Electroweak corrections for LHC physics

Marek Schönherr

IPPP, Durham University

Higgs Maxwell Meeting, Edinburgh – 20 Feb 2019
Introduction

Electroweak corrections come in two variants: virtual corrections and real emission correction.

Virtual electroweak corrections often studied in the context of gauge boson and jet production at large transverse momentum (EW-Sudakov suppression). Usually negative and increasing with p_{\perp}.

Real electroweak corrections usually constitute a separate process. However, largest BR of W/Z bosons is hadronic, thus (almost) indistinguishable in jet production. Nonetheless may constitute signal in itself.

When large scale differences occur resummation is needed in either case. Practically at LHC13/14 these scale differences are moderate.

Beware of subleading orders.
Outline

1. Next-to-leading order electroweak corrections
 - Setup, subtleties and automation
 - Selected results

2. Triboson production
 - On-shell vs. Off-shell production
 - Full off-shell results

3. Electroweak corrections in MCs
 - Approximate inclusion in NLO QCD multijet merging
 - Selected results

4. Conclusions
Electroweak corrections for LHC physics

1. Next-to-leading order electroweak corrections
 Setup, subtleties and automation
 Selected results

2. Triboson production
 On-shell vs. Off-shell production
 Full off-shell results

3. Electroweak corrections in MCs
 Approximate inclusion in NLO QCD multijet merging
 Selected results

4. Conclusions
Higher order corrections

Example: Vjj production

- strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons
Higher order corrections

Example: $V jj$ production

- strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons
Higher order corrections

Example: Vjj production

- In principle, must differentiate between short-distance objects (partons) and long-distance objects (observable objects):
 - Well known in QCD (quarks, gluons \leftrightarrow jets)
 - Introduce similar concepts in EW sector for photons and leptons

• Strictly defined only through order counting
Higher order corrections

Example: Vjj production

- strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons
Higher order corrections

Example: Vjj production

- strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons
Higher order corrections

Example: Vjj production

- **Tree-level:** $\alpha_s^2 \alpha^2$
- **NLO QCD:** $\alpha_s^3 \alpha^2$
- **NLO EW:** $\alpha_s^2 \alpha^3$
- **Subleading LO:** $\alpha_s \alpha^3$
- **Subleading NLO:** α^4

- **QCD**
 - strictly defined only through order counting
 - in principle must differentiate between short-distance objects (partons) and long-distance objects (observable objects):
 - well known in QCD (quarks, gluons ↔ jets)
 - introduce similar concepts in EW sector for photons and leptons
Higher order corrections

Example: Vjj production

- Strictly defined only through order counting.
- In principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - Well known in QCD (quarks, gluons \leftrightarrow jets).
 - Introduce similar concepts in EW sector for photons and leptons.
Definition of physical objects

What is a jet?

- photons and leptons must be part of a jet, but to what extent?
- **democratic:**
 - straight forward, always well defined
 - many contributions
 → single photons constitute a jet
 → single leptons constitute a jet

- **anti-tagging jets with certain flavour content:**
 - fewer contributions
 - needs a lot of care to be well-defined at all contributing orders
 → anti-tag jets with too large photon content
 → anti-tag jets with net lepton content

- which approach is closer to experiment depends on analysis,
general anti-tagging must proceed through fragmentation functions
Definition of physical objects

What is a photon?

- differentiate: short-distance photon (photon as parton),
 long-distance photon (identified, measurable photon)

a) treat as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \rightarrow ff$
 → renormalisation contains IR poles
 → problematic if both identified and unresolved photons in Born

b) treat democratically (just another parton), renormalise in short
distance scheme (G_μ, $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \rightarrow ff$ splittings
 → pure UV renormalisation
 → identify photon through frag. function $D^p_\gamma(z, \mu)$

i.e. $D^\gamma_\gamma(z, \mu) = \frac{\alpha(0)}{\alpha_{sd}} \delta(1-z) + \mathcal{O}(\alpha^2)$

and $D^q_\gamma(z, \mu) = \mathcal{O}(\alpha)$, $D^g_\gamma(z, \mu) = \mathcal{O}(\alpha^2 \alpha_s)$

• identical at NLO EW, if fragmentation D^q_γ on Born is negligible
Definition of physical objects

What is a photon?

