogous

to the derivation of backpropagation we

derive

ˆErr(‡hch)
ˆ‡h

and
ˆErr(‡hch)

ˆch
.

Since the derivation of these terms corre-

sponds to the derivation of backpropaga-

tion we do not want to discuss it here.

But experience shows that no convincing

results are obtained by regarding how the

error behaves depending on the centers

and sigmas. Even if mathematics claim

that such methods are promising, the gra-

dient descent, as we already know, leads

to problems with very craggy error sur-

faces.

And that is the crucial point: Naturally,

RBF networks generate very craggy er-

ror surfaces because, if we considerably

change a c or a ‡, we will significantly

change the appearance of the error func-

tion.

6.4 Growing RBF networks
automatically adjust the
neuron density

In growing RBF networks, the number

|H| of RBF neurons is not constant. A

certain number |H| of neurons as well as

their centers ch and widths ‡h are previ-

ously selected (e.g. by means of a cluster-

ing method) and then extended or reduced.

In the following text, only simple mecha-

nisms are sketched. For more information,

I refer to [Fri94].

6.4.1 Neurons are added to places
with large error values

After generating this initial configuration

the vector of the weights G is analytically

calculated. Then all specific errors Errp

concerning the set P of the training sam-

ples are calculated and the maximum spe-

cific error

max
P

(Errp)

is sought.

The extension of the network is simple:

We replace this maximum error with a new replace
error with
neuron

RBF neuron. Of course, we have to exer-

cise care in doing this: IF the ‡ are small,

the neurons will only influence each other

if the distance between them is short. But

if the ‡ are large, the already exisiting

neurons are considerably influenced by the

new neuron because of the overlapping of

the Gaussian bells.

So it is obvious that we will adjust the al-

ready existing RBF neurons when adding

the new neuron.

To put it simply, this adjustment is made

by moving the centers c of the other neu-

rons away from the new neuron and re-

ducing their width ‡ a bit. Then the

current output vector y of the network is

compared to the teaching input t and the

weight vector G is improved by means of

training. Subsequently, a new neuron can

be inserted if necessary. This method is
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particularly suited for function approxima-

tions.

6.4.2 Limiting the number of
neurons

Here it is mandatory to see that the net-

work will not grow ad infinitum, which can

happen very fast. Thus, it is very useful

to previously define a maximum number

for neurons |H|max.

6.4.3 Less important neurons are
deleted

Which leads to the question whether it

is possible to continue learning when this

limit |H|max is reached. The answer is:

this would not stop learning. We only have

to look for the "most unimportant" neuron

and delete it. A neuron is, for example,

unimportant for the network if there is an-

other neuron that has a similar function:

It often occurs that two Gaussian bells ex-

actly overlap and at such a position, fordelete
unimportant

neurons
instance, one single neuron with a higher

Gaussian bell would be appropriate.

But to develop automated procedures in

order to find less relevant neurons is highly

problem dependent and we want to leave

this to the programmer.

With RBF networks and multilayer per-

ceptrons we have already become ac-

quainted with and extensivley discussed

two network paradigms for similar prob-

lems. Therefore we want to compare these

two paradigms and look at their advan-

tages and disadvantages.

6.5 Comparing RBF networks
and multilayer
perceptrons

We will compare multilayer perceptrons

and RBF networks with respect to di�er-

ent aspects.

Input dimension: We must be careful

with RBF networks in high-

dimensional functional spaces since

the network could very quickly

require huge memory storage and

computational e�ort. Here, a

multilayer perceptron would cause

less problems because its number of

neuons does not grow exponentially

with the input dimension.

Center selection: However, selecting the

centers c for RBF networks is (despite

the introduced approaches) still a ma-

jor problem. Please use any previous

knowledge you have when applying

them. Such problems do not occur

with the MLP.

Output dimension: The advantage of

RBF networks is that the training is

not much influenced when the output

dimension of the network is high.

For an MLP, a learning procedure

such as backpropagation thereby will

be very time-consuming.

Extrapolation: Advantage as well as dis-
advantage of RBF networks is the lack
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of extrapolation capability: An RBF

network returns the result 0 far away

from the centers of the RBF layer. On

the one hand it does not extrapolate,

unlike the MLP it cannot be used

for extrapolation (whereby we could

never know if the extrapolated values

of the MLP are reasonable, but expe-

rience shows that MLPs are suitable

for that matter). On the other hand,

unlike the MLP the network is capa-Important!
ble to use this 0 to tell us "I don’t

know", which could be an advantage.

Lesion tolerance: For the output of an

MLP, it is no so important if a weight

or a neuron is missing. It will only

worsen a little in total. If a weight

or a neuron is missing in an RBF net-

work then large parts of the output

remain practically uninfluenced. But

one part of the output is heavily af-

fected because a Gaussian bell is di-

rectly missing. Thus, we can choose

between a strong local error for lesion

and a weak but global error.

Spread: Here the MLP is "advantaged"

since RBF networks are used consid-

erably less often – which is not always

understood by professionals (at least

as far as low-dimensional input spaces

are concerned). The MLPs seem to

have a considerably longer tradition

and they are working too good to take

the e�ort to read some pages of this

work about RBF networks) :-).

Exercises

Exercise 13. An |I|-|H|-|O| RBF net-

work with fixed widths and centers of the

neurons should approximate a target func-

tion u. For this, |P | training samples of

the form (p, t) of the function u are given.

Let |P | > |H| be true. The weights should

be analytically determined by means of

the Moore-Penrose pseudo inverse. Indi-

cate the running time behavior regarding

|P | and |O| as precisely as possible.

Note: There are methods for matrix mul-

tiplications and matrix inversions that are

more e�cient than the canonical methods.

For better estimations, I recommend to

look for such methods (and their complex-

ity). In addition to your complexity calcu-

lations, please indicate the used methods

together with their complexity.
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Chapter 7

Recurrent perceptron-like networks

Some thoughts about networks with internal states.

Generally, recurrent networks are net-

works that are capable of influencing them-

selves by means of recurrences, e.g. by

including the network output in the follow-

ing computation steps. There are many

types of recurrent networks of nearly arbi-

trary form, and nearly all of them are re-

ferred to as recurrent neural networks.

As a result, for the few paradigms in-

troduced here I use the name recurrent
multilayer perceptrons.

Apparently, such a recurrent network is ca-

pable to compute more than the ordinary

MLP: If the recurrent weights are set to 0,more capable
than MLP the recurrent network will be reduced to

an ordinary MLP. Additionally, the recur-

rence generates di�erent network-internal

states so that di�erent inputs can produce

di�erent outputs in the context of the net-

work state.

Recurrent networks in themselves have a

great dynamic that is mathematically dif-

ficult to conceive and has to be discussed

extensively. The aim of this chapter is

only to briefly discuss how recurrences can

be structured and how network-internal

states can be generated. Thus, I will

briefly introduce two paradigms of recur-

rent networks and afterwards roughly out-

line their training.

With a recurrent network an input x that

is constant over time may lead to di�er-

ent results: On the one hand, the network state
dynamicscould converge, i.e. it could transform it-

self into a fixed state and at some time re-

turn a fixed output value y. On the other

hand, it could never converge, or at least

not until a long time later, so that it can

no longer be recognized, and as a conse-

quence, y constantly changes.

If the network does not converge, it is, for

example, possible to check if periodicals
or attractors (fig. 7.1 on the following

page) are returned. Here, we can expect

the complete variety of dynamical sys-
tems. That is the reason why I particu-

larly want to refer to the literature con-

cerning dynamical systems.
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Figure 7.1: The Roessler attractor

Further discussions could reveal what will

happen if the input of recurrent networks

is changed.

In this chapter the related paradigms of

recurrent networks according to Jordan
and Elman will be introduced.

7.1 Jordan networks

A Jordan network [Jor86] is a multi-

layer perceptron with a set K of so-called

context neurons k1, k2, . . . , k|K|. There

is one context neuron per output neuron

(fig. 7.2 on the next page). In principle, a

context neuron just memorizes an output

until it can be processed in the next time output
neurons
are bu�ered

step. Therefore, there are weighted con-

nections between each output neuron and

one context neuron. The stored values are

returned to the actual network by means

of complete links between the context neu-

rons and the input layer.

In the originial definition of a Jordan net-

work the context neurons are also recur-

rent to themselves via a connecting weight

⁄. But most applications omit this recur-

rence since the Jordan network is already

very dynamic and di�cult to analyze, even

without these additional recurrences.

Definition 7.1 (Context neuron). A con-

text neuron k receives the output value of

another neuron i at a time t and then reen-

ters it into the network at a time (t + 1).

Definition 7.2 (Jordan network). A Jor-

dan network is a multilayer perceptron
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Figure 7.2: Illustration of a Jordan network. The network output is bu�ered in the context neurons
and with the next time step it is entered into the network together with the new input.

with one context neuron per output neu-

ron. The set of context neurons is called

K. The context neurons are completely

linked toward the input layer of the net-

work.

7.2 Elman networks

The Elman networks (a variation of

the Jordan networks) [Elm90] have con-

text neurons, too, but one layer of context

neurons per information processing neu-

ron layer (fig. 7.3 on the following page).

Thus, the outputs of each hidden neuronnearly every-
thing is

bu�ered
or output neuron are led into the associ-

ated context layer (again exactly one con-

text neuron per neuron) and from there it

is reentered into the complete neuron layer

during the next time step (i.e. again a com-

plete link on the way back). So the com-

plete information processing part
1

of the

MLP exists a second time as a "context

version" – which once again considerably

increases dynamics and state variety.

Compared with Jordan networks the El-

man networks often have the advantage to

act more purposeful since every layer can

access its own context.

Definition 7.3 (Elman network). An El-

man network is an MLP with one con-

text neuron per information processing

neuron. The set of context neurons is

called K. This means that there exists one

context layer per information processing

1 Remember: The input layer does not process in-
formation.
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Figure 7.3: Illustration of an Elman network. The entire information processing part of the network
exists, in a way, twice. The output of each neuron (except for the output of the input neurons)
is bu�ered and reentered into the associated layer. For the reason of clarity I named the context
neurons on the basis of their models in the actual network, but it is not mandatory to do so.

neuron layer with exactly the same num-

ber of context neurons. Every neuron has

a weighted connection to exactly one con-

text neuron while the context layer is com-

pletely linked towards its original layer.

Now it is interesting to take a look at the

training of recurrent networks since, for in-

stance, ordinary backpropagation of error

cannot work on recurrent networks. Once

again, the style of the following part is

rather informal, which means that I will

not use any formal definitions.

7.3 Training recurrent
networks

In order to explain the training as compre-

hensible as possible, we have to agree on

some simplifications that do not a�ect the

learning principle itself.

So for the training let us assume that in

the beginning the context neurons are ini-

tiated with an input, since otherwise they

would have an undefined input (this is no

simplification but reality).

Furthermore, we use a Jordan network

without a hidden neuron layer for our

training attempts so that the output neu-
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rons can directly provide input. This ap-

proach is a strong simplification because

generally more complicated networks are

used. But this does not change the learn-

ing principle.

7.3.1 Unfolding in time

Remember our actual learning procedure

for MLPs, the backpropagation of error,

which backpropagates the delta values.

So, in case of recurrent networks the

delta values would backpropagate cycli-

cally through the network again and again,

which makes the training more di�cult.

On the one hand we cannot know which

of the many generated delta values for a

weight should be selected for training, i.e.

which values are useful. On the other hand

we cannot definitely know when learning

should be stopped. The advantage of re-

current networks are great state dynamics

within the network; the disadvantage of

recurrent networks is that these dynamics

are also granted to the training and there-

fore make it di�cult.

One learning approach would be the at-

tempt to unfold the temporal states of

the network (fig. 7.4 on the next page):

Recursions are deleted by putting a sim-

ilar network above the context neurons,

i.e. the context neurons are, as a man-

ner of speaking, the output neurons of

the attached network. More generally spo-

ken, we have to backtrack the recurrences

and place "‘earlier"’ instances of neurons

in the network – thus creating a larger,

but forward-oriented network without re-

currences. This enables training a recur-

rent network with any training strategy

developed for non-recurrent ones. Here, attach
the same
network
to each
context
layer

the input is entered as teaching input into

every "copy" of the input neurons. This

can be done for a discrete number of time

steps. These training paradigms are called

unfolding in time [MP69]. After the un-

folding a training by means of backpropa-

gation of error is possible.

But obviously, for one weight wi,j sev-

eral changing values �wi,j are received,

which can be treated di�erently: accumu-

lation, averaging etc. A simple accumu-

lation could possibly result in enormous

changes per weight if all changes have the

same sign. Hence, also the average is not

to be underestimated. We could also intro-

duce a discounting factor, which weakens

the influence of �wi,j of the past.

Unfolding in time is particularly useful if

we receive the impression that the closer

past is more important for the network

than the one being further away. The

reason for this is that backpropagation

has only little influence in the layers far-

ther away from the output (remember:

the farther we are from the output layer,

the smaller the influence of backpropaga-

tion).

Disadvantages: the training of such an un-

folded network will take a long time since

a large number of layers could possibly be

produced. A problem that is no longer

negligible is the limited computational ac-

curacy of ordinary computers, which is

exhausted very fast because of so many
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Figure 7.4: Illustration of the unfolding in time with a small exemplary recurrent MLP. Top: The
recurrent MLP. Bottom: The unfolded network. For reasons of clarity, I only added names to
the lowest part of the unfolded network. Dotted arrows leading into the network mark the inputs.
Dotted arrows leading out of the network mark the outputs. Each "network copy" represents a time
step of the network with the most recent time step being at the bottom.
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nested computations (the farther we are

from the output layer, the smaller the in-

fluence of backpropagation, so that this

limit is reached). Furthermore, with sev-

eral levels of context neurons this proce-

dure could produce very large networks to

be trained.

7.3.2 Teacher forcing

Other procedures are the equivalent

teacher forcing and open loop learn-
ing. They detach the recurrence during

the learning process: We simply pretendteaching
input

applied at
context
neurons

that the recurrence does not exist and ap-

ply the teaching input to the context neu-

rons during the training. So, backpropaga-

tion becomes possible, too. Disadvantage:

with Elman networks a teaching input for

non-output-neurons is not given.

7.3.3 Recurrent backpropagation

Another popular procedure without lim-

ited time horizon is the recurrent back-
propagation using methods of di�er-

ential calculus to solve the problem

[Pin87].

7.3.4 Training with evolution

Due to the already long lasting train-

ing time, evolutionary algorithms have

proved to be of value, especially with recur-

rent networks. One reason for this is that

they are not only unrestricted with respect

to recurrences but they also have other ad-

vantages when the mutation mechanisms

are chosen suitably: So, for example, neu-

rons and weights can be adjusted and

the network topology can be optimized

(of course the result of learning is not

necessarily a Jordan or Elman network).

With ordinary MLPs, however, evolution-

ary strategies are less popular since they

certainly need a lot more time than a di-

rected learning procedure such as backpro-

pagation.
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Chapter 8

Hopfield networks
In a magnetic field, each particle applies a force to any other particle so that

all particles adjust their movements in the energetically most favorable way.
This natural mechanism is copied to adjust noisy inputs in order to match

their real models.

Another supervised learning example of

the wide range of neural networks was

developed by John Hopfield: the so-

called Hopfield networks [Hop82]. Hop-

field and his physically motivated net-

works have contributed a lot to the renais-

sance of neural networks.

8.1 Hopfield networks are
inspired by particles in a
magnetic field

The idea for the Hopfield networks origi-

nated from the behavior of particles in a

magnetic field: Every particle "communi-

cates" (by means of magnetic forces) with

every other particle (completely linked)

with each particle trying to reach an ener-

getically favorable state (i.e. a minimum
of the energy function). As for the neurons

this state is known as activation. Thus,

all particles or neurons rotate and thereby

encourage each other to continue this rota-

tion. As a manner of speaking, our neural

network is a cloud of particles

Based on the fact that the particles auto-

matically detect the minima of the energy

function, Hopfield had the idea to use the

"spin" of the particles to process informa-

tion: Why not letting the particles search

minima on arbitrary functions? Even if we

only use two of those spins, i.e. a binary
activation, we will recognize that the devel-

oped Hopfield network shows considerable

dynamics.

8.2 In a hopfield network, all
neurons influence each
other symmetrically

Briefly speaking, a Hopfield network con-

sists of a set K of completely linked neu- JK
rons with binary activation (since we only
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Figure 8.1: Illustration of an exemplary Hop-
field network. The arrows ø and ¿ mark the
binary "spin". Due to the completely linked neu-
rons the layers cannot be separated, which means
that a Hopfield network simply includes a set of
neurons.

use two spins), with the weights being

symmetric between the individual neuronscompletely
linked
set of

neurons

and without any neuron being directly con-
nected to itself (fig. 8.1). Thus, the state
of |K| neurons with two possible states

œ {≠1, 1} can be described by a string

x œ {≠1, 1}
|K|

.

The complete link provides a full square

matrix of weights between the neurons.

The meaning of the weights will be dis-

cussed in the following. Furthermore, we

will soon recognize according to which

rules the neurons are spinning, i.e. are

changing their state.

Additionally, the complete link leads to

the fact that we do not know any input,

output or hidden neurons. Thus, we have

to think about how we can input some-

thing into the |K| neurons.