- differentiate: short-distance photon (photon as parton), long-distance photon (identified, measurable photon)

 a) treat as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \rightarrow ff$ → renormalisation contains IR poles
 → problematic if both identified and unresolved photons in Born

 b) treat democratically (just another parton), renormalise in short distance scheme ($G_\mu, \alpha(m_Z), \overline{\text{MS}}, ...$), include $\gamma \rightarrow ff$ splittings
 → pure UV renormalisation
 → identify photon through frag. function $D^p_\gamma(z, \mu)$

 i.e. $D^\gamma_\gamma(z, \mu) = \frac{\alpha(0)}{\alpha_{sd}} \delta(1 - z) + O(\alpha^2)$

 and $D^q_\gamma(z, \mu) = O(\alpha)$, $D^g_\gamma(z, \mu) = O(\alpha s^2)$

- identical at NLO EW, if fragmentation D^q_γ on Born is negligible
Definition of physical objects

What is a photon?

- differentiate: short-distance photon (photon as parton),
 long-distance photon (identified, measurable photon)

 a) treat as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \rightarrow ff$
 \rightarrow renormalisation contains IR poles
 \rightarrow problematic if both identified and unresolved photons in Born

 b) treat democratically (just another parton), renormalise in short
 distance scheme (G_μ, $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \rightarrow ff$ splittings
 \rightarrow pure UV renormalisation
 \rightarrow identify photon through frag. function $D^p_\gamma(z, \mu)$

 \[i.e. \ D^\gamma_\gamma(z, \mu) = \frac{\alpha(0)}{\alpha_{sd}} \delta(1 - z) + \mathcal{O}(\alpha^2) \]

 and $D^q_\gamma(z, \mu) = \mathcal{O}(\alpha)$, $D^g_\gamma(z, \mu) = \mathcal{O}(\alpha_s \alpha)$

- identical at NLO EW, if fragmentation D^q_γ on Born is negligible
Definition of physical objects

What is a photon?

- differentiate: short-distance photon (photon as parton),
 long-distance photon (identified, measurable photon)

a) treat as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \to ff$
 → renormalisation contains IR poles
 → problematic if both identified and unresolved photons in Born

b) treat democratically (just another parton), renormalise in short
 distance scheme (G_μ, $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \to ff$ splittings
 → pure UV renormalisation
 → identify photon through frag. function $D^p_\gamma(z, \mu)$

 i.e. $D^\gamma_\gamma(z, \mu) = \frac{\alpha(0)}{\alpha_{sd}} \delta(1 - z) + \mathcal{O}(\alpha^2)$

 and $D^q_\gamma(z, \mu) = \mathcal{O}(\alpha)$, $D^g_\gamma(z, \mu) = \mathcal{O}(\alpha_s \alpha)$

- identical at NLO EW, if fragmentation D^q_γ on Born is negligible
Definition of physical objects

What is a lepton?

- in principle, again differentiate between short-distance parton and long-distance identified and measurable object
- simplified as leptons not gauge bosons, thus
 \[D_{\ell}^{\ell}(z, \mu) = \delta(1 - z) + \text{QED bremsstrahlung} \]
 \[D_{\gamma}^{\gamma}(z, \mu) = \mathcal{O}(\alpha) \]
 problematic in processes with \(\ell \) and unresolved photons in Born

all other \(D_{\ell}^{q}(z, \mu) = \mathcal{O}(\alpha^2) \), \(D_{\ell}^{g}(z, \mu) = \mathcal{O}(\alpha_s \alpha^2) \)

- dressed lepton: masseless leptons must be dressed for IR safety
- bare lepton: massive leptons may be measured bare
- Born lepton: not an infrared-safe concept
Automation

⇒ emergence of automated frameworks for NLO EW computations along the principles of NLO QCD automation

- Monte-Carlo frameworks (Born and real emission matrix elements, infrared subtraction, phase space generation, process coordination)
 - SHERPA
 - MADGRAPH

- virtual corrections (EW one-loop matrix elements, renormalisation)
 - GOSAM
 - MADLOOP
 - OPENLOOPS
 - RECOLA

- currently generally limited to fixed-order

- a number of dedicated calculations and private codes

- SHERPA
 - MS arXiv:1712.07975

- MADGRAPH
 - Frederix et.al. arXiv:1804.10017

- GOSAM
 - Chiesa et.al. arXiv:1507.08579

- MADLOOP
 - Frixione et.al. arXiv:1407.0823

- OPENLOOPS
 - Kallweit et.al. arXiv:1412.5157

- RECOLA
 - Actis et.al. arXiv:1211.6316
NLO EW calculations with SHERPA

• **SHERPA+OPENLOOPS:**
 - \(pp \rightarrow \gamma/\ell\ell/\ell \nu/\nu + 0, 1, 2(, 3) \text{ jets} \)