Definition 8.1 (Hopfield network). A

Hopfield network consists of a set K of

completely linked neurons without direct

recurrences. The activation function of

the neurons is the binary threshold func-

tion with outputs œ {1, ≠1}.

Definition 8.2 (State of a Hopfield net-

work). The state of the network con-

sists of the activation states of all neu-

rons. Thus, the state of the network can

be understood as a binary string z œ

{≠1, 1}
|K|

.

8.2.1 Input and output of a
Hopfield network are
represented by neuron states

We have learned that a network, i.e. a

set of |K| particles, that is in a state

is automatically looking for a minimum.

An input pattern of a Hopfield network

is exactly such a state: A binary string

x œ {≠1, 1}
|K|

that initializes the neurons.

Then the network is looking for the min-

imum to be taken (which we have previ-

ously defined by the input of training sam-

ples) on its energy surface.

But when do we know that the minimum

has been found? This is simple, too: when input and
output =
network
states

the network stops. It can be proven that a

Hopfield network with a symmetric weight

matrix that has zeros on its diagonal al-
ways converges [CG88], i.e. at some point always

convergesit will stand still. Then the output is a

binary string y œ {≠1, 1}
|K|

, namely the

state string of the network that has found

a minimum.
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Now let us take a closer look at the con-

tents of the weight matrix and the rules

for the state change of the neurons.

Definition 8.3 (Input and output of

a Hopfield network). The input of a

Hopfield network is binary string x œ

{≠1, 1}
|K|

that initializes the state of the

network. After the convergence of the

network, the output is the binary string

y œ {≠1, 1}
|K|

generated from the new net-

work state.

8.2.2 Significance of weights

We have already said that the neurons

change their states, i.e. their direction,

from ≠1 to 1 or vice versa. These spins oc-

cur dependent on the current states of the

other neurons and the associated weights.

Thus, the weights are capable to control

the complete change of the network. The

weights can be positive, negative, or 0.

Colloquially speaking, for a weight wi,j be-

tween two neurons i and j the following

holds:

If wi,j is positive, it will try to force the

two neurons to become equal – the

larger they are, the harder the net-

work will try. If the neuron i is in

state 1 and the neuron j is in state

≠1, a high positive weight will advise

the two neurons that it is energeti-

cally more favorable to be equal.

If wi,j is negative, its behavior will be

analoguous only that i and j are

urged to be di�erent. A neuron i in

state ≠1 would try to urge a neuron

j into state 1.

Zero weights lead to the two involved

neurons not influencing each other.

The weights as a whole apparently take

the way from the current state of the net-

work towards the next minimum of the en-

ergy function. We now want to discuss

how the neurons follow this way.

8.2.3 A neuron changes its state
according to the influence of
the other neurons

Once a network has been trained and

initialized with some starting state, the

change of state xk of the individual neu-

rons k occurs according to the scheme

xk(t) = fact

Q

a
ÿ

jœK

wj,k · xj(t ≠ 1)

R

b (8.1)

in each time step, where the function fact
generally is the binary threshold function

(fig. 8.2 on the next page) with threshold

0. Colloquially speaking: a neuron k cal-

culates the sum of wj,k · xj(t ≠ 1), which

indicates how strong and into which direc-

tion the neuron k is forced by the other

neurons j. Thus, the new state of the net-

work (time t) results from the state of the

network at the previous time t ≠ 1. This

sum is the direction into which the neuron

k is pushed. Depending on the sign of the

sum the neuron takes state 1 or ≠1.

Another di�erence between Hopfield net-

works and other already known network

topologies is the asynchronous update: A

neuron k is randomly chosen every time,

which then recalculates the activation.
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Figure 8.2: Illustration of the binary threshold
function.

Thus, the new activation of the previously

changed neurons immediately influences

the network, i.e. one time step indicates

the change of a single neuron.

Regardless of the aforementioned random

selection of the neuron, a Hopfield net-

work is often much easier to implement:

The neurons are simply processed one af-

ter the other and their activations are re-

calculated until no more changes occur.random
neuron

calculates
new

activation

Definition 8.4 (Change in the state of

a Hopfield network). The change of state

of the neurons occurs asynchronously with

the neuron to be updated being randomly

chosen and the new state being generated

by means of this rule:

xk(t) = fact

Q

a
ÿ

jœJ

wj,k · xj(t ≠ 1)

R

b .

Now that we know how the weights influ-

ence the changes in the states of the neu-

rons and force the entire network towards

a minimum, then there is the question of

how to teach the weights to force the net-

work towards a certain minimum.

8.3 The weight matrix is
generated directly out of
the training patterns

The aim is to generate minima on the

mentioned energy surface, so that at an

input the network can converge to them.

As with many other network paradigms,

we use a set P of training patterns p œ

{1, ≠1}
|K|

, representing the minima of our

energy surface.

Unlike many other network paradigms, we

do not look for the minima of an unknown

error function but define minima on such a

function. The purpose is that the network

shall automatically take the closest min-

imum when the input is presented. For

now this seems unusual, but we will un-

derstand the whole purpose later.

Roughly speaking, the training of a Hop-

field network is done by training each train-

ing pattern exactly once using the rule

described in the following (Single Shot
Learning), where pi and pj are the states

of the neurons i and j under p œ P :

wi,j =
ÿ

pœP

pi · pj (8.2)

This results in the weight matrix W . Col-

loquially speaking: We initialize the net-

work by means of a training pattern and

then process weights wi,j one after another.
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For each of these weights we verify: Are

the neurons i, j n the same state or do the

states vary? In the first case we add 1
to the weight, in the second case we add

≠1.

This we repeat for each training pattern

p œ P . Finally, the values of the weights

wi,j are high when i and j corresponded

with many training patterns. Colloquially

speaking, this high value tells the neurons:

"Often, it is energetically favorable to hold

the same state". The same applies to neg-

ative weights.

Due to this training we can store a certain

fixed number of patterns p in the weight

matrix. At an input x the network will

converge to the stored pattern that is clos-

est to the input p.

Unfortunately, the number of the maxi-

mum storable and reconstructible patterns

p is limited to

|P |MAX ¥ 0.139 · |K|, (8.3)

which in turn only applies to orthogo-

nal patterns. This was shown by precise

(and time-consuming) mathematical anal-

yses, which we do not want to specify

now. If more patterns are entered, already

stored information will be destroyed.

Definition 8.5 (Learning rule for Hop-

field networks). The individual elements

of the weight matrix W are defined by a

single processing of the learning rule

wi,j =
ÿ

pœP

pi · pj ,

where the diagonal of the matrix is covered

with zeros. Here, no more than |P |MAX ¥

0.139 · |K| training samples can be trained

and at the same time maintain their func-

tion.

Now we know the functionality of Hopfield

networks but nothing about their practical

use.

8.4 Autoassociation and
traditional application

Hopfield networks, like those mentioned

above, are called autoassociators. An

autoassociator a exactly shows the afore- Ja
mentioned behavior: Firstly, when a

known pattern p is entered, exactly this

known pattern is returned. Thus,

a(p) = p,

with a being the associative mapping. Sec-

ondly, and that is the practical use, this

also works with inputs that are close to a

pattern:

a(p + Á) = p.

Afterwards, the autoassociator is, in any

case, in a stable state, namely in the state

p.

If the set of patterns P consists of, for ex- network
restores
damaged
inputs

ample, letters or other characters in the

form of pixels, the network will be able to

correctly recognize deformed or noisy let-

ters with high probability (fig. 8.3 on the

following page).

The primary fields of application of Hop-

field networks are pattern recognition
and pattern completion, such as the zip
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Figure 8.3: Illustration of the convergence of an
exemplary Hopfield network. Each of the pic-
tures has 10 ◊ 12 = 120 binary pixels. In the
Hopfield network each pixel corresponds to one
neuron. The upper illustration shows the train-
ing samples, the lower shows the convergence of
a heavily noisy 3 to the corresponding training
sample.

code recognition on letters in the eighties.

But soon the Hopfield networks were re-

placed by other systems in most of their

fields of application, for example by OCR

systems in the field of letter recognition.

Today Hopfield networks are virtually no

longer used, they have not become estab-

lished in practice.

8.5 Heteroassociation and
analogies to neural data
storage

So far we have been introduced to Hopfield

networks that converge from an arbitrary

input into the closest minimum of a static

energy surface.

Another variant is a dynamic energy sur-

face: Here, the appearance of the energy

surface depends on the current state and

we receive a heteroassociator instead of

an autoassociator. For a heteroassocia-

tor

a(p + Á) = p

is no longer true, but rather

h(p + Á) = q,

which means that a pattern is mapped

onto another one. h is the heteroasso- Jh
ciative mapping. Such heteroassociations

are achieved by means of an asymmetric

weight matrix V .
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Heteroassociations connected in series of

the form

h(p + Á) = q

h(q + Á) = r

h(r + Á) = s

.

.

.

h(z + Á) = p

can provoke a fast cycle of states

p æ q æ r æ s æ . . . æ z æ p,

whereby a single pattern is never com-

pletely accepted: Before a pattern is en-

tirely completed, the heteroassociation al-

ready tries to generate the successor of this

pattern. Additionally, the network would

never stop, since after having reached the

last state z, it would proceed to the first

state p again.

8.5.1 Generating the
heteroassociative matrix

We generate the matrix V by means of el-
VI

ements v very similar to the autoassocia-
vI

tive matrix with p being (per transition)

the training sample before the transition

and q being the training sample to be gen-
qI

erated from p:

vi,j =
ÿ

p,qœP,p”=q

piqj (8.4)

The diagonal of the matrix is again filled

with zeros. The neuron states are, as al-netword
is instable

while
changing

states

ways, adapted during operation. Several

transitions can be introduced into the ma-

trix by a simple addition, whereby the said

limitation exists here, too.

Definition 8.6 (Learning rule for the het-

eroassociative matrix). For two training

samples p being predecessor and q being

successor of a heteroassociative transition

the weights of the heteroassociative matrix

V result from the learning rule

vi,j =
ÿ

p,qœP,p”=q

piqj ,

with several heteroassociations being intro-

duced into the network by a simple addi-

tion.

8.5.2 Stabilizing the
heteroassociations

We have already mentioned the problem

that the patterns are not completely gen-

erated but that the next pattern is already

beginning before the generation of the pre-

vious pattern is finished.

This problem can be avoided by not only

influencing the network by means of the

heteroassociative matrix V but also by

the already known autoassociative matrix

W .

Additionally, the neuron adaptation rule

is changed so that competing terms are

generated: One term autoassociating an

existing pattern and one term trying to

convert the very same pattern into its suc-

cessor. The associative rule provokes that

the network stabilizes a pattern, remains
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there for a while, goes on to the next pat-

tern, and so on.

xi(t + 1) = (8.5)

fact

Q

cccca

ÿ

jœK

wi,jxj(t)

¸ ˚˙ ˝
autoassociation

+
ÿ

kœK

vi,kxk(t ≠ �t)
¸ ˚˙ ˝

heteroassociation

R

ddddb

Here, the value �t causes, descriptively
�tI

stable change
in states

speaking, the influence of the matrix V
to be delayed, since it only refers to a

network being �t versions behind. The

result is a change in state, during which

the individual states are stable for a short

while. If �t is set to, for example, twenty

steps, then the asymmetric weight matrix

will realize any change in the network only

twenty steps later so that it initially works

with the autoassociative matrix (since it

still perceives the predecessor pattern of

the current one), and only after that it will

work against it.

8.5.3 Biological motivation of
heterassociation

From a biological point of view the transi-

tion of stable states into other stable states

is highly motivated: At least in the begin-

ning of the nineties it was assumed that

the Hopfield modell will achieve an ap-

proximation of the state dynamics in the

brain, which realizes much by means of

state chains: When I would ask you, dear

reader, to recite the alphabet, you gener-

ally will manage this better than (please

try it immediately) to answer the follow-

ing question:

Which letter in the alphabet follows the
letter P ?

Another example is the phenomenon that

one cannot remember a situation, but the

place at which one memorized it the last

time is perfectly known. If one returns

to this place, the forgotten situation often

comes back to mind.

8.6 Continuous Hopfield
networks

So far, we only have discussed Hopfield net-

works with binary activations. But Hop-

field also described a version of his net-

works with continuous activations [Hop84],

which we want to cover at least briefly:

continuous Hopfield networks. Here,

the activation is no longer calculated by

the binary threshold function but by the

Fermi function with temperature parame-

ters (fig. 8.4 on the next page).

Here, the network is stable for symmetric

weight matrices with zeros on the diagonal,

too.

Hopfield also stated, that continuous Hop-

field networks can be applied to find ac-

ceptable solutions for the NP-hard trav-

elling salesman problem [HT85]. Accord-

ing to some verification trials [Zel94] this

statement can’t be kept up any more. But

today there are faster algorithms for han-

dling this problem and therefore the Hop-

field network is no longer used here.
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Figure 8.4: The already known Fermi function
with di�erent temperature parameter variations.

Exercises

Exercise 14. Indicate the storage re-

quirements for a Hopfield network with

|K| = 1000 neurons when the weights wi,j

shall be stored as integers. Is it possible

to limit the value range of the weights in

order to save storage space?

Exercise 15. Compute the weights wi,j

for a Hopfield network using the training

set

P ={(≠1, ≠1, ≠1, ≠1, ≠1, 1);
(≠1, 1, 1, ≠1, ≠1, ≠1);
(1, ≠1, ≠1, 1, ≠1, 1)}.
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Chapter 9

Learning vector quantization
Learning Vector Quantization is a learning procedure with the aim to represent

the vector training sets divided into predefined classes as well as possible by
using a few representative vectors. If this has been managed, vectors which

were unkown until then could easily be assigned to one of these classes.

Slowly, part II of this text is nearing its

end – and therefore I want to write a last

chapter for this part that will be a smooth

transition into the next one: A chapter

about the learning vector quantization
(abbreviated LVQ) [Koh89] described by

Teuvo Kohonen, which can be charac-

terized as being related to the self orga-
nizing feature maps. These SOMs are de-

scribed in the next chapter that already

belongs to part III of this text, since SOMs

learn unsupervised. Thus, after the explo-

ration of LVQ I want to bid farewell to

supervised learning.

Previously, I want to announce that there

are di�erent variations of LVQ, which will

be mentioned but not exactly represented.

The goal of this chapter is rather to ana-

lyze the underlying principle.

9.1 About quantization

In order to explore the learning vec-
tor quantization we should at first get

a clearer picture of what quantization
(which can also be referred to as dis-
cretization) is.

Everybody knows the sequence of discrete

numbers

N = {1, 2, 3, . . .},

which contains the natural numbers. Dis-
crete means, that this sequence consists of discrete

= separatedseparated elements that are not intercon-

nected. The elements of our example are

exactly such numbers, because the natural

numbers do not include, for example, num-

bers between 1 and 2. On the other hand,

the sequence of real numbers R, for in-

stance, is continuous: It does not matter

how close two selected numbers are, there

will always be a number between them.
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Quantization means that a continuous

space is divided into discrete sections: By

deleting, for example, all decimal places

of the real number 2.71828, it could be

assigned to the natural number 2. Here

it is obvious that any other number hav-

ing a 2 in front of the comma would also

be assigned to the natural number 2, i.e.

2 would be some kind of representative
for all real numbers within the interval

[2; 3).

It must be noted that a sequence can be ir-

regularly quantized, too: For instance, the

timeline for a week could be quantized into

working days and weekend.

A special case of quantization is digiti-
zation: In case of digitization we always

talk about regular quantization of a con-

tinuous space into a number system with

respect to a certain basis. If we enter, for

example, some numbers into the computer,

these numbers will be digitized into the bi-

nary system (basis 2).

Definition 9.1 (Quantization). Separa-

tion of a continuous space into discrete sec-

tions.

Definition 9.2 (Digitization). Regular

quantization.

9.2 LVQ divides the input
space into separate areas

Now it is almost possible to describe by

means of its name what LVQ should en-

able us to do: A set of representatives

should be used to divide an input space

into classes that reflect the input space

as well as possible (fig. 9.1 on the facing input space
reduced to
vector repre-
sentatives

page). Thus, each element of the input

space should be assigned to a vector as a

representative, i.e. to a class, where the

set of these representatives should repre-

sent the entire input space as precisely as

possible. Such a vector is called codebook
vector. A codebook vector is the represen-

tative of exactly those input space vectors

lying closest to it, which divides the input

space into the said discrete areas.

It is to be emphasized that we have to

know in advance how many classes we

have and which training sample belongs

to which class. Furthermore, it is impor-

tant that the classes must not be disjoint,

which means they may overlap.

Such separation of data into classes is in-

teresting for many problems for which it

is useful to explore only some characteris-

tic representatives instead of the possibly

huge set of all vectors – be it because it is

less time-consuming or because it is su�-

ciently precise.

9.3 Using codebook vectors:
the nearest one is the
winner

The use of a prepared set of codebook vec-

tors is very simple: For an input vector y
the class association is easily decided by closest

vector
wins

considering which codebook vector is the

closest – so, the codebook vectors build a

voronoi diagram out of the set. Since
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Figure 9.1: BExamples for quantization of a two-dimensional input space. DThe lines represent
the class limit, the ◊ mark the codebook vectors.

each codebook vector can clearly be asso-

ciated to a class, each input vector is asso-

ciated to a class, too.