 Lindert et.al arXiv:1705.04664
 FCC report, EW report, LH’15

 - \(pp \rightarrow Vh \)

 FCC report arXiv:1607.01831

 - \(pp \rightarrow 2\ell 2\nu \)

 Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

 - \(pp \rightarrow t\bar{t}/t\bar{t}j \)

 Gütschow, Lindert, MS arXiv:1803.00950

 - \(pp \rightarrow t\bar{t}h \)

 LH’15 arXiv:1605.04692

• **SHERPA+GOSAM**
 - \(pp \rightarrow \gamma\gamma + 0, 1, 2 \text{ jets} \)

 Chiesa et.al. arXiv:1706.09022

 - \(pp \rightarrow \gamma\gamma/\gamma\gamma\ell\nu/\gamma\gamma\ell\ell \)

 Greiner, MS arXiv:1710.11514

• **SHERPA+RECOLA**
 - \(pp \rightarrow V + 0, 1, 2 \text{ j}, pp \rightarrow 4\ell, pp \rightarrow t\bar{t}h \)

 Biedermann et.al. arXiv:1704.05783
 MS arXiv:1806.00307

 - \(pp \rightarrow 3\ell 3\nu \)

 Reyer, MS, Schumann arXiv:1902.01763

 - \(pp \rightarrow jj/ jjj \)
NLO EW calculations with SHERPA

- **SHERPA + OPENLOOPS:**
 - $pp \rightarrow \gamma/\ell\ell/\ell\nu/\nu\nu + 0, 1, 2, 3$ jets
 - $pp \rightarrow Vh$
 - $pp \rightarrow 2\ell 2\nu$
 - $pp \rightarrow t\bar{t}/t\bar{t}j$
 - $pp \rightarrow t\bar{t}h$
 - FCC report, EW report, LH’15
 - Lindert et.al arXiv:1705.04664
 - FCC report arXiv:1607.01831
 - Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598
 - Gütschow, Lindert, MS arXiv:1803.00950
 - LH’15 arXiv:1605.04692

- **SHERPA + GOSAM**
 - $pp \rightarrow \gamma\gamma + 0, 1, 2$ jets
 - $pp \rightarrow \gamma\gamma\gamma / \gamma\gamma\ell\nu / \gamma\gamma\ell\ell$
 - Chiesa et.al. arXiv:1706.09022
 - Greiner, MS arXiv:1710.11514

- **SHERPA + RECOLA**
 - $pp \rightarrow V + 0, 1, 2$ j, $pp \rightarrow 4\ell$, $pp \rightarrow t\bar{t}h$
 - Biedermann et.al. arXiv:1704.05783
 - MS arXiv:1806.00307
 - Reyer, MS, Schumann arXiv:1902.01763
NLO EW calculations with SHERPA

- **SHERPA+OPENLOOPS:**
 - $pp \rightarrow \gamma/\ell\ell/\ell\nu/\nu\nu + 0,1,2(,3)\text{ jets}$
 - FCC report, EW report, LH’15
 - Lindert et.al arXiv:1705.04664
 - $pp \rightarrow Vh$
 - FCC report arXiv:1607.01831
 - $pp \rightarrow 2\ell 2\nu$
 - Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598
 - $pp \rightarrow t\bar{t}/t\bar{t}j$
 - Gütschow, Lindert, MS arXiv:1803.00950
 - $pp \rightarrow t\bar{t}h$
 - LH’15 arXiv:1605.04692

- **SHERPA+GOSam**
 - $pp \rightarrow \gamma\gamma + 0,1,2\text{ jets}$
 - Chiesa et.al. arXiv:1706.09022
 - $pp \rightarrow \gamma\gamma/\gamma\gamma\ell\nu/\gamma\gamma\ell\ell$
 - Greiner, MS arXiv:1710.11514

- **SHERPA+RECOLA**
 - $pp \rightarrow V + 0,1,2\text{ j}, pp \rightarrow 4\ell, pp \rightarrow t\bar{t}h$
 - Biedermann et.al. arXiv:1704.05783
 - MS arXiv:1806.00307
 - $pp \rightarrow 3\ell 3\nu$
 - Reyer, MS, Schumann arXiv:1902.01763
 - $pp \rightarrow jj/jjj$
Selected results

General setup

- work with dressed leptons with $\Delta R_{\text{dress}} = 0.1$
- input parameters for the following calculations

\[
\begin{align*}
G_\mu &= 1.16637 \times 10^{-5} \text{ GeV}^2 \\
m_W &= 80.385 \text{ GeV} \\
m_Z &= 91.1876 \text{ GeV} \\
m_h &= 125.0 \text{ GeV} \\
m_t &= 173.2 \text{ GeV} \\
\Gamma_W &= 2.0897 \text{ GeV} \\
\Gamma_Z &= 2.4955 \text{ GeV} \\
\Gamma_h &= 0.00407 \text{ GeV} \\
\Gamma_t &= 1.3394 \text{ GeV}.
\end{align*}
\]

- EW parameter renormalisation in G_μ-scheme
- photon induced processes considered throughout
Selected results

Diphoton production – $\gamma\gamma$

NLO EW corrections to diphoton production

- peak-like enhancement around $m_{\gamma\gamma} \approx 160$ GeV
- induced by W-box creating pseudo-resonant structures
Diphoton production – $\gamma\gamma$

NLO EW corrections to diphoton production

- peak-like enhancement around $m_{\gamma\gamma} = 2m_W$
- induced by W-box creating pseudo-resonant structures
Selected results

Diboson production – $2\ell 2\nu$ – DF and SF

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

- study $e^+\mu^-\nu\bar{\nu}$ (DF) and $e^+e^-\nu\bar{\nu}$ (SF) production, and $e \leftrightarrow \mu$

DF	$e^+\mu^-\nu_e\bar{\nu}_\mu$	WW
SF	$e^+e^-\nu_e\bar{\nu}_e$	$WW + ZZ$
	$e^+e^-\nu_{\mu/\tau}\bar{\nu}_{\mu/\tau}$	ZZ

- incl. event selection w/ standard lepton acceptance cuts, $(p_T,\ell > 20\text{ GeV}), |\eta_\ell| < 2.5)$,
 \[n_f = 4\] and mild jet veto to suppress large NLO QCD corr.
Diboson production – $2\ell 2\nu$ – DF

$\text{pp} \rightarrow e^+\mu^- \nu_e \bar{\nu}_\mu$

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

- Absolute prediction
- Relative correction wrt. LO
- NLO QCD (w/ moderate jet veto)
- LO
- NLO QCD+EW
- NLO QCD×EW
- NLO EW

- Large pos. NLO QCD, large neg. NLO EW
 \rightarrow NLO QCD+EW and NLO QCD×EW differ significantly
Diboson production – $2\ell2\nu$ – DF

Selected results

relative importance of γ-induced channels wrt. NLO QCD \times EW

- CT14qed (baseline) no γPDF
- LUXqed
- NNPDF3.0qed

- all γPDF agree that γ-ind. $> 10\%$ for $p_T > 500 \text{ GeV}$
- very good agreement between CT14qed and LUXqed
Selected results

Diboson production – $2\ell 2\nu$ – SF

The relative importance of γ-induced channels wrt. NLO QCD×EW:

- **CT14qed (baseline)**: no γPDF
- **LUXqed**: NNPDF3.0qed

Relative contributions of WW and ZZ subtops:
- Coherent $|WW + ZZ|^2$
- Incoherent $|WW|^2 + |ZZ|^2$
- Only $|WW|^2$
- Only $|ZZ|^2$

- WW dominant throughout, ZZ only contribs 10-20%
 → overall very similar to DF case

Graphs showing the distribution of p_T, ℓ_1 for $pp \to e^+ e^- \nu \bar{\nu}$, $pp \to W^+ [\to e^+ \nu] W^- [\to e^- \bar{\nu}]$, and $pp \to Z/\gamma [\to e^+ e^-] Z [\to \nu \bar{\nu}]$ with incoherent sum.
Diboson production – 2\ell 2\nu – DF

- ZZ dominant at very large \(p_T \)
- \(\rightarrow \) different EW corrections, take care when extrapolating
Diboson production – $2\ell 2\nu$ – SF

- **ZZ** dominant at very large p_T
- \rightarrow different EW corrections, take care when extrapolating
Diboson production – $2\ell 2\nu$ – DF

- kinematic suppression for $p_T^{\nu\nu}$ at LO, unlocked at NLO QCD not present in γ-induced \Rightarrow large contrib
Diboson production – $2\ell 2\nu$ – SF

- Kinematic suppression for $p_T^{\ell \nu}$ for WW, but not ZZ
- ZZ dominates for MET > 100 GeV with large EW corr.
Electroweak corrections for LHC physics