9.4 Adjusting codebook
vectors

As we have already indicated, the LVQ is

a supervised learning procedure. Thus, we

have a teaching input that tells the learn-

ing procedure whether the classification of

the input pattern is right or wrong: In

other words, we have to know in advance

the number of classes to be represented or

the number of codebook vectors.

Roughly speaking, it is the aim of the

learning procedure that training samples

are used to cause a previously defined num-

ber of randomly initialized codebook vec-

tors to reflect the training data as precisely

as possible.

9.4.1 The procedure of learning

Learning works according to a simple

scheme. We have (since learning is su-

pervised) a set P of |P | training samples.

Additionally, we already know that classes

are predefined, too, i.e. we also have a set

of classes C. A codebook vector is clearly

assigned to each class. Thus, we can say

that the set of classes |C| contains many

codebook vectors C1, C2, . . . , C|C|.

This leads to the structure of the training

samples: They are of the form (p, c) and
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therefore contain the training input vector

p and its class a�liation c. For the class

a�liation

c œ {1, 2, . . . , |C|}

holds, which means that it clearly assigns

the training sample to a class or a code-

book vector.

Intuitively, we could say about learning:

"Why a learning procedure? We calculate

the average of all class members and place

their codebook vectors there – and that’s

it." But we will see soon that our learning

procedure can do a lot more.

I only want to briefly discuss the steps

of the fundamental LVQ learning proce-

dure:

Initialization: We place our set of code-

book vectors on random positions in

the input space.

Training sample: A training sample p of

our training set P is selected and pre-

sented.

Distance measurement: We measure the

distance ||p ≠ C|| between all code-

book vectors C1, C2, . . . , C|C| and our

input p.

Winner: The closest codebook vector

wins, i.e. the one with

min
CiœC

||p ≠ Ci||.

Learning process: The learning process

takes place according to the rule

�Ci = ÷(t) · h(p, Ci) · (p ≠ Ci)
(9.1)

Ci(t + 1) = Ci(t) + �Ci, (9.2)

which we now want to break down.

Û We have already seen that the first

factor ÷(t) is a time-dependent learn-

ing rate allowing us to di�erentiate

between large learning steps and fine

tuning.

Û The last factor (p ≠ Ci) is obviously

the direction toward which the code-

book vector is moved.

Û But the function h(p, Ci) is the core of

the rule: It implements a distinction

of cases.

Assignment is correct: The winner

vector is the codebook vector of

the class that includes p. In this Important!
case, the function provides posi-

tive values and the codebook vec-

tor moves towards p.

Assignment is wrong: The winner

vector does not represent the

class that includes p. Therefore

it moves away from p.

We can see that our definition of the func-

tion h was not precise enough. With good

reason: From here on, the LVQ is divided

into di�erent nuances, dependent of how

exactly h and the learning rate should

be defined (called LVQ1, LVQ2, LVQ3,
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OLVQ, etc). The di�erences are, for in-

stance, in the strength of the codebook vec-

tor movements. They are not all based on

the same principle described here, and as

announced I don’t want to discuss them

any further. Therefore I don’t give any

formal definition regarding the aforemen-

tioned learning rule and LVQ.

9.5 Connection to neural
networks

Until now, in spite of the learning process,

the question was what LVQ has to do with

neural networks. The codebook vectors

can be understood as neurons with a fixed

position within the input space, similar to

RBF networks. Additionally, in nature itvectors
= neurons? often occurs that in a group one neuron

may fire (a winner neuron, here: a code-

book vector) and, in return, inhibits all

other neurons.

I decided to place this brief chapter about

learning vector quantization here so that

this approach can be continued in the fol-

lowing chapter about self-organizing maps:

We will classify further inputs by means of

neurons distributed throughout the input

space, only that this time, we do not know

which input belongs to which class.

Now let us take a look at the unsupervised
learning networks!

Exercises

Exercise 16. Indicate a quantization

which equally distributes all vectors H œ

H in the five-dimensional unit cube H into

one of 1024 classes.
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Part III

Unsupervised learning network
paradigms
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Chapter 10

Self-organizing feature maps
A paradigm of unsupervised learning neural networks, which maps an input

space by its fixed topology and thus independently looks for simililarities.
Function, learning procedure, variations and neural gas.

If you take a look at the concepts of biologi-

cal neural networks mentioned in the intro-

duction, one question will arise: How does

our brain store and recall the impressions

it receives every day. Let me point out

that the brain does not have any trainingHow are
data stored

in the
brain?

samples and therefore no "desired output".

And while already considering this subject

we realize that there is no output in this

sense at all, too. Our brain responds to

external input by changes in state. These

are, so to speak, its output.

Based on this principle and exploring

the question of how biological neural net-

works organize themselves, Teuvo Ko-
honen developed in the Eighties his self-
organizing feature maps [Koh82, Koh98],

shortly referred to as self-organizing
maps or SOMs. A paradigm of neural

networks where the output is the state of

the network, which learns completely un-

supervised, i.e. without a teacher.

Unlike the other network paradigms we

have already got to know, for SOMs it is

unnecessary to ask what the neurons calcu-

late. We only ask which neuron is active at
the moment. Biologically, this is very mo- no output,

but active
neuron

tivated: If in biology the neurons are con-

nected to certain muscles, it will be less

interesting to know how strong a certain

muscle is contracted but which muscle is

activated. In other words: We are not in-

terested in the exact output of the neuron

but in knowing which neuron provides out-

put. Thus, SOMs are considerably more

related to biology than, for example, the

feedforward networks, which are increas-

ingly used for calculations.

10.1 Structure of a
self-organizing map

Typically, SOMs have – like our brain –

the task to map a high-dimensional in-

put (N dimensions) onto areas in a low-
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dimensional grid of cells (G dimensions)

to draw a map of the high-dimensionalhigh-dim.
input

¿
low-dim.

map

space, so to speak. To generate this map,

the SOM simply obtains arbitrary many

points of the input space. During the in-

put of the points the SOM will try to cover

as good as possible the positions on which

the points appear by its neurons. This par-

ticularly means, that every neuron can be

assigned to a certain position in the input

space.

At first, these facts seem to be a bit con-

fusing, and it is recommended to briefly

reflect about them. There are two spaces

in which SOMs are working:

Û The N -dimensional input space and

Û the G-dimensional grid on which the

neurons are lying and which indi-input space
and topology cates the neighborhood relationships

between the neurons and therefore

the network topology.

In a one-dimensional grid, the neurons

could be, for instance, like pearls on a

string. Every neuron would have exactly

two neighbors (except for the two end neu-

rons). A two-dimensional grid could be a

square array of neurons (fig. 10.1). An-

other possible array in two-dimensional

space would be some kind of honeycomb

shape. Irregular topologies are possible,

too, but not very often. Topolgies with

more dimensions and considerably more

neighborhood relationships would also be

possible, but due to their lack of visualiza-

tion capability they are not employed very

often.Important!

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

Figure 10.1: Example topologies of a self-
organizing map. Above we can see a one-
dimensional topology, below a two-dimensional
one.

Even if N = G is true, the two spaces are

not equal and have to be distinguished. In

this special case they only have the same

dimension.

Initially, we will briefly and formally re-

gard the functionality of a self-organizing

map and then make it clear by means of

some examples.

Definition 10.1 (SOM neuron). Similar

to the neurons in an RBF network a SOM
neuron k does not occupy a fixed position

ck (a center) in the input space. Jc

Definition 10.2 (Self-organizing map).

A self-organizing map is a set K of SOM

neurons. If an input vector is entered, ex- JK
actly that neuron k œ K is activated which
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is closest to the input pattern in the input

space. The dimension of the input space

is referred to as N .
NI

Definition 10.3 (Topology). The neu-

rons are interconnected by neighborhood

relationships. These neighborhood rela-

tionships are called topology. The train-

ing of a SOM is highly influenced by the

topology. It is defined by the topology
function h(i, k, t), where i is the winner

iI
neuron

1
ist, k the neuron to be adapted

kI
(which will be discussed later) and t the

timestep. The dimension of the topology

is referred to as G.
GI

10.2 SOMs always activate
the neuron with the
least distance to an
input pattern

Like many other neural networks, the

SOM has to be trained before it can be

used. But let us regard the very simple

functionality of a complete self-organizing

map before training, since there are many

analogies to the training. Functionality

consists of the following steps:

Input of an arbitrary value p of the input

space RN
.

Calculation of the distance between ev-

ery neuron k and p by means of a

norm, i.e. calculation of ||p ≠ ck||.

One neuron becomes active, namely

such neuron i with the shortest

1 We will learn soon what a winner neuron is.

calculated distance to the input. All

other neurons remain inactive.This

paradigm of activity is also called input
¿

winner
winner-takes-all scheme. The output

we expect due to the input of a SOM

shows which neuron becomes active.

In many literature citations, the descrip-

tion of SOMs is more formal: Often an

input layer is described that is completely

linked towards an SOM layer. Then the in-

put layer (N neurons) forwards all inputs

to the SOM layer. The SOM layer is later-

ally linked in itself so that a winner neuron

can be established and inhibit the other

neurons. I think that this explanation of

a SOM is not very descriptive and there-

fore I tried to provide a clearer description

of the network structure.

Now the question is which neuron is ac-

tivated by which input – and the answer

is given by the network itself during train-

ing.

10.3 Training

[Training makes the SOM topology cover

the input space] The training of a SOM

is nearly as straightforward as the func-

tionality described above. Basically, it is

structured into five steps, which partially

correspond to those of functionality.

Initialization: The network starts with

random neuron centers ck œ RN
from

the input space.

Creating an input pattern: A stimulus,

i.e. a point p, is selected from the
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input space RN
. Now this stimulus istraining:

input,
æ winner i,

change in
position

i and
neighbors

entered into the network.

Distance measurement: Then the dis-

tance ||p≠ck|| is determined for every

neuron k in the network.

Winner takes all: The winner neuron i
is determined, which has the smallest

distance to p, i.e. which fulfills the

condition

||p ≠ ci|| Æ ||p ≠ ck|| ’ k ”= i

. You can see that from several win-

ner neurons one can be selected at

will.

Adapting the centers: The neuron cen-

ters are moved within the input space

according to the rule
2

�ck = ÷(t) · h(i, k, t) · (p ≠ ck),

where the values �ck are simply

added to the existing centers. The

last factor shows that the change in

position of the neurons k is propor-

tional to the distance to the input

pattern p and, as usual, to a time-

dependent learning rate ÷(t). The

above-mentioned network topology ex-

erts its influence by means of the func-

tion h(i, k, t), which will be discussed

in the following.

2 Note: In many sources this rule is written ÷h(p ≠
ck), which wrongly leads the reader to believe that
h is a constant. This problem can easily be solved
by not omitting the multiplication dots ·.

Definition 10.4 (SOM learning rule). A

SOM is trained by presenting an input pat-

tern and determining the associated win-
ner neuron. The winner neuron and its

neighbor neurons, which are defined by the

topology function, then adapt their cen-

ters according to the rule

�ck = ÷(t) · h(i, k, t) · (p ≠ ck),
(10.1)

ck(t + 1) = ck(t) + �ck(t). (10.2)

10.3.1 The topology function
defines, how a learning
neuron influences its
neighbors

The topology function h is not defined

on the input space but on the grid and rep-

resents the neighborhood relationships be-

tween the neurons, i.e. the topology of the

network. It can be time-dependent (which

it often is) – which explains the parameter defined on
the gridt. The parameter k is the index running

through all neurons, and the parameter i
is the index of the winner neuron.

In principle, the function shall take a large

value if k is the neighbor of the winner neu-

ron or even the winner neuron itself, and

small values if not. SMore precise defini-

tion: The topology function must be uni-
modal, i.e. it must have exactly one maxi-

mum. This maximum must be next to the

winner neuron i, for which the distance to

itself certainly is 0. only 1 maximum
for the winner

Additionally, the time-dependence enables

us, for example, to reduce the neighbor-

hood in the course of time.
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In order to be able to output large values

for the neighbors of i and small values for

non-neighbors, the function h needs some

kind of distance notion on the grid because

from somewhere it has to know how far i
and k are apart from each other on the

grid. There are di�erent methods to cal-

culate this distance.

On a two-dimensional grid we could apply,

for instance, the Euclidean distance (lower

part of fig. 10.2) or on a one-dimensional

grid we could simply use the number of the

connections between the neurons i and k
(upper part of the same figure).

Definition 10.5 (Topology function).

The topology function h(i, k, t) describes

the neighborhood relationships in the

topology. It can be any unimodal func-

tion that reaches its maximum when i = k
gilt. Time-dependence is optional, but of-

ten used.

10.3.1.1 Introduction of common
distance and topology
functions

A common distance function would be, for

example, the already known Gaussian
bell (see fig. 10.3 on page 153). It is uni-

modal with a maximum close to 0. Addi-

tionally, its width can be changed by ap-

plying its parameter ‡ , which can be used
‡I

to realize the neighborhood being reduced

in the course of time: We simply relate the

time-dependence to the ‡ and the result is

/.-,()*+ ?>=<89:;i oo 1 // ?>=<89:;k /.-,()*+ /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ ?>=<89:;k
OO

✏✏
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/.-,()*+ ?>=<89:;i
xx
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Figure 10.2: Example distances of a one-
dimensional SOM topology (above) and a two-
dimensional SOM topology (below) between two
neurons i and k. In the lower case the Euclidean
distance is determined (in two-dimensional space
equivalent to the Pythagoream theorem). In the
upper case we simply count the discrete path
length between i and k. To simplify matters I
required a fixed grid edge length of 1 in both
cases.
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a monotonically decreasing ‡(t). Then our

topology function could look like this:

h(i, k, t) = e
1

≠ ||gi≠c
k

||2

2·‡(t)2

2

, (10.3)

where gi and gk represent the neuron po-

sitions on the grid, not the neuron posi-

tions in the input space, which would be

referred to as ci and ck.

Other functions that can be used in-

stead of the Gaussian function are, for

instance, the cone function, the cylin-
der function or the Mexican hat func-
tion (fig. 10.3 on the facing page). Here,

the Mexican hat function o�ers a particu-

lar biological motivation: Due to its neg-

ative digits it rejects some neurons close

to the winner neuron, a behavior that has

already been observed in nature. This can

cause sharply separated map areas – and

that is exactly why the Mexican hat func-

tion has been suggested by Teuvo Koho-

nen himself. But this adjustment charac-

teristic is not necessary for the functional-

ity of the map, it could even be possible

that the map would diverge, i.e. it could

virtually explode.

10.3.2 Learning rates and
neighborhoods can decrease
monotonically over time

To avoid that the later training phases

forcefully pull the entire map towards

a new pattern, the SOMs often work

with temporally monotonically decreasing

learning rates and neighborhood sizes. At

first, let us talk about the learning rate:

Typical sizes of the target value of a learn-

ing rate are two sizes smaller than the ini-

tial value, e.g

0.01 < ÷ < 0.6

could be true. But this size must also de-

pend on the network topology or the size

of the neighborhood.

As we have already seen, a decreasing

neighborhood size can be realized, for ex-

ample, by means of a time-dependent,

monotonically decreasing ‡ with the

Gaussin bell being used in the topology

function.

The advantage of a decreasing neighbor-

hood size is that in the beginning a moving

neuron "pulls along" many neurons in its

vicinity, i.e. the randomly initialized net-

work can unfold fast and properly in the

beginning. In the end of the learning pro-

cess, only a few neurons are influenced at

the same time which sti�ens the network

as a whole but enables a good "fine tuning"

of the individual neurons.

It must be noted that

h · ÷ Æ 1

must always be true, since otherwise the

neurons would constantly miss the current

training sample.

But enough of theory – let us take a look

at a SOM in action!
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Figure 10.3: Gaussian bell, cone function, cylinder function and the Mexican hat function sug-
gested by Kohonen as examples for topology functions of a SOM..
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Figure 10.4: Illustration of the two-dimensional input space (left) and the one-dimensional topolgy
space (right) of a self-organizing map. Neuron 3 is the winner neuron since it is closest to p. In
the topology, the neurons 2 and 4 are the neighbors of 3. The arrows mark the movement of the
winner neuron and its neighbors towards the training sample p.

To illustrate the one-dimensional topology of the network, it is plotted into the input space by the
dotted line. The arrows mark the movement of the winner neuron and its neighbors towards the
pattern.
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10.4 Examples for the
functionality of SOMs

Let us begin with a simple, mentally com-

prehensible example.

In this example, we use a two-dimensional

input space, i.e. N = 2 is true. Let the

grid structure be one-dimensional (G = 1).

Furthermore, our example SOM should

consist of 7 neurons and the learning rate

should be ÷ = 0.5.

The neighborhood function is also kept

simple so that we will be able to mentally

comprehend the network:

h(i, k, t) =

Y
__]

__[

1 k direct neighbor of i,

1 k = i,

0 otherw.

(10.4)

Now let us take a look at the above-

mentioned network with random initializa-

tion of the centers (fig. 10.4 on the preced-

ing page) and enter a training sample p.

Obviously, in our example the input pat-

tern is closest to neuron 3, i.e. this is the

winning neuron.