1. Next-to-leading order electroweak corrections
 Setup, subtleties and automation
 Selected results

2. Triboson production
 On-shell vs. Off-shell production
 Full off-shell results

3. Electroweak corrections in MCs
 Approximate inclusion in NLO QCD multijet merging
 Selected results

4. Conclusions
Triboson production – $3\ell3\nu – 0, 1, 2$ SFOS

- contribs from 0 SFOS ($e^-\mu^+\mu^+\bar{\nu}\nu\nu$), 1 SFOS ($e^-e^+\mu^+\bar{\nu}\nu\nu$) and 2 SFOS ($e^-e^+e^+\bar{\nu}\nu\nu$) processes, and $e \leftrightarrow \mu$

 0 SFOS \[e^-\mu^+\mu^+\bar{\nu}_e\nu_\mu\nu_\mu \] WWW \[WZ[\rightarrow 2\ell2\nu] \] Wh

 1 SFOS \[e^-e^+\mu^+\bar{\nu}_e\nu_e\nu_\mu \] WWW + WZZ \[WZ[\rightarrow 2\ell2\nu] \] Wh

 \[e^-e^+\mu^+\bar{\nu}_\mu\nu_\mu\nu_\mu \] WZZ

 \[e^-e^+\mu^+\bar{\nu}_\tau\nu_\tau\nu_\mu \] WZZ

 2 SFOS \[e^-e^+e^+\bar{\nu}_e\nu_e \] WWW + WZZ \[WZ[\rightarrow 2\ell2\nu] \] Wh

 \[e^-e^+e^+\bar{\nu}_{\mu/\tau}\nu_{\mu/\tau}\nu_e \] WZZ

- standard lepton acceptance cuts, idealised from ATLAS arXiv:1610.05088
Triboson production – $3\ell 3\nu$ – 0, 1, 2 SFOS

- contribs from 0 SFOS ($e^- \mu^+ \mu^+ \bar{\nu} \nu \nu$), 1 SFOS ($e^- e^+ \mu^+ \bar{\nu} \nu \nu$) and 2 SFOS ($e^- e^+ e^+ \bar{\nu} \nu \nu$) processes, and $e \leftrightarrow \mu$

 0 SFOS $e^- \mu^+ \mu^+ \bar{\nu}_e \nu_\mu \nu_\mu$
 1 SFOS $e^- e^+ \mu^+ \bar{\nu}_e \nu_\mu \nu_\mu$
 $e^- e^+ \mu^+ \bar{\nu}_\mu \nu_\mu \nu_\mu$
 $e^- e^+ \mu^+ \bar{\nu}_\tau \nu_\tau \nu_\mu$
 2 SFOS $e^- e^+ e^+ \bar{\nu}_e \nu_e \nu_e$
 $e^- e^+ e^+ \bar{\nu}_{\mu/\tau} \nu_{\mu/\tau} \nu_e$

- standard lepton acceptance cuts, idealised from ATLAS arXiv:1610.05088
On-shell vs. Off-shell production

Triboson production – $3\ell 3\nu - 0, 1, 2$ SFOS

- contribs from 0 SFOS ($e^- \mu^+ \mu^+ \nu \nu \nu$), 1 SFOS ($e^- e^+ \mu^+ \nu \nu \nu$) and 2 SFOS ($e^- e^+ e^+ \nu \nu \nu$) processes, and $e\leftrightarrow \mu$

0 SFOS

$e^- \mu^+ \mu^+ \bar{\nu}_e \nu_\mu \nu_\mu$

W_{WW}

$WZ[\rightarrow 2 \ell 2\nu]$

Wh

1 SFOS

$e^- e^+ \mu^+ \bar{\nu}_e \nu_e \nu_\mu$

$W_{WW} + W_{ZZ}$

W_{ZZ}

$WZ[\rightarrow 2 \ell 2\nu]$

Wh

$e^- e^+ \mu^+ \bar{\nu}_\mu \nu_\mu \nu_\mu$

W_{ZZ}

$WZ[\rightarrow 2 \ell 2\nu]$

Wh

$e^- e^+ \mu^+ \bar{\nu}_\tau \nu_\tau \nu_\mu$

W_{ZZ}

$WZ[\rightarrow 2 \ell 2\nu]$

Wh

2 SFOS

$e^- e^+ e^+ \bar{\nu}_e \nu_e$

$W_{WW} + W_{ZZ}$

W_{ZZ}

$WZ[\rightarrow 2 \ell 2\nu]$

Wh

$e^- e^+ e^+ \bar{\nu}_\mu/\tau \nu_\mu/\tau \nu_e$

W_{ZZ}

$WZ[\rightarrow 2 \ell 2\nu]$

Wh

- standard lepton acceptance cuts, idealised from ATLAS arXiv:1610.05088
NLO EW corrections in off-shell trilepton production

<table>
<thead