We remember the learning rule for

SOMs

�ck = ÷(t) · h(i, k, t) · (p ≠ ck)

and process the three factors from the

back:

Learning direction: Remember that the

neuron centers ck are vectors in the

input space, as well as the pattern p.

Thus, the factor (p≠ck) indicates the

vector of the neuron k to the pattern

p. This is now multiplied by di�erent

scalars:

Our topology function h indicates that

only the winner neuron and its two

closest neighbors (here: 2 and 4) are

allowed to learn by returning 0 for

all other neurons. A time-dependence

is not specified. Thus, our vector

(p ≠ ck) is multiplied by either 1 or

0.

The learning rate indicates, as always,

the strength of learning. As already

mentioned, ÷ = 0.5, i. e. all in all, the

result is that the winner neuron and

its neighbors (here: 2, 3 and 4) ap-

proximate the pattern p half the way

(in the figure marked by arrows).

Although the center of neuron 7 – seen

from the input space – is considerably

closer to the input pattern p than neuron

2, neuron 2 is learning and neuron 7 is

not. I want to remind that the network

topology specifies which neuron is allowed topology
specifies,
who will learn

to learn and not its position in the input
space. This is exactly the mechanism by

which a topology can significantly cover an

input space without having to be related

to it by any sort.

After the adaptation of the neurons 2, 3

and 4 the next pattern is applied, and so

on. Another example of how such a one-

dimensional SOM can develop in a two-

dimensional input space with uniformly

distributed input patterns in the course of
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time can be seen in figure 10.5 on the fac-

ing page.

End states of one- and two-dimensional

SOMs with di�erently shaped input spaces

can be seen in figure 10.6 on page 158.

As we can see, not every input space can

be neatly covered by every network topol-

ogy. There are so called exposed neurons

– neurons which are located in an area

where no input pattern has ever been oc-

curred. A one-dimensional topology gen-

erally produces less exposed neurons than

a two-dimensional one: For instance, dur-

ing training on circularly arranged input

patterns it is nearly impossible with a two-

dimensional squared topology to avoid the

exposed neurons in the center of the cir-

cle. These are pulled in every direction

during the training so that they finally

remain in the center. But this does not

make the one-dimensional topology an op-

timal topology since it can only find less

complex neighborhood relationships than

a multi-dimensional one.

10.4.1 Topological defects are
failures in SOM unfolding

During the unfolding of a SOM it

could happen that a topological defect
(fig. 10.7) occurs, i.e. the SOM does not"knot"

in map unfold correctly. A topological defect can

be described at best by means of the word

"knotting".

A remedy for topological defects could

be to increase the initial values for the

Figure 10.7: A topological defect in a two-
dimensional SOM.

neighborhood size, because the more com-

plex the topology is (or the more neigh-

bors each neuron has, respectively, since a

three-dimensional or a honeycombed two-

dimensional topology could also be gener-

ated) the more di�cult it is for a randomly

initialized map to unfold.

10.5 It is possible to adjust
the resolution of certain
areas in a SOM

We have seen that a SOM is trained by

entering input patterns of the input space
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Figure 10.5: Behavior of a SOM with one-dimensional topology (G = 1) after the input of 0, 100,
300, 500, 5000, 50000, 70000 and 80000 randomly distributed input patterns p œ R2. During the
training ÷ decreased from 1.0 to 0.1, the ‡ parameter of the Gauss function decreased from 10.0
to 0.2.
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Figure 10.6: End states of one-dimensional (left column) and two-dimensional (right column)
SOMs on di�erent input spaces. 200 neurons were used for the one-dimensional topology, 10 ◊ 10
neurons for the two-dimensionsal topology and 80.000 input patterns for all maps.
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RN
one after another, again and again so

that the SOM will be aligned with these

patterns and map them. It could happen

that we want a certain subset U of the in-

put space to be mapped more precise than

the other ones.

This problem can easily be solved by

means of SOMs: During the training dis-

proportionally many input patterns of the

area U are presented to the SOM. If the

number of training patterns of U µ RN

presented to the SOM exceeds the number

of those patterns of the remaining RN
\ U ,

then more neurons will group there while

the remaining neurons are sparsely dis-

tributed on RN
\ U (fig. 10.8 on the next

page).more
patterns

¿
higher

resolution

As you can see in the illustration, the edge

of the SOM could be deformed. This can

be compensated by assigning to the edge

of the input space a slightly higher proba-

bility of being hit by training patterns (an

often applied approach for reaching every

corner with the SOMs).

Also, a higher learning rate is often used

for edge and corner neurons, since they are

only pulled into the center by the topol-

ogy. This also results in a significantly im-

proved corner coverage.

10.6 Application of SOMs

Regarding the biologically inspired asso-
ciative data storage, there are many

fields of application for self-organizing

maps and their variations.

For example, the di�erent phonemes of

the finnish language have successfully been

mapped onto a SOM with a two dimen-

sional discrete grid topology and therefore

neighborhoods have been found (a SOM

does nothing else than finding neighbor-

hood relationships). So one tries once

more to break down a high-dimensional

space into a low-dimensional space (the

topology), looks if some structures have

been developed – et voilà: clearly defined

areas for the individual phenomenons are

formed.

Teuvo Kohonen himself made the ef-

fort to search many papers mentioning his

SOMs in their keywords. In this large in-

put space the individual papers now indi-

vidual positions, depending on the occur-

rence of keywords. Then Kohonen created

a SOM with G = 2 and used it to map the

high-dimensional "paper space" developed

by him.

Thus, it is possible to enter any paper

into the completely trained SOM and look

which neuron in the SOM is activated. It

will be likely to discover that the neigh-
bored papers in the topology are interest-

ing, too. This type of brain-like context-
based search also works with many other

input spaces. SOM finds
similarities

It is to be noted that the system itself

defines what is neighbored, i.e. similar,

within the topology – and that’s why it

is so interesting.

This example shows that the position c of

the neurons in the input space is not signif-

icant. It is rather interesting to see which
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Figure 10.8: Training of a SOM with G = 2 on a two-dimensional input space. On the left side,
the chance to become a training pattern was equal for each coordinate of the input space. On the
right side, for the central circle in the input space, this chance is more than ten times larger than
for the remaining input space (visible in the larger pattern density in the background). In this circle
the neurons are obviously more crowded and the remaining area is covered less dense but in both
cases the neurons are still evenly distributed. The two SOMS were trained by means of 80.000
training samples and decreasing ÷ (1 æ 0.2) as well as decreasing ‡ (5 æ 0.5).
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neuron is activated when an unknown in-

put pattern is entered. Next, we can look

at which of the previous inputs this neu-

ron was also activated – and will imme-

diately discover a group of very similar

inputs. The more the inputs within the

topology are diverging, the less things they

have in common. Virtually, the topology

generates a map of the input characteris-

tics – reduced to descriptively few dimen-

sions in relation to the input dimension.

Therefore, the topology of a SOM often

is two-dimensional so that it can be easily

visualized, while the input space can be

very high-dimensional.

10.6.1 SOMs can be used to
determine centers for RBF
neurons

SOMs arrange themselves exactly towards

the positions of the outgoing inputs. As a

result they are used, for example, to select

the centers of an RBF network. We have

already been introduced to the paradigm

of the RBF network in chapter 6.

As we have already seen, it is possible

to control which areas of the input space

should be covered with higher resolution

- or, in connection with RBF networks,

on which areas of our function should the

RBF network work with more neurons, i.e.

work more exactly. As a further useful fea-

ture of the combination of RBF networks

with SOMs one can use the topology ob-

tained through the SOM: During the final

training of a RBF neuron it can be used

to influence neighboring RBF neurons in

di�erent ways.

For this, many neural network simulators

o�er an additional so-called SOM layer
in connection with the simulation of RBF

networks.

10.7 Variations of SOMs

There are di�erent variations of SOMs

for di�erent variations of representation

tasks:

10.7.1 A neural gas is a SOM
without a static topology

The neural gas is a variation of the self-

organizing maps of Thomas Martinetz
[MBS93], which has been developed from

the di�culty of mapping complex input

information that partially only occur in

the subspaces of the input space or even

change the subspaces (fig. 10.9 on the fol-

lowing page).

The idea of a neural gas is, roughly speak-

ing, to realize a SOM without a grid struc-

ture. Due to the fact that they are de-

rived from the SOMs the learning steps

are very similar to the SOM learning steps,

but they include an additional intermedi-

ate step:

Û again, random initialization of ck œ

Rn

Û selection and presentation of a pat-

tern of the input space p œ Rn
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Figure 10.9: A figure filling di�erent subspaces of the actual input space of di�erent positions
therefore can hardly be filled by a SOM.

Û neuron distance measurement

Û identification of the winner neuron i

Û Intermediate step: generation of a list

L of neurons sorted in ascending order

by their distance to the winner neu-

ron. Thus, the first neuron in the list

L is the neuron that is closest to the

winner neuron.

Û changing the centers by means of the

known rule but with the slightly mod-

ified topology function

hL(i, k, t).

The function hL(i, k, t), which is slightly

modified compared with the original func-

tion h(i, k, t), now regards the first el-

ements of the list as the neighborhood

of the winner neuron i. The direct re-

sult is that – similar to the free-floating dynamic
neighborhoodmolecules in a gas – the neighborhood rela-

tionships between the neurons can change

anytime, and the number of neighbors is

almost arbitrary, too. The distance within

the neighborhood is now represented by

the distance within the input space.

The bulk of neurons can become as sti�-

ened as a SOM by means of a constantly

decreasing neighborhood size. It does not

have a fixed dimension but it can take the

dimension that is locally needed at the mo-

ment, which can be very advantageous.

A disadvantage could be that there is

no fixed grid forcing the input space to

become regularly covered, and therefore

wholes can occur in the cover or neurons

can be isolated.
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In spite of all practical hints, it is as al-

ways the user’s responsibility not to un-

derstand this text as a catalog for easy an-

swers but to explore all advantages and

disadvantages himself.

Unlike a SOM, the neighborhood of a neu-

ral gas must initially refer to all neurons

since otherwise some outliers of the ran-

dom initialization may never reach the re-

maining group. To forget this is a popular

error during the implementation of a neu-

ral gas.

With a neural gas it is possible to learn a

kind of complex input such as in fig. 10.9can classify
complex

figure
on the preceding page since we are not

bound to a fixed-dimensional grid. But

some computational e�ort could be neces-

sary for the permanent sorting of the list

(here, it could be e�ective to store the list

in an ordered data structure right from the

start).

Definition 10.6 (Neural gas). A neural

gas di�ers from a SOM by a completely dy-

namic neighborhood function. With every

learning cycle it is decided anew which neu-

rons are the neigborhood neurons of the

winner neuron. Generally, the criterion

for this decision is the distance between

the neurosn and the winner neuron in the

input space.

10.7.2 A Multi-SOM consists of
several separate SOMs

In order to present another variant of the

SOMs, I want to formulate an extended

problem: What do we do with input pat-

terns from which we know that they are

confined in di�erent (maybe disjoint) ar-

eas? several SOMs

Here, the idea is to use not only one

SOM but several ones: A multi-self-
organizing map, shortly referred to as

M-SOM [GKE01b,GKE01a,GS06]. It is

unnecessary that the SOMs have the same

topology or size, an M-SOM is just a com-

bination of M SOMs.

This learning process is analog to that of

the SOMs. However, only the neurons be-

longing to the winner SOM of each train-

ing step are adapted. Thus, it is easy to

represent two disjoint clusters of data by

means of two SOMs, even if one of the

clusters is not represented in every dimen-

sion of the input space RN
. Actually, the

individual SOMs exactly reflect these clus-

ters.

Definition 10.7 (Multi-SOM). A multi-

SOM is nothing more than the simultane-

ous use of M SOMs.

10.7.3 A multi-neural gas consists
of several separate neural
gases

Analogous to the multi-SOM, we also have

a set of M neural gases: a multi-neural
gas [GS06, SG06]. This construct be- several gases
haves analogous to neural gas and M-SOM:

Again, only the neurons of the winner gas

are adapted.

The reader certainly wonders what advan-

tage is there to use a multi-neural gas since
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an individual neural gas is already capa-

ble to divide into clusters and to work on

complex input patterns with changing di-

mensions. Basically, this is correct, but

a multi-neural gas has two serious advan-

tages over a simple neural gas.

1. With several gases, we can directly

tell which neuron belongs to which

gas. This is particularly important

for clustering tasks, for which multi-

neural gases have been used recently.

Simple neural gases can also find and

cover clusters, but now we cannot rec-

ognize which neuron belongs to which

cluster.less computa-
tional e�ort

2. A lot of computational e�ort is saved

when large original gases are divided

into several smaller ones since (as al-

ready mentioned) the sorting of the

list L could use a lot of computa-

tional e�ort while the sorting of sev-

eral smaller lists L1, L2, . . . , LM is less

time-consuming – even if these lists in

total contain the same number of neu-

rons.

As a result we will only obtain local in-

stead of global sortings, but in most cases

these local sortings are su�cient.

Now we can choose between two extreme

cases of multi-neural gases: One extreme

case is the ordinary neural gas M = 1, i.e.

we only use one single neural gas. Interest-

ing enough, the other extreme case (very

large M , a few or only one neuron per gas)

behaves analogously to the K-means clus-

tering (for more information on clustering

procedures see excursus A).

Definition 10.8 (Multi-neural gas). A

multi-neural gas is nothing more than the

simultaneous use of M neural gases.

10.7.4 Growing neural gases can
add neurons to themselves

A growing neural gas is a variation of

the aforementioned neural gas to which

more and more neurons are added accord-

ing to certain rules. Thus, this is an at-

tempt to work against the isolation of neu-

rons or the generation of larger wholes in

the cover.

Here, this subject should only be men-

tioned but not discussed.

To build a growing SOM is more di�cult

because new neurons have to be integrated

in the neighborhood.

Exercises

Exercise 17. A regular, two-dimensional

grid shall cover a two-dimensional surface

as "well" as possible.

1. Which grid structure would suit best

for this purpose?

2. Which criteria did you use for "well"

and "best"?

The very imprecise formulation of this ex-

ercise is intentional.
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Chapter 11

Adaptive resonance theory
An ART network in its original form shall classify binary input vectors, i.e. to

assign them to a 1-out-of-n output. Simultaneously, the so far unclassified
patterns shall be recognized and assigned to a new class.

As in the other smaller chapters, we want

to try to figure out the basic idea of

the adaptive resonance theory (abbre-

viated: ART) without discussing its the-

ory profoundly.

In several sections we have already men-

tioned that it is di�cult to use neural

networks for the learning of new informa-

tion in addition to but without destroying

the already existing information. This cir-

cumstance is called stability / plasticity
dilemma.

In 1987, Stephen Grossberg and Gail
Carpenter published the first version of

their ART network [Gro76] in order to al-

leviate this problem. This was followed

by a whole family of ART improvements

(which we want to discuss briefly, too).

It is the idea of unsupervised learning,

whose aim is the (initially binary) pattern

recognition, or more precisely the catego-

rization of patterns into classes. But addi-

tionally an ART network shall be capable

to find new classes.

11.1 Task and structure of an
ART network

An ART network comprises exactly two

layers: the input layer I and the recog-

nition layer O with the input layer be-

ing completely linked towards the recog-

nition layer. This complete link induces

a top-down weight matrix W that con-

tains the weight values of the connections

between each neuron in the input layer

and each neuron in the recognition layer

(fig. 11.1 on the following page).

Simple binary patterns are entered into

the input layer and transferred to the pattern
recognitionrecognition layer while the recognition

layer shall return a 1-out-of-|O| encoding,

i.e. it should follow the winner-takes-all
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Figure 11.1: Simplified illustration of the ART network structure. Top: the input layer, bottom:
the recognition layer. In this illustration the lateral inhibition of the recognition layer and the control
neurons are omitted.

scheme. For instance, to realize this 1-

out-of-|O| encoding the principle of lateral
inhibition can be used – or in the imple-

mentation the most activated neuron can

be searched. For practical reasons an IF

query would suit this task best.

11.1.1 Resonance takes place by
activities being tossed and
turned

But there also exists a bottom-up weight
matrix V , which propagates the activi-

VI
ties within the recognition layer back into

the input layer. Now it is obvious that

these activities are bounced forth and back

again and again, a fact that leads us to

resonance. Every activity within the in-

put layer causes an activity within the layers
activate
one
another

recognition layer while in turn in the recog-

nition layer every activity causes an activ-

ity within the input layer.

In addition to the two mentioned layers,

in an ART network also exist a few neu-

rons that exercise control functions such as

signal enhancement. But we do not want

to discuss this theory further since here

only the basic principle of the ART net-

work should become explicit. I have only

mentioned it to explain that in spite of the

recurrences, the ART network will achieve

a stable state after an input.
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11.2 The learning process of
an ART network is
divided to top-down and
bottom-up learning

The trick of adaptive resonance theory is

not only the configuration of the ART net-

work but also the two-piece learning pro-

cedure of the theory: On the one hand

we train the top-down matrix W , on the

other hand we train the bottom-up matrix

V (fig. 11.2 on the next page).

11.2.1 Pattern input and top-down
learning

When a pattern is entered into the net-

work it causes - as already mentioned - an

activation at the output neurons and thewinner
neuron

is
amplified

strongest neuron wins. Then the weights

of the matrix W going towards the output

neuron are changed such that the output

of the strongest neuron � is still enhanced,

i.e. the class a�liation of the input vector

to the class of the output neuron � be-

comes enhanced.

11.2.2 Resonance and bottom-up
learning

The training of the backward weights ofinput is
teach. inp.

for backward
weights

the matrix V is a bit tricky: Only the

weights of the respective winner neuron

are trained towards the input layer and

our current input pattern is used as teach-

ing input. Thus, the network is trained to

enhance input vectors.

11.2.3 Adding an output neuron

Of course, it could happen that the neu-

rons are nearly equally activated or that

several neurons are activated, i.e. that the

network is indecisive. In this case, the

mechanisms of the control neurons acti-

vate a signal that adds a new output neu-

ron. Then the current pattern is assigned

to this output neuron and the weight sets

of the new neuron are trained as usual.

Thus, the advantage of this system is not

only to divide inputs into classes and to

find new classes, it can also tell us after

the activation of an output neuron what a

typical representative of a class looks like

- which is a significant feature.

Often, however, the system can only mod-

erately distinguish the patterns. The ques-

tion is when a new neuron is permitted to

become active and when it should learn.

In an ART network there are di�erent ad-

ditional control neurons which answer this

question according to di�erent mathemat-

ical rules and which are responsible for in-

tercepting special cases.

At the same time, one of the largest ob-

jections to an ART is the fact that an

ART network uses a special distinction of

cases, similar to an IF query, that has been

forced into the mechanism of a neural net-

work.

11.3 Extensions

As already mentioned above, the ART net-

works have often been extended.
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Abbildung 11.2: Vereinfachte Darstellung des
zweigeteilten Trainings eines ART-Netzes: Die
jeweils trainierten Gewichte sind durchgezogen
dargestellt. Nehmen wir an, ein Muster wurde in
das Netz eingegeben und die Zahlen markieren
Ausgaben. Oben: Wir wir sehen, ist �2 das Ge-
winnerneuron. Mitte: Also werden die Gewichte
zum Gewinnerneuron hin trainiert und (unten)
die Gewichte vom Gewinnerneuron zur Eingangs-
schicht trainiert.

einer IF-Abfrage, die man in den Mecha-
nismus eines Neuronalen Netzes gepresst
hat.

11.3 Erweiterungen

Wie schon eingangs erwähnt, wurden die
ART-Netze vielfach erweitert.

ART-2 [CG87] ist eine Erweiterung
auf kontinuierliche Eingaben und bietet
zusätzlich (in einer ART-2A genannten
Erweiterung) Verbesserungen der Lernge-
schwindigkeit, was zusätzliche Kontroll-
neurone und Schichten zur Folge hat.

ART-3 [CG90] verbessert die Lernfähig-
keit von ART-2, indem zusätzliche biolo-
gische Vorgänge wie z.B. die chemischen
Vorgänge innerhalb der Synapsen adap-
tiert werden1.

Zusätzlich zu den beschriebenen Erweite-
rungen existieren noch viele mehr.

1 Durch die häufigen Erweiterungen der Adaptive
Resonance Theory sprechen böse Zungen bereits
von ”ART-n-Netzen“.
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Figure 11.2: Simplified illustration of the two-
piece training of an ART network: The trained
weights are represented by solid lines. Let us as-
sume that a pattern has been entered into the
network and that the numbers mark the outputs.
Top: We can see that �2 is the winner neu-
ron. Middle: So the weights are trained towards
the winner neuron and (below) the weights of
the winner neuron are trained towards the input
layer.

ART-2 [CG87] is extended to continuous

inputs and additionally o�ers (in an ex-

tension called ART-2A) enhancements of

the learning speed which results in addi-

tional control neurons and layers.

ART-3 [CG90] 3 improves the learning

ability of ART-2 by adapting additional

biological processes such as the chemical

processes within the synapses
1
.

Apart from the described ones there exist

many other extensions.

1 Because of the frequent extensions of the adap-
tive resonance theory wagging tongues already call
them "ART-n networks".
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Appendix A

Excursus: Cluster analysis and regional and
online learnable fields

In Grimm’s dictionary the extinct German word "Kluster" is described by "was
dicht und dick zusammensitzet (a thick and dense group of sth.)". In static

cluster analysis, the formation of groups within point clouds is explored.
Introduction of some procedures, comparison of their advantages and

disadvantages. Discussion of an adaptive clustering method based on neural
networks. A regional and online learnable field models from a point cloud,

possibly with a lot of points, a comparatively small set of neurons being
representative for the point cloud.

As already mentioned, many problems can

be traced back to problems in cluster
analysis. Therefore, it is necessary to re-

search procedures that examine whether

groups (so-called clusters) exist within

point clouds.

Since cluster analysis procedures need a

notion of distance between two points, a

metric must be defined on the space

where these points are situated.

We briefly want to specify what a metric

is.

Definition A.1 (Metric). A relation

dist(x1, x2) defined for two objects x1, x2
is referred to as metric if each of the fol-

lowing criteria applies:

1. dist(x1, x2) = 0 if and only if x1 = x2,

2. dist(x1, x2) = dist(x2, x1), i.e. sym-

metry,

3. dist(x1, x3) Æ dist(x1, x2) +
dist(x2, x3), i.e. the triangle

inequality holds.

Colloquially speaking, a metric is a tool

for determining distances between points

in any space. Here, the distances have

to be symmetrical, and the distance be-

tween to points may only be 0 if the two

points are equal. Additionally, the trian-

gle inequality must apply.

Metrics are provided by, for example, the

squared distance and the Euclidean
distance, which have already been intro-

duced. Based on such metrics we can de-
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fine a clustering procedure that uses a met-

ric as distance measure.

Now we want to introduce and briefly dis-

cuss di�erent clustering procedures.

A.1 k-means clustering
allocates data to a
predefined number of
clusters

k-means clustering according to J.
MacQueen [Mac67] is an algorithm that

is often used because of its low computa-

tion and storage complexity and which is

regarded as "inexpensive and good". The

operation sequence of the k-means cluster-

ing algorithm is the following:

1. Provide data to be examined.

2. Define k, which is the number of clus-

ter centers.

3. Select k random vectors for the clus-

ter centers (also referred to as code-
book vectors).

4. Assign each data point to the next

codebook vector
1

5. Compute cluster centers for all clus-

ters.

6. Set codebook vectors to new cluster

centers.

1 The name codebook vector was created because
the often used name cluster vector was too un-
clear.

7. Continue with 4 until the assignments

are no longer changed.
number of
cluster
must be
known
previously

Step 2 already shows one of the great ques-

tions of the k-means algorithm: The num-

ber k of the cluster centers has to be de-

termined in advance. This cannot be done

by the algorithm. The problem is that it

is not necessarily known in advance how k
can be determined best. Another problem

is that the procedure can become quite in-

stable if the codebook vectors are badly

initialized. But since this is random, it

is often useful to restart the procedure.

This has the advantage of not requiring

much computational e�ort. If you are fully

aware of those weaknesses, you will receive

quite good results.

However, complex structures such as "clus-

ters in clusters" cannot be recognized. If k
is high, the outer ring of the construction

in the following illustration will be recog-

nized as many single clusters. If k is low,

the ring with the small inner clusters will

be recognized as one cluster.

For an illustration see the upper right part

of fig. A.1 on page 174.

A.2 k-nearest neighboring
looks for the k nearest
neighbors of each data
point

The k-nearest neighboring procedure
[CH67] connects each data point to the k
closest neighbors, which often results in a

division of the groups. Then such a group
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builds a cluster. The advantage is that

the number of clusters occurs all by it-

self. The disadvantage is that a large stor-

age and computational e�ort is required to

find the next neighbor (the distances be-

tween all data points must be computed

and stored).clustering
next

points There are some special cases in which the

procedure combines data points belonging

to di�erent clusters, if k is too high. (see

the two small clusters in the upper right

of the illustration). Clusters consisting of

only one single data point are basically

conncted to another cluster, which is not

always intentional.

Furthermore, it is not mandatory that the

links between the points are symmetric.

But this procedure allows a recognition of

rings and therefore of "clusters in clusters",

which is a clear advantage. Another ad-

vantage is that the procedure adaptively

responds to the distances in and between

the clusters.

For an illustration see the lower left part

of fig. A.1.

A.3 Á-nearest neighboring
looks for neighbors within
the radius Á for each
data point

Another approach of neighboring: here,

the neighborhood detection does not use a

fixed number k of neighbors but a radius Á,

which is the reason for the name epsilon-
nearest neighboring. Points are neig-

bors if they are at most Á apart from each

other. Here, the storage and computa-

tional e�ort is obviously very high, which

is a disadvantage. clustering
radii around
pointsBut note that there are some special cases:

Two separate clusters can easily be con-

nected due to the unfavorable situation of

a single data point. This can also happen

with k-nearest neighboring, but it would

be more di�cult since in this case the num-

ber of neighbors per point is limited.

An advantage is the symmetric nature of

the neighborhood relationships. Another

advantage is that the combination of min-

imal clusters due to a fixed number of

neighbors is avoided.

On the other hand, it is necessary to skill-

fully initialize Á in order to be successful,

i.e. smaller than half the smallest distance

between two clusters. With variable clus-

ter and point distances within clusters this

can possibly be a problem.

For an illustration see the lower right part

of fig. A.1.

A.4 The silhouette coe�cient
determines how accurate
a given clustering is

As we can see above, there is no easy an-

swer for clustering problems. Each proce-

dure described has very specific disadvan-

tages. In this respect it is useful to have
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Figure A.1: Top left: our set of points. We will use this set to explore the di�erent clustering
methods. Top right: k-means clustering. Using this procedure we chose k = 6. As we can
see, the procedure is not capable to recognize "clusters in clusters" (bottom left of the illustration).
Long "lines" of points are a problem, too: They would be recognized as many small clusters (if k
is su�ciently large). Bottom left: k-nearest neighboring. If k is selected too high (higher than
the number of points in the smallest cluster), this will result in cluster combinations shown in the
upper right of the illustration. Bottom right: Á-nearest neighboring. This procedure will cause
di�culties if Á is selected larger than the minimum distance between two clusters (see upper left of
the illustration), which will then be combined.
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a criterion to decide how good our clus-

ter division is. This possibility is o�ered

by the silhouette coe�cient according

to [Kau90]. This coe�cient measures how

well the clusters are delimited from each

other and indicates if points may be as-

signed to the wrong clusters.clustering
quality is

measureable Let P be a point cloud and p a point in

P . Let c ™ P be a cluster within the

point cloud and p be part of this cluster,

i.e. p œ c. The set of clusters is called C.

Summary:

p œ c ™ P

applies.

To calculate the silhouette coe�cient, we

initially need the average distance between

point p and all its cluster neighbors. This

variable is referred to as a(p) and defined

as follows:

a(p) = 1
|c| ≠ 1

ÿ

qœc,q ”=p

dist(p, q) (A.1)

Furthermore, let b(p) be the average dis-

tance between our point p and all points

of the next cluster (g represents all clusters

except for c):

b(p) = min
gœC,g ”=c

1
|g|

ÿ

qœg

dist(p, q) (A.2)

The point p is classified well if the distance

to the center of the own cluster is minimal

and the distance to the centers of the other

clusters is maximal. In this case, the fol-

lowing term provides a value close to 1:

s(p) = b(p) ≠ a(p)
max{a(p), b(p)} (A.3)

Apparently, the whole term s(p) can only

be within the interval [≠1; 1]. A value

close to -1 indicates a bad classification of

p.

The silhouette coe�cient S(P ) results

from the average of all values s(p):

S(P ) = 1
|P |

ÿ

pœP

s(p). (A.4)

As above the total quality of the clus-

ter division is expressed by the interval

[≠1; 1].

As di�erent clustering strategies with dif-

ferent characteristics have been presented

now (lots of further material is presented

in [DHS01]), as well as a measure to in-

dicate the quality of an existing arrange-

ment of given data into clusters, I want

to introduce a clustering method based

on an unsupervised learning neural net-

work [SGE05] which was published in 2005.

Like all the other methods this one may

not be perfect but it eliminates large stan-

dard weaknesses of the known clustering

methods

A.5 Regional and online
learnable fields are a
neural clustering strategy

The paradigm of neural networks, which I

want to introduce now, are the regional
and online learnable fields, shortly re-

ferred to as ROLFs.
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A.5.1 ROLFs try to cover data with
neurons

Roughly speaking, the regional and online

learnable fields are a set K of neurons
KI

which try to cover a set of points as well

as possible by means of their distribution

in the input space. For this, neurons are

added, moved or changed in their size dur-network
covers

point cloud
ing training if necessary. The parameters

of the individual neurons will be discussed

later.

Definition A.2 (Regional and online

learnable field). A regional and on-

line learnable field (abbreviated ROLF or

ROLF network) is a set K of neurons that

are trained to cover a certain set in the

input space as well as possible.

A.5.1.1 ROLF neurons feature a
position and a radius in the
input space

Here, a ROLF neuron k œ K has two

parameters: Similar to the RBF networks,

it has a center ck, i.e. a position in the
cI

input space.

But it has yet another parameter: The ra-

dius ‡, which defines the radius of the per-
‡I ceptive surface surrounding the neuron

2
.

A neuron covers the part of the input space

that is situated within this radius.

ck and ‡k are locally defined for each neu-neuron
represents

surface 2 I write "defines" and not "is" because the actual
radius is specified by ‡ · fl.

Figure A.2: Structure of a ROLF neuron.

ron. This particularly means that the neu-

rons are capable to cover surfaces of di�er-

ent sizes.

The radius of the perceptive surface is

specified by r = fl · ‡ (fig. A.2) with

the multiplier fl being globally defined and

previously specified for all neurons. Intu-

itively, the reader will wonder what this

multiplicator is used for. Its significance

will be discussed later. Furthermore, the

following has to be observed: It is not nec-

essary for the perceptive surface of the dif-

ferent neurons to be of the same size.

Definition A.3 (ROLF neuron). The pa-

rameters of a ROLF neuron k are a center

ck and a radius ‡k.

Definition A.4 (Perceptive surface).

The perceptive surface of a ROLF neuron
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k consists of all points within the radius

fl · ‡ in the input space.

A.5.2 A ROLF learns unsupervised
by presenting training
samples online

Like many other paradigms of neural net-

works our ROLF network learns by receiv-

ing many training samples p of a training

set P . The learning is unsupervised. For

each training sample p entered into the net-

work two cases can occur:

1. There is one accepting neuron k for p
or

2. there is no accepting neuron at all.

If in the first case several neurons are suit-

able, then there will be exactly one ac-
cepting neuron insofar as the closest neu-

ron is the accepting one. For the accepting

neuron k ck and ‡k are adapted.

Definition A.5 (Accepting neuron). The

criterion for a ROLF neuron k to be an

accepting neuron of a point p is that the

point p must be located within the percep-

tive surface of k. If p is located in the per-

ceptive surfaces of several neurons, then

the closest neuron will be the accepting

one. If there are several closest neurons,

one can be chosen randomly.

A.5.2.1 Both positions and radii are
adapted throughout learning

Adapting
existing
neurons Let us assume that we entered a training

sample p into the network and that there

is an accepting neuron k. Then the radius

moves towards ||p ≠ ck|| (i.e. towards the

distance between p and ck) and the center

ck towards p. Additionally, let us define

the two learning rates ÷‡ and ÷c for radii J÷‡, ÷c
and centers.

ck(t + 1) = ck(t) + ÷c(p ≠ ck(t))
‡k(t + 1) = ‡k(t) + ÷‡(||p ≠ ck(t)|| ≠ ‡k(t))

Note that here ‡k is a scalar while ck is a

vector in the input space.

Definition A.6 (Adapting a ROLF neu-

ron). A neuron k accepted by a point p is

adapted according to the following rules:

ck(t + 1) = ck(t) + ÷c(p ≠ ck(t)) (A.5)

‡k(t + 1) = ‡k(t) + ÷‡(||p ≠ ck(t)|| ≠ ‡k(t))
(A.6)

A.5.2.2 The radius multiplier allows
neurons to be able not only to
shrink

Now we can understand the function of the

multiplier fl: Due to this multiplier the per- Jfl
ceptive surface of a neuron includes more

than only all points surrounding the neu-

ron in the radius ‡. This means that due

to the aforementioned learning rule ‡ can-

not only decrease but also increase. so the
neurons
can growDefinition A.7 (Radius multiplier). The

radius multiplier fl > 1 is globally defined

and expands the perceptive surface of a

neuron k to a multiple of ‡k. So it is en-

sured that the radius ‡k cannot only de-

crease but also increase.
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Generally, the radius multiplier is set to

values in the lower one-digit range, such

as 2 or 3.

So far we only have discussed the case in

the ROLF training that there is an accept-

ing neuron for the training sample p.

A.5.2.3 As required, new neurons are
generated

This suggests to discuss the approach for

the case that there is no accepting neu-

ron.

In this case a new accepting neuron k is

generated for our training sample. The re-

sult is of course that ck and ‡k have to be

initialized.

The initialization of ck can be understood

intuitively: The center of the new neuron

is simply set on the training sample, i.e.

ck = p.

We generate a new neuron because there

is no neuron close to p – for logical reasons,

we place the neuron exactly on p.

But how to set a ‡ when a new neuron

is generated? For this purpose there exist

di�erent options:

Init-‡: We always select a predefined

static ‡.

Minimum ‡: We take a look at the ‡ of

each neuron and select the minimum.

Maximum ‡: We take a look at the ‡ of

each neuron and select the maximum.

Mean ‡: We select the mean ‡ of all neu-

rons.

Currently, the mean-‡ variant is the fa-

vorite one although the learning procedure

also works with the other ones. In the

minimum-‡ variant the neurons tend to

cover less of the surface, in the maximum-

‡ variant they tend to cover more of the

surface.

Definition A.8 (Generating a ROLF neu-

ron). If a new ROLF neuron k is gener-

ated by entering a training sample p, then initialization
of a
neurons

ck is intialized with p and ‡k according to

one of the aforementioned strategies (init-

‡, minimum-‡, maximum-‡, mean-‡).

The training is complete when after re-

peated randomly permuted pattern presen-

tation no new neuron has been generated

in an epoch and the positions of the neu-

rons barely change.

A.5.3 Evaluating a ROLF

The result of the training algorithm is that

the training set is gradually covered well

and precisely by the ROLF neurons and

that a high concentration of points on a

spot of the input space does not automati-

cally generate more neurons. Thus, a pos-

sibly very large point cloud is reduced to

very few representatives (based on the in-

put set).

Then it is very easy to define the num- cluster =
connected
neurons

ber of clusters: Two neurons are (accord-

ing to the definition of the ROLF) con-

nected when their perceptive surfaces over-
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lap (i.e. some kind of nearest neighbor-
ing is executed with the variable percep-

tive surfaces). A cluster is a group of

connected neurons or a group of points of

the input space covered by these neurons

(fig. A.3).

Of course, the complete ROLF network

can be evaluated by means of other clus-

tering methods, i.e. the neurons can be

searched for clusters. Particularly with

clustering methods whose storage e�ort

grows quadratic to |P | the storage e�ort

can be reduced dramatically since gener-

ally there are considerably less ROLF neu-

rons than original data points, but the

neurons represent the data points quite

well.

A.5.4 Comparison with popular
clustering methods

It is obvious, that storing the neurons

rather than storing the input points takes

the biggest part of the storage e�ort of the

ROLFs. This is a great advantage for hugeless
storage
e�ort!

point clouds with a lot of points.

Since it is unnecessary to store the en-

tire point cloud, our ROLF, as a neural

clustering method, has the capability to

learn online, which is definitely a great ad-

vantage. Furthermore, it can (similar to

Á nearest neighboring or k nearest neigh-

boring) distinguish clusters from enclosed

clusters – but due to the online presenta-recognize
"cluster in

clusters"
tion of the data without a quadratically

growing storage e�ort, which is by far the

greatest disadvantage of the two neighbor-

ing methods.

Figure A.3: The clustering process. Top: the
input set, middle: the input space covered by
ROLF neurons, bottom: the input space only
covered by the neurons (representatives).
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Additionally, the issue of the size of the in-

dividual clusters proportional to their dis-

tance from each other is addressed by us-

ing variable perceptive surfaces - which is

also not always the case for the two men-

tioned methods.

The ROLF compares favorably with k-

means clustering, as well: Firstly, it is un-

necessary to previously know the number

of clusters and, secondly, k-means cluster-

ing recognizes clusters enclosed by other

clusters as separate clusters.

A.5.5 Initializing radii, learning
rates and multiplier is not
trivial

Certainly, the disadvantages of the ROLF

shall not be concealed: It is not always

easy to select the appropriate initial value

for ‡ and fl. The previous knowledge

about the data set can so to say be in-

cluded in fl and the initial value of ‡ of the

ROLF: Fine-grained data clusters should

use a small fl and a small ‡ initial value.

But the smaller the fl the smaller, the

chance that the neurons will grow if neces-

sary. Here again, there is no easy answer,

just like for the learning rates ÷c and ÷‡.

For fl the multipliers in the lower single-

digit range such as 2 or 3 are very popu-

lar. ÷c and ÷‡ successfully work with val-

ues about 0.005 to 0.1, variations during

run-time are also imaginable for this type

of network. Initial values for ‡ generally

depend on the cluster and data distribu-

tion (i.e. they often have to be tested).

But compared to wrong initializations –

at least with the mean-‡ strategy – they

are relatively robust after some training

time.

As a whole, the ROLF is on a par with

the other clustering methods and is par-

ticularly very interesting for systems with

low storage capacity or huge data sets.

A.5.6 Application examples

A first application example could be find-

ing color clusters in RGB images. Another

field of application directly described in

the ROLF publication is the recognition of

words transferred into a 720-dimensional

feature space. Thus, we can see that

ROLFs are relatively robust against higher

dimensions. Further applications can be

found in the field of analysis of attacks on

network systems and their classification.

Exercises

Exercise 18. Determine at least four

adaptation steps for one single ROLF neu-

ron k if the four patterns stated below

are presented one after another in the in-

dicated order. Let the initial values for

the ROLF neuron be ck = (0.1, 0.1) and

‡k = 1. Furthermore, let ÷c = 0.5 and

÷‡ = 0. Let fl = 3.

P = {(0.1, 0.1);
= (0.9, 0.1);
= (0.1, 0.9);
= (0.9, 0.9)}.
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Excursus: neural networks used for
prediction

Discussion of an application of neural networks: a look ahead into the future
of time series.

After discussing the di�erent paradigms of

neural networks it is now useful to take a

look at an application of neural networks

which is brought up often and (as we will

see) is also used for fraud: The applica-

tion of time series prediction. This ex-

cursus is structured into the description of

time series and estimations about the re-

quirements that are actually needed to pre-

dict the values of a time series. Finally, I

will say something about the range of soft-

ware which should predict share prices or

other economic characteristics by means of

neural networks or other procedures.

This chapter should not be a detailed

description but rather indicate some ap-

proaches for time series prediction. In this

respect I will again try to avoid formal def-

initions.

B.1 About time series

A time series is a series of values dis-

cretized in time. For example, daily mea-

sured temperature values or other meteo-

rological data of a specific site could be

represented by a time series. Share price

values also represent a time series. Often

the measurement of time series is timely

equidistant, and in many time series the

future development of their values is very

interesting, e.g. the daily weather fore-

cast. time
series of
valuesTime series can also be values of an actu-

ally continuous function read in a certain

distance of time �t (fig. B.1 on the next J�t
page).

If we want to predict a time series, we will

look for a neural network that maps the

previous series values to future develop-

ments of the time series, i.e. if we know

longer sections of the time series, we will
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Figure B.1: A function x that depends on the
time is sampled at discrete time steps (time dis-
cretized), this means that the result is a time
series. The sampled values are entered into a
neural network (in this example an SLP) which
shall learn to predict the future values of the time
series.

have enough training samples. Of course,

these are not examples for the future to be

predicted but it is tried to generalize and

to extrapolate the past by means of the

said samples.

But before we begin to predict a time

series we have to answer some questions

about this time series we are dealing with

and ensure that it fulfills some require-

ments.

1. Do we have any evidence which sug-

gests that future values depend in any

way on the past values of the time se-

ries? Does the past of a time series

include information about its future?

2. Do we have enough past values of the

time series that can be used as train-

ing patterns?

3. In case of a prediction of a continuous

function: What must a useful �t look

like?

Now these questions shall be explored in

detail.

How much information about the future

is included in the past values of a time se-

ries? This is the most important question

to be answered for any time series that

should be mapped into the future. If the

future values of a time series, for instance,

do not depend on the past values, then a

time series prediction based on them will

be impossible.

In this chapter, we assume systems whose

future values can be deduced from their

states – the deterministic systems. This
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leads us to the question of what a system

state is.

A system state completely describes a sys-

tem for a certain point of time. The future

of a deterministic system would be clearly

defined by means of the complete descrip-

tion of its current state.

The problem in the real world is that such

a state concept includes all things that in-

fluence our system by any means.

In case of our weather forecast for a spe-

cific site we could definitely determine

the temperature, the atmospheric pres-

sure and the cloud density as the mete-

orological state of the place at a time t.
But the whole state would include signifi-

cantly more information. Here, the world-

wide phenomena that control the weather

would be interesting as well as small local

pheonomena such as the cooling system of

the local power plant.

So we shall note that the system state is de-

sirable for prediction but not always possi-

ble to obtain. Often only fragments of the

current states can be acquired, e.g. for a

weather forecast these fragments are the

said weather data.

However, we can partially overcome these

weaknesses by using not only one single

state (the last one) for the prediction, but

by using several past states. From this

we want to derive our first prediction sys-

tem:

B.2 One-step-ahead
prediction

The first attempt to predict the next fu-

ture value of a time series out of past val-

ues is called one-step-ahead prediction
(fig. B.2 on the following page). predict

the next
value

Such a predictor system receives the last

n observed state parts of the system as

input and outputs the prediction for the

next state (or state part). The idea of

a state space with predictable states is

called state space forecasting.

The aim of the predictor is to realize a

function

f(xt≠n+1, . . . , xt≠1, xt) = x̃t+1, (B.1)

which receives exactly n past values in or-

der to predict the future value. Predicted

values shall be headed by a tilde (e.g. x̃) Jx̃
to distinguish them from the actual future

values.

The most intuitive and simplest approach

would be to find a linear combination

x̃i+1 = a0xi + a1xi≠1 + . . . + ajxi≠j

(B.2)

that approximately fulfills our condi-

tions.

Such a construction is called digital fil-
ter. Here we use the fact that time series
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Figure B.2: Representation of the one-step-ahead prediction. It is tried to calculate the future
value from a series of past values. The predicting element (in this case a neural network) is referred
to as predictor.

usually have a lot of past values so that we

can set up a series of equations
1
:

xt = a0xt≠1 + . . . + ajxt≠1≠(n≠1)

xt≠1 = a0xt≠2 + . . . + ajxt≠2≠(n≠1)
.
.
. (B.3)

xt≠n = a0xt≠n + . . . + ajxt≠n≠(n≠1)

Thus, n equations could be found for n un-

known coe�cients and solve them (if pos-

sible). Or another, better approach: we

could use m > n equations for n unknowns

in such a way that the sum of the mean

squared errors of the already known pre-

diction is minimized. This is called mov-
ing average procedure.

But this linear structure corresponds to a

singlelayer perceptron with a linear activa-

tion function which has been trained by

means of data from the past (The experi-

mental setup would comply with fig. B.1

on page 182). In fact, the training by

1 Without going into detail, I want to remark that
the prediction becomes easier the more past values
of the time series are available. I would like to
ask the reader to read up on the Nyquist-Shannon
sampling theorem

means of the delta rule provides results

very close to the analytical solution.

Even if this approach often provides satis-

fying results, we have seen that many prob-

lems cannot be solved by using a single-

layer perceptron. Additional layers with

linear activation function are useless, as

well, since a multilayer perceptron with

only linear activation functions can be re-

duced to a singlelayer perceptron. Such

considerations lead to a non-linear ap-

proach.

The multilayer perceptron and non-linear

activation functions provide a universal

non-linear function approximator, i.e. we

can use an n-|H|-1-MLP for n n inputs out

of the past. An RBF network could also be

used. But remember that here the number

n has to remain low since in RBF networks

high input dimensions are very complex to

realize. So if we want to include many past

values, a multilayer perceptron will require

considerably less computational e�ort.
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B.3 Two-step-ahead
prediction

What approaches can we use to to see far-

ther into the future?

B.3.1 Recursive two-step-ahead
prediction

predict
future
values In order to extend the prediction to, for in-

stance, two time steps into the future, we

could perform two one-step-ahead predic-

tions in a row (fig. B.3 on the following

page), i.e. a recursive two-step-ahead
prediction. Unfortunately, the value de-

termined by means of a one-step-ahead

prediction is generally imprecise so that

errors can be built up, and the more pre-

dictions are performed in a row the more

imprecise becomes the result.

B.3.2 Direct two-step-ahead
prediction

We have already guessed that there exists

a better approach: Just like the system

can be trained to predict the next value,

we can certainly train it to predict thedirect
prediction

is better
next but one value. This means we di-

rectly train, for example, a neural network

to look two time steps ahead into the fu-

ture, which is referred to as direct two-
step-ahead prediction (fig. B.4 on the

next page). Obviously, the direct two-step-

ahead prediction is technically identical to

the one-step-ahead prediction. The only

di�erence is the training.

B.4 Additional optimization
approaches for prediction

The possibility to predict values far away

in the future is not only important because

we try to look farther ahead into the fu-

ture. There can also be periodic time se-

ries where other approaches are hardly pos-

sible: If a lecture begins at 9 a.m. every

Thursday, it is not very useful to know how

many people sat in the lecture room on

Monday to predict the number of lecture

participants. The same applies, for ex-

ample, to periodically occurring commuter

jams.

B.4.1 Changing temporal
parameters

Thus, it can be useful to intentionally leave

gaps in the future values as well as in the

past values of the time series, i.e. to in-

troduce the parameter �t which indicates

which past value is used for prediction.

Technically speaking, we still use a one- extent
input
period

step-ahead prediction only that we extend

the input space or train the system to pre-

dict values lying farther away.

It is also possible to combine di�erent �t:
In case of the tra�c jam prediction for a

Monday the values of the last few days

could be used as data input in addition to

the values of the previous Mondays. Thus,

we use the last values of several periods,

in this case the values of a weekly and a

daily period. We could also include an an-

nual period in the form of the beginning of

the holidays (for sure, everyone of us has
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Figure B.3: Representation of the two-step-ahead prediction. Attempt to predict the second future
value out of a past value series by means of a second predictor and the involvement of an already
predicted value.

xt≠3

..

xt≠2

..

xt≠1

--

xt

++

x̃t+1 x̃t+2

predictor

EE

Figure B.4: Representation of the direct two-step-ahead prediction. Here, the second time step is
predicted directly, the first one is omitted. Technically, it does not di�er from a one-step-ahead
prediction.
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already spent a lot of time on the highway

because he forgot the beginning of the hol-

idays).

B.4.2 Heterogeneous prediction

Another prediction approach would be to

predict the future values of a single time

series out of several time series, if it is

assumed that the additional time seriesuse
information

outside of
time series

is related to the future of the first one

(heterogeneous one-step-ahead pre-
diction, fig. B.5 on the following page).

If we want to predict two outputs of two

related time series, it is certainly possible

to perform two parallel one-step-ahead pre-

dictions (analytically this is done very of-

ten because otherwise the equations would

become very confusing); or in case of

the neural networks an additional output

neuron is attached and the knowledge of

both time series is used for both outputs

(fig. B.6 on the next page).

You’ll find more and more general material

on time series in [WG94].

B.5 Remarks on the
prediction of share prices

Many people observe the changes of a

share price in the past and try to con-

clude the future from those values in or-

der to benefit from this knowledge. Share

prices are discontinuous and therefore they

are principally di�cult functions. Further-

more, the functions can only be used for

discrete values – often, for example, in a

daily rhythm (including the maximum and

minimum values per day, if we are lucky)

with the daily variations certainly being

eliminated. But this makes the whole

thing even more di�cult.

There are chartists, i.e. people who look

at many diagrams and decide by means

of a lot of background knowledge and

decade-long experience whether the equi-

ties should be bought or not (and often

they are very successful).

Apart from the share prices it is very in-

teresting to predict the exchange rates of

currencies: If we exchange 100 Euros into

Dollars, the Dollars into Pounds and the

Pounds back into Euros it could be pos-

sible that we will finally receive 110 Eu-

ros. But once found out, we would do this

more often and thus we would change the

exchange rates into a state in which such

an increasing circulation would no longer

be possible (otherwise we could produce

money by generating, so to speak, a finan-

cial perpetual motion machine.

At the stock exchange, successful stock

and currency brokers raise or lower their

thumbs – and thereby indicate whether in

their opinion a share price or an exchange

rate will increase or decrease. Mathemat-

ically speaking, they indicate the first bit

(sign) of the first derivative of the ex-

change rate. In that way excellent world-

class brokers obtain success rates of about

70%.

In Great Britain, the heterogeneous one-

step-ahead prediction was successfully

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 187



Appendix B Excursus: neural networks used for prediction dkriesel.com

xt≠3

..

xt≠2

..

xt≠1

--

xt

++

x̃t+1

predictor

KK

yt≠3

00

yt≠2

00

yt≠1

11

yt

33

Figure B.5: Representation of the heterogeneous one-step-ahead prediction. Prediction of a time
series under consideration of a second one.
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ỹt+1

Figure B.6: Heterogeneous one-step-ahead prediction of two time series at the same time.
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used to increase the accuracy of such pre-

dictions to 76%: In addition to the time

series of the values indicators such as the

oil price in Rotterdam or the US national

debt were included.

This is just an example to show the mag-

nitude of the accuracy of stock-exchange

evaluations, since we are still talking only

about the first bit of the first derivation!

We still do not know how strong the ex-

pected increase or decrease will be and

also whether the e�ort will pay o�: Prob-

ably, one wrong prediction could nullify

the profit of one hundred correct predic-

tions.

How can neural networks be used to pre-

dict share prices? Intuitively, we assume

that future share prices are a function of

the previous share values.

But this assumption is wrong: Share

prices are no function of their past val-

ues, but a function of their assumed fu-share price
function of

assumed
future
value!

ture value. We do not buy shares be-

cause their values have been increased

during the last days, but because we be-
lieve that they will futher increase tomor-

row. If, as a consequence, many people

buy a share, they will boost the price.

Therefore their assumption was right – a

self-fulfilling prophecy has been gener-

ated, a phenomenon long known in eco-

nomics.

The same applies the other way around:

We sell shares because we believe that to-
morrow the prices will decrease. This will

beat down the prices the next day and gen-

erally even more the day after the next.

Again and again some software appears

which uses scientific key words such as

”neural networks” to purport that it is ca-

pable to predict where share prices are go-

ing. Do not buy such software! In addi-

tion to the aforementioned scientific exclu-

sions there is one simple reason for this:

If these tools work – why should the man-

ufacturer sell them? Normally, useful eco-

nomic knowledge is kept secret. If we knew

a way to definitely gain wealth by means

of shares, we would earn our millions by

using this knowledge instead of selling it

for 30 euros, wouldn’t we?
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Excursus: reinforcement learning
What if there were no training samples but it would nevertheless be possible
to evaluate how well we have learned to solve a problem? Let us examine a

learning paradigm that is situated between supervised and unsupervised
learning.

I now want to introduce a more exotic ap-

proach of learning – just to leave the usual

paths. We know learning procedures in

which the network is exactly told what to

do, i.e. we provide exemplary output val-

ues. We also know learning procedures

like those of the self-organizing maps, into

which only input values are entered.

Now we want to explore something in-

between: The learning paradigm of rein-

forcement learning – reinforcement learn-
ing according to Sutton and Barto
[SB98].

Reinforcement learning in itself is no neu-

ral network but only one of the three learn-

ing paradigms already mentioned in chap-

ter 4. In some sources it is counted among

the supervised learning procedures since a

feedback is given. Due to its very rudimen-no
samples

but
feedback

tary feedback it is reasonable to separate

it from the supervised learning procedures

– apart from the fact that there are no

training samples at all.

While it is generally known that pro-

cedures such as backpropagation cannot

work in the human brain itself, reinforce-

ment learning is usually considered as be-

ing biologically more motivated.

The term reinforcement learning
comes from cognitive science and

psychology and it describes the learning

system of carrot and stick, which occurs

everywhere in nature, i.e. learning by

means of good or bad experience, reward

and punishment. But there is no learning

aid that exactly explains what we have

to do: We only receive a total result

for a process (Did we win the game of

chess or not? And how sure was this

victory?), but no results for the individual

intermediate steps.

For example, if we ride our bike with worn

tires and at a speed of exactly 21, 5km
h

through a turn over some sand with a

grain size of 0.1mm, on the average, then

nobody could tell us exactly which han-
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dlebar angle we have to adjust or, even

worse, how strong the great number of

muscle parts in our arms or legs have to

contract for this. Depending on whether

we reach the end of the curve unharmed or

not, we soon have to face the learning expe-
rience, a feedback or a reward, be it good

or bad. Thus, the reward is very simple

- but on the other hand it is considerably

easier to obtain. If we now have tested dif-

ferent velocities and turning angles often

enough and received some rewards, we will

get a feel for what works and what does

not. The aim of reinforcement learning is

to maintain exactly this feeling.

Another example for the quasi-

impossibility to achieve a sort of cost or

utility function is a tennis player who

tries to maximize his athletic success

on the long term by means of complex

movements and ballistic trajectories in

the three-dimensional space including the

wind direction, the importance of the

tournament, private factors and many

more.

To get straight to the point: Since we

receive only little feedback, reinforcement

learning often means trial and error – and

therefore it is very slow.

C.1 System structure

Now we want to briefly discuss di�erent

sizes and components of the system. We

will define them more precisely in the fol-

lowing sections. Broadly speaking, rein-

forcement learning represents the mutual

interaction between an agent and an envi-
ronmental system (fig. C.2).

The agent shall solve some problem. He

could, for instance, be an autonomous

robot that shall avoid obstacles. The

agent performs some actions within the

environment and in return receives a feed-

back from the environment, which in the

following is called reward. This cycle of ac-

tion and reward is characteristic for rein-

forcement learning. The agent influences

the system, the system provides a reward

and then changes.

The reward is a real or discrete scalar

which describes, as mentioned above, how

well we achieve our aim, but it does not

give any guidance how we can achieve it.

The aim is always to make the sum of

rewards as high as possible on the long

term.

C.1.1 The gridworld

As a learning example for reinforcement

learning I would like to use the so-called

gridworld. We will see that its struc-

ture is very simple and easy to figure out

and therefore reinforcement is actually not

necessary. However, it is very suitable simple
examplary
world

for representing the approach of reinforce-

ment learning. Now let us exemplary de-

fine the individual components of the re-

inforcement system by means of the grid-

world. Later, each of these components

will be examined more exactly.

Environment: The gridworld (fig. C.1 on

the facing page) is a simple, discrete
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world in two dimensions which in the

following we want to use as environ-
mental system.

Agent: As an Agent we use a simple robot

being situated in our gridworld.

State space: As we can see, our gridworld

has 5 ◊ 7 fields with 6 fields being un-

accessible. Therefore, our agent can

occupy 29 positions in the grid world.

These positions are regarded as states
for the agent.

Action space: The actions are still miss-

ing. We simply define that the robot

could move one field up or down, to

the right or to the left (as long as

there is no obstacle or the edge of our

gridworld).

Task: Our agent’s task is to leave the grid-

world. The exit is located on the right

of the light-colored field.

Non-determinism: The two obstacles can

be connected by a "door". When the

door is closed (lower part of the illus-

tration), the corresponding field is in-

accessible. The position of the door

cannot change during a cycle but only

between the cycles.

We now have created a small world that

will accompany us through the following

learning strategies and illustrate them.

C.1.2 Agent und environment

Our aim is that the agent learns what hap-

pens by means of the reward. Thus, it

◊

◊

Figure C.1: A graphical representation of our
gridworld. Dark-colored cells are obstacles and
therefore inaccessible. The exit is located on the
right side of the light-colored field. The symbol
◊ marks the starting position of our agent. In
the upper part of our figure the door is open, in
the lower part it is closed.

Agent

action

__

environment

reward / new situation

??

Figure C.2: The agent performs some actions
within the environment and in return receives a
reward.
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is trained over, of and by means of a dy-

namic system, the environment, in order

to reach an aim. But what does learning

mean in this context?

The agent shall learn a mapping of sit-agent
acts in

environment
uations to actions (called policy), i.e. it

shall learn what to do in which situation

to achieve a certain (given) aim. The aim

is simply shown to the agent by giving an

award for the achievement.

Such an award must not be mistaken for

the reward – on the agent’s way to the

solution it may sometimes be useful to

receive a smaller award or a punishment

when in return the longterm result is max-

imum (similar to the situation when an

investor just sits out the downturn of the

share price or to a pawn sacrifice in a chess

game). So, if the agent is heading into

the right direction towards the target, it

receives a positive reward, and if not it re-

ceives no reward at all or even a negative

reward (punishment). The award is, so to

speak, the final sum of all rewards – which

is also called return.

After having colloquially named all the ba-

sic components, we want to discuss more

precisely which components can be used to

make up our abstract reinforcement learn-

ing system.

In the gridworld: In the gridworld, the

agent is a simple robot that should find the

exit of the gridworld. The environment

is the gridworld itself, which is a discrete

gridworld.

Definition C.1 (Agent). In reinforce-

ment learning the agent can be formally

described as a mapping of the situation

space S into the action space A(st). The

meaning of situations st will be defined

later and should only indicate that the ac-

tion space depends on the current situa-

tion.

Agent: S æ A(st) (C.1)

Definition C.2 (Environment). The en-

vironment represents a stochastic map-

ping of an action A in the current situa-

tion st to a reward rt and a new situation

st+1.

Environment: S ◊ A æ P (S ◊ rt) (C.2)

C.1.3 States, situations and actions

As already mentioned, an agent can be in

di�erent states: In case of the gridworld,

for example, it can be in di�erent positions

(here we get a two-dimensional state vec-

tor).

For an agent is ist not always possible to

realize all information about its current

state so that we have to introduce the term

situation. A situation is a state from the
agent’s point of view, i.e. only a more or

less precise approximation of a state.

Therefore, situations generally do not al-

low to clearly "predict" successor situa-

tions – even with a completely determin-

istic system this may not be applicable.

If we knew all states and the transitions

between them exactly (thus, the complete

system), it would be possible to plan op-

timally and also easy to find an optimal
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policy (methods are provided, for example,

by dynamic programming).

Now we know that reinforcement learning

is an interaction between the agent and

the system including actions at and sit-

uations st. The agent cannot determine

by itself whether the current situation is

good or bad: This is exactly the reason

why it receives the said reward from the

environment.

In the gridworld: States are positions

where the agent can be situated. Sim-

ply said, the situations equal the states

in the gridworld. Possible actions would

be to move towards north, south, east or

west.

Situation and action can be vectorial, the

reward is always a scalar (in an extreme

case even only a binary value) since the

aim of reinforcement learning is to get

along with little feedback. A complex vec-

torial reward would equal a real teaching

input.

By the way, the cost function should be

minimized, which would not be possible,

however, with a vectorial reward since we

do not have any intuitive order relations

in multi-dimensional space, i.e. we do not

directly know what is better or worse.

Definition C.3 (State). Within its en-

vironment the agent is in a state. States

contain any information about the agent

within the environmental system. Thus,

it is theoretically possible to clearly pre-

dict a successor state to a performed ac-

tion within a deterministic system out of

this godlike state knowledge.

Definition C.4 (Situation). Situations

st (here at time t) of a situation space JstS are the agent’s limited, approximate JSknowledge about its state. This approx-

imation (about which the agent cannot

even know how good it is) makes clear pre-

dictions impossible.

Definition C.5 (Action). Actions at can Jat
be performed by the agent (whereupon it

could be possible that depending on the

situation another action space A(S) ex- JA(S)
ists). They cause state transitions and

therefore a new situation from the agent’s

point of view.

C.1.4 Reward and return

As in real life it is our aim to receive

an award that is as high as possible, i.e.

to maximize the sum of the expected re-
wards r, called return R, on the long

term. For finitely many time steps
1

the

rewards can simply be added:

Rt = rt+1 + rt+2 + . . . (C.3)

=
Œÿ

x=1
rt+x (C.4)

Certainly, the return is only estimated

here (if we knew all rewards and therefore

the return completely, it would no longer

be necessary to learn).

Definition C.6 (Reward). A reward rt is Jrt
a scalar, real or discrete (even sometimes

only binary) reward or punishment which

1 In practice, only finitely many time steps will be
possible, even though the formulas are stated with
an infinite sum in the first place

D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN) 195



Appendix C Excursus: reinforcement learning dkriesel.com

the environmental system returns to the

agent as reaction to an action.

Definition C.7 (Return). The return Rt

is the accumulation of all received rewards
RtI

until time t.

C.1.4.1 Dealing with long periods of
time

However, not every problem has an ex-

plicit target and therefore a finite sum (e.g.

our agent can be a robot having the task

to drive around again and again and to

avoid obstacles). In order not to receive a

diverging sum in case of an infinite series

of reward estimations a weakening factor

0 < “ < 1 is used, which weakens the in-
“I

fluence of future rewards. This is not only

useful if there exists no target but also if

the target is very far away:

Rt = rt+1 + “1rt+2 + “2rt+3 + . . . (C.5)

=
Œÿ

x=1
“x≠1rt+x (C.6)

The farther the reward is away, the smaller

is the influence it has in the agent’s deci-

sions.

Another possibility to handle the return

sum would be a limited time horizon
· so that only · many following rewards

·I rt+1, . . . , rt+· are regarded:

Rt = rt+1 + . . . + “·≠1rt+· (C.7)

=
·ÿ

x=1
“x≠1rt+x (C.8)

Thus, we divide the timeline into

episodes. Usually, one of the two meth-

ods is used to limit the sum, if not both

methods together.

As in daily living we try to approximate

our current situation to a desired state.

Since it is not mandatory that only the

next expected reward but the expected to-
tal sum decides what the agent will do, it

is also possible to perform actions that, on

short notice, result in a negative reward

(e.g. the pawn sacrifice in a chess game)

but will pay o� later.

C.1.5 The policy

After having considered and formalized

some system components of reinforcement

learning the actual aim is still to be dis-

cussed:

During reinforcement learning the agent

learns a policy J�
� : S æ P (A),

Thus, it continuously adjusts a mapping

of the situations to the probabilities P (A),
with which any action A is performed in

any situation S. A policy can be defined

as a strategy to select actions that would
maximize the reward in the long term.

In the gridworld: In the gridworld the pol-

icy is the strategy according to which the

agent tries to exit the gridworld.

Definition C.8 (Policy). The policy �
s a mapping of situations to probabilities
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to perform every action out of the action

space. So it can be formalized as

� : S æ P (A). (C.9)

Basically, we distinguish between two pol-

icy paradigms: An open loop policy rep-

resents an open control chain and creates

out of an initial situation s0 a sequence of

actions a0, a1, . . . with ai ”= ai(si); i > 0.

Thus, in the beginning the agent develops

a plan and consecutively executes it to the

end without considering the intermediate

situations (therefore ai ”= ai(si), actions af-

ter a0 do not depend on the situations).

In the gridworld: In the gridworld, an

open-loop policy would provide a precise

direction towards the exit, such as the way

from the given starting position to (in ab-

breviations of the directions) EEEEN.

So an open-loop policy is a sequence of

actions without interim feedback. A se-

quence of actions is generated out of a

starting situation. If the system is known

well and truly, such an open-loop policy

can be used successfully and lead to use-

ful results. But, for example, to know the

chess game well and truly it would be nec-

essary to try every possible move, which

would be very time-consuming. Thus, for

such problems we have to find an alterna-

tive to the open-loop policy, which incorpo-

rates the current situations into the action

plan:

A closed loop policy is a closed loop, a

function

� : si æ ai with ai = ai(si),

in a manner of speaking. Here, the envi-

ronment influences our action or the agent

responds to the input of the environment,

respectively, as already illustrated in fig.

C.2. A closed-loop policy, so to speak, is

a reactive plan to map current situations

to actions to be performed.

In the gridworld: A closed-loop policy

would be responsive to the current posi-

tion and choose the direction according to

the action. In particular, when an obsta-

cle appears dynamically, such a policy is

the better choice.

When selecting the actions to be per-

formed, again two basic strategies can be

examined.

C.1.5.1 Exploitation vs. exploration

As in real life, during reinforcement learn-

ing often the question arises whether the

exisiting knowledge is only willfully ex-

ploited or new ways are also explored.

Initially, we want to discuss the two ex-

tremes: research
or safety?

A greedy policy always chooses the way

of the highest reward that can be deter-

mined in advance, i.e. the way of the high-

est known reward. This policy represents

the exploitation approach and is very

promising when the used system is already

known.

In contrast to the exploitation approach it

is the aim of the exploration approach
to explore a system as detailed as possible

so that also such paths leading to the tar-

get can be found which may be not very
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promising at first glance but are in fact

very successful.

Let us assume that we are looking for the

way to a restaurant, a safe policy would

be to always take the way we already

know, not matter how unoptimal and long

it may be, and not to try to explore bet-

ter ways. Another approach would be to

explore shorter ways every now and then,

even at the risk of taking a long time and

being unsuccessful, and therefore finally

having to take the original way and arrive

too late at the restaurant.

In reality, often a combination of both

methods is applied: In the beginning of

the learning process it is researched with

a higher probability while at the end more

existing knowledge is exploited. Here, a

static probability distribution is also pos-

sible and often applied.

In the gridworld: For finding the way in

the gridworld, the restaurant example ap-

plies equally.

C.2 Learning process

Let us again take a look at daily life. Ac-

tions can lead us from one situation into

di�erent subsituations, from each subsit-

uation into further sub-subsituations. In

a sense, we get a situation tree where

links between the nodes must be consid-

ered (often there are several ways to reach

a situation – so the tree could more accu-

rately be referred to as a situation graph).

he leaves of such a tree are the end situ-

ations of the system. The exploration ap-

proach would search the tree as thoroughly

as possible and become acquainted with all

leaves. The exploitation approach would

unerringly go to the best known leave.

Analogous to the situation tree, we also

can create an action tree. Here, the re-

wards for the actions are within the nodes.

Now we have to adapt from daily life how

we learn exactly.

C.2.1 Rewarding strategies

Interesting and very important is the ques-

tion for what a reward and what kind of

reward is awarded since the design of the

reward significantly controls system behav-

ior. As we have seen above, there gener-

ally are (again as in daily life) various ac-

tions that can be performed in any situa-

tion. There are di�erent strategies to eval-

uate the selected situations and to learn

which series of actions would lead to the

target. First of all, this principle should

be explained in the following.

We now want to indicate some extreme

cases as design examples for the reward:

A rewarding similar to the rewarding in a

chess game is referred to as pure delayed
reward: We only receive the reward at

the end of and not during the game. This

method is always advantageous when we

finally can say whether we were succesful

or not, but the interim steps do not allow

198 D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN)



dkriesel.com C.2 Learning process

an estimation of our situation. If we win,

then

rt = 0 ’t < · (C.10)

as well as r· = 1. If we lose, then r· = ≠1.

With this rewarding strategy a reward is

only returned by the leaves of the situation

tree.

Pure negative reward: Here,

rt = ≠1 ’t < ·. (C.11)

This system finds the most rapid way to

reach the target because this way is auto-

matically the most favorable one in respect

of the reward. The agent receives punish-

ment for anything it does – even if it does

nothing. As a result it is the most inex-

pensive method for the agent to reach the

target fast.

Another strategy is the avoidance strat-
egy: Harmful situations are avoided.

Here,

rt œ {0, ≠1}, (C.12)

Most situations do not receive any reward,

only a few of them receive a negative re-

ward. The agent agent will avoid getting

too close to such negative situations

Warning: Rewarding strategies can have

unexpected consequences. A robot that is

told "have it your own way but if you touch

an obstacle you will be punished" will sim-

ply stand still. If standing still is also pun-

ished, it will drive in small circles. Recon-

sidering this, we will understand that this

behavior optimally fulfills the return of the

robot but unfortunately was not intended

to do so.

Furthermore, we can show that especially

small tasks can be solved better by means

of negative rewards while positive, more

di�erentiated rewards are useful for large,

complex tasks.

For our gridworld we want to apply the

pure negative reward strategy: The robot

shall find the exit as fast as possible.

C.2.2 The state-value function

Unlike our agent we have a godlike view state
evaluationof our gridworld so that we can swiftly de-

termine which robot starting position can

provide which optimal return.

In figure C.3 on the next page these opti-

mal returns are applied per field.

In the gridworld: The state-value function

for our gridworld exactly represents such

a function per situation (= position) with

the di�erence being that here the function

is unknown and has to be learned.

Thus, we can see that it would be more

practical for the robot to be capable to

evaluate the current and future situations.

So let us take a look at another system

component of reinforcement learning: the

state-value function V (s), which with

regard to a policy � is often called V�(s).
Because whether a situation is bad often

depends on the general behavior � of the

agent.

A situation being bad under a policy that

is searching risks and checking out limits
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-6 -5 -4 -3 -2

-7 -1

-6 -5 -4 -3 -2

-7 -6 -5 -3

-8 -7 -6 -4

-9 -8 -7 -5

-10 -9 -8 -7 -6

-6 -5 -4 -3 -2

-7 -1

-8 -9 -10 -2

-9 -10 -11 -3

-10 -11 -10 -4

-11 -10 -9 -5

-10 -9 -8 -7 -6

Figure C.3: Representation of each optimal re-
turn per field in our gridworld by means of pure
negative reward awarding, at the top with an
open and at the bottom with a closed door.

would be, for instance, if an agent on a bi-

cycle turns a corner and the front wheel

begins to slide out. And due to its dare-

devil policy the agent would not brake in

this situation. With a risk-aware policy

the same situations would look much bet-

ter, thus it would be evaluated higher by

a good state-value function

V�(s) simply returns the value the current
V�(s)I

situation s has for the agent under policy

�. Abstractly speaking, according to the

above definitions, the value of the state-

value function corresponds to the return

Rt (the expected value) of a situation st.

E� denotes the set of the expected returns

under � and the current situation st.

V�(s) = E�{Rt|s = st}

Definition C.9 (State-value function).

The state-value function V�(s) has the

task of determining the value of situations

under a policy, i.e. to answer the agent’s

question of whether a situation s is good

or bad or how good or bad it is. For this

purpose it returns the expectation of the

return under the situation:

V�(s) = E�{Rt|s = st} (C.13)

The optimal state-value function is called

V ú
�(s). JV ú

�(s)

Unfortunaely, unlike us our robot does not

have a godlike view of its environment. It

does not have a table with optimal returns

like the one shown above to orient itself.

The aim of reinforcement learning is that

the robot generates its state-value func-

tion bit by bit on the basis of the returns of

many trials and approximates the optimal

state-value function V ú
(if there is one).

In this context I want to introduce two

terms closely related to the cycle between

state-value function and policy:

C.2.2.1 Policy evaluation

Policy evaluation is the approach to try

a policy a few times, to provide many re-

wards that way and to gradually accumu-

late a state-value function by means of

these rewards.
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V
))

✏✏

�
ii

✏✏

V ú �ú

Figure C.4: The cycle of reinforcement learning
which ideally leads to optimal �ú and V ú.

C.2.2.2 Policy improvement

Policy improvement means to improve

a policy itself, i.e. to turn it into a new and

better one. In order to improve the policy

we have to aim at the return finally having

a larger value than before, i.e. until we

have found a shorter way to the restaurant

and have walked it successfully

The principle of reinforcement learning is

to realize an interaction. It is tried to eval-

uate how good a policy is in individual

situations. The changed state-value func-

tion provides information about the sys-

tem with which we again improve our pol-

icy. These two values lift each other, which

can mathematically be proved, so that the

final result is an optimal policy �ú
and an

optimal state-value function V ú
(fig. C.4).

This cycle sounds simple but is very time-

consuming.

At first, let us regard a simple, random pol-

icy by which our robot could slowly fulfill

and improve its state-value function with-

out any previous knowledge.

C.2.3 Monte Carlo method

The easiest approach to accumulate a

state-value function is mere trial and er-

ror. Thus, we select a randomly behaving

policy which does not consider the accumu-

lated state-value function for its random

decisions. It can be proved that at some

point we will find the exit of our gridworld

by chance.

Inspired by random-based games of chance

this approach is called Monte Carlo
method.

If we additionally assume a pure negative
reward, it is obvious that we can receive

an optimum value of ≠6 for our starting

field in the state-value function. Depend-

ing on the random way the random policy

takes values other (smaller) than ≠6 can

occur for the starting field. Intuitively, we

want to memorize only the better value for

one state (i.e. one field). But here caution

is advised: In this way, the learning proce-

dure would work only with deterministic
systems. Our door, which can be open or

closed during a cycle, would produce oscil-

lations for all fields and such oscillations

would influence their shortest way to the

target.

With the Monte Carlo method we prefer

to use the learning rule
2

V (st)new = V (st)alt + –(Rt ≠ V (st)alt),

in which the update of the state-value func-

tion is obviously influenced by both the

2 The learning rule is, among others, derived by
means of the Bellman equation, but this deriva-
tion is not discussed in this chapter.
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old state value and the received return (–
is the learning rate). Thus, the agent gets

–I
some kind of memory, new findings always

change the situation value just a little bit.

An exemplary learning step is shown in

fig. C.5.

In this example, the computation of the

state value was applied for only one single

state (our initial state). It should be ob-

vious that it is possible (and often done)

to train the values for the states visited in-

between (in case of the gridworld our ways

to the target) at the same time. The result

of such a calculation related to our exam-

ple is illustrated in fig. C.6 on the facing

page.

The Monte Carlo method seems to be

suboptimal and usually it is significantly

slower than the following methods of re-

inforcement learning. But this method is

the only one for which it can be mathemat-

ically proved that it works and therefore

it is very useful for theoretical considera-

tions.

Definition C.10 (Monte Carlo learning).

Actions are randomly performed regard-

less of the state-value function and in the

long term an expressive state-value func-

tion is accumulated by means of the fol-

lowing learning rule.

V (st)new = V (st)alt + –(Rt ≠ V (st)alt),

C.2.4 Temporal di�erence learning

Most of the learning is the result of ex-

periences; e.g. walking or riding a bicycle

-1

-6 -5 -4 -3 -2

-1

-14 -13 -12 -2

-11 -3

-10 -4

-9 -5

-8 -7 -6

-10

Figure C.5: Application of the Monte Carlo
learning rule with a learning rate of – = 0.5.
Top: two exemplary ways the agent randomly
selects are applied (one with an open and one
with a closed door). Bottom: The result of the
learning rule for the value of the initial state con-
sidering both ways. Due to the fact that in the
course of time many di�erent ways are walked
given a random policy, a very expressive state-
value function is obtained.

202 D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN)



dkriesel.com C.2 Learning process

-1

-10 -9 -8 -3 -2

-11 -3

-10 -4

-9 -5

-8 -7 -6

Figure C.6: Extension of the learning example
in fig. C.5 in which the returns for intermedi-
ate states are also used to accumulate the state-
value function. Here, the low value on the door
field can be seen very well: If this state is possi-
ble, it must be very positive. If the door is closed,
this state is impossible.

�

Evaluation

!!

Q

policy improvement

aa

Figure C.7: We try di�erent actions within the
environment and as a result we learn and improve
the policy.

without getting injured (or not), even men-

tal skills like mathematical problem solv-

ing benefit a lot from experience and sim-

ple trial and error. Thus, we initialize our

policy with arbitrary values – we try, learn

and improve the policy due to experience
(fig. C.7). In contrast to the Monte Carlo

method we want to do this in a more di-

rected manner.

Just as we learn from experience to re-

act on di�erent situations in di�erent ways

the temporal di�erence learning (abbre-

viated: TD learning), does the same by

training V�(s) (i.e. the agent learns to esti-

mate which situations are worth a lot and

which are not). Again the current situa-

tion is identified with st, the following sit-

uations with st+1 and so on. Thus, the

learning formula for the state-value func-

tion V�(st) is

V (st)new =V (st)
+ –(rt+1 + “V (st+1) ≠ V (st))¸ ˚˙ ˝

change of previous value

We can see that the change in value of the

current situation st, which is proportional

to the learning rate –, is influenced by

Û the received reward rt+1,

Û the previous return weighted with a

factor “ of the following situation

V (st+1),

Û the previous value of the situation

V (st).

Definition C.11 (Temporal di�erence

learning). Unlike the Monte Carlo

method, TD learning looks ahead by re-

garding the following situation st+1. Thus,

the learning rule is given by

V (st)new =V (st) (C.14)

+ –(rt+1 + “V (st+1) ≠ V (st))¸ ˚˙ ˝
change of previous value

.

C.2.5 The action-value function

Analogous to the state-value function

V�(s), the action-value function action
evaluation
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0

◊ +1

-1

Figure C.8: Exemplary values of an action-
value function for the position ◊. Moving right,
one remains on the fastest way towards the tar-
get, moving up is still a quite fast way, moving
down is not a good way at all (provided that the
door is open for all cases).

Q�(s, a) is another system component of

Q�(s, a)I reinforcement learning, which evaluates a

certain action a under a certain situation

s and the policy �.

In the gridworld: In the gridworld, the

action-value function tells us how good it

is to move from a certain field into a cer-

tain direction (fig. C.8).

Definition C.12 (Action-value function).

Like the state-value function, the action-

value function Q�(st, a) evaluates certain

actions on the basis of certain situations

under a policy. The optimal action-value

function is called Qú
�(st, a).

Qú
�(s, a)I

As shown in fig. C.9, the actions are per-

formed until a target situation (here re-

ferred to as s· ) is achieved (if there exists a

target situation, otherwise the actions are

simply performed again and again).

C.2.6 Q learning

This implies Q�(s, a) as learning fomula

for the action-value function, and – analo-

gously to TD learning – its application is

called Q learning:

Q(st, a)new =Q(st, a)

+ –(rt+1 + “ max
a

Q(st+1, a)

¸ ˚˙ ˝
greedy strategy

≠Q(st, a))

¸ ˚˙ ˝
change of previous value

.

Again we break down the change of the

current action value (proportional to the

learning rate –) under the current situa-

tion. It is influenced by

Û the received reward rt+1,

Û the maximum action over the follow-

ing actions weighted with “ (Here, a

greedy strategy is applied since it can

be assumed that the best known ac-

tion is selected. With TD learning,

on the other hand, we do not mind to

always get into the best known next

situation.),

Û the previous value of the action under

our situation st known as Q(st, a) (re-

member that this is also weighted by

means of –).

Usually, the action-value function learns

considerably faster than the state-value

function. But we must not disregard that

reinforcement learning is generally quite

slow: The system has to find out itself

what is good. But the advantage of Q
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GFED@ABCs0
a0
//

direction of actions

((

GFED@ABCs1
a1
//

r1
kk

GFED@ABC· · ·
a·≠2
//

r2
kk

ONMLHIJKs·≠1
a·≠1

//

r·≠1
kk

GFED@ABCs·
r·

ll

direction of reward

hh

Figure C.9: Actions are performed until the desired target situation is achieved. Attention should
be paid to numbering: Rewards are numbered beginning with 1, actions and situations beginning
with 0 (This has simply been adopted as a convention).

learning is: � can be initialized arbitrar-

ily, and by means of Q learning the result

is always Qú
.

Definition C.13 (Q learning). Q learn-

ing trains the action-value function by

means of the learning rule

Q(st, a)new =Q(st, a) (C.15)
+ –(rt+1 + “ max

a

Q(st+1, a) ≠ Q(st, a)).

and thus finds Qú
in any case.

C.3 Example applications

C.3.1 TD gammon

TD gammon is a very successful

backgammon game based on TD learn-

ing invented by Gerald Tesauro. The

situation here is the current configura-

tion of the board. Anyone who has ever

played backgammon knows that the situ-

ation space is huge (approx. 1020
situa-

tions). As a result, the state-value func-

tions cannot be computed explicitly (par-

ticularly in the late eighties when TD gam-

mon was introduced). The selected re-

warding strategy was the pure delayed re-
ward, i.e. the system receives the reward

not before the end of the game and at the

same time the reward is the return. Then

the system was allowed to practice itself

(initially against a backgammon program,

then against an entity of itself). The result

was that it achieved the highest ranking in

a computer-backgammon league and strik-

ingly disproved the theory that a computer

programm is not capable to master a task

better than its programmer.

C.3.2 The car in the pit

Let us take a look at a car parking on a

one-dimensional road at the bottom of a

deep pit without being able to get over

the slope on both sides straight away by

means of its engine power in order to leave
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the pit. Trivially, the executable actions

here are the possibilities to drive forwards

and backwards. The intuitive solution we

think of immediately is to move backwards,

to gain momentum at the opposite slope

and oscillate in this way several times to

dash out of the pit.

The actions of a reinforcement learning

system would be "full throttle forward",

"full reverse" and "doing nothing".

Here, "everything costs" would be a good

choice for awarding the reward so that the

system learns fast how to leave the pit and

realizes that our problem cannot be solved

by means of mere forward directed engine

power. So the system will slowly build up

the movement.

The policy can no longer be stored as a

table since the state space is hard to dis-

cretize. As policy a function has to be

generated.

C.3.3 The pole balancer

The pole balancer was developed by

Barto, Sutton and Anderson.

Let be given a situation including a vehicle

that is capable to move either to the right

at full throttle or to the left at full throt-

tle (bang bang control). Only these two

actions can be performed, standing still

is impossible. On the top of this car is

hinged an upright pole that could tip over

to both sides. The pole is built in such a

way that it always tips over to one side so

it never stands still (let us assume that the

pole is rounded at the lower end).

The angle of the pole relative to the verti-

cal line is referred to as –. Furthermore,

the vehicle always has a fixed position x an

our one-dimensional world and a velocity

of ẋ. Our one-dimensional world is lim-

ited, i.e. there are maximum values and

minimum values x can adopt.

The aim of our system is to learn to steer

the car in such a way that it can balance

the pole, to prevent the pole from tipping

over. This is achieved best by an avoid-

ance strategy: As long as the pole is bal-

anced the reward is 0. If the pole tips over,

the reward is -1.

Interestingly, the system is soon capable

to keep the pole balanced by tilting it suf-

ficiently fast and with small movements.

At this the system mostly is in the cen-

ter of the space since this is farthest from

the walls which it understands as negative

(if it touches the wall, the pole will tip

over).

C.3.3.1 Swinging up an inverted
pendulum

More di�cult for the system is the fol-

lowing initial situation: the pole initially

hangs down, has to be swung up over the

vehicle and finally has to be stabilized. In

the literature this task is called swing up
an inverted pendulum.
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C.4 Reinforcement learning in
connection with neural
networks

Finally, the reader would like to ask why a

text on "neural networks" includes a chap-

ter about reinforcement learning.

The answer is very simple. We have al-

ready been introduced to supervised and

unsupervised learning procedures. Al-

though we do not always have an om-

niscient teacher who makes unsupervised

learning possible, this does not mean that

we do not receive any feedback at all.

There is often something in between, some

kind of criticism or school mark. Problems

like this can be solved by means of rein-

forcement learning.

But not every problem is that easily solved

like our gridworld: In our backgammon ex-

ample we have approx. 1020
situations and

the situation tree has a large branching fac-

tor, let alone other games. Here, the tables

used in the gridworld can no longer be re-

alized as state- and action-value functions.

Thus, we have to find approximators for

these functions.

And which learning approximators for

these reinforcement learning components

come immediately into our mind? Exactly:

neural networks.

Exercises

Exercise 19. A robot control system

shall be persuaded by means of reinforce-

ment learning to find a strategy in order

to exit a maze as fast as possible.

Û What could an appropriate state-

value function look like?

Û How would you generate an appropri-

ate reward?

Assume that the robot is capable to avoid

obstacles and at any time knows its posi-

tion (x, y) and orientation „.

Exercise 20. Describe the function of

the two components ASE and ACE as

they have been proposed by Barto, Sut-
ton and Anderson to control the pole
balancer.

Bibliography: [BSA83].

Exercise 21. Indicate several "classical"

problems of informatics which could be

solved e�ciently by means of reinforce-

ment learning. Please give reasons for

your answers.
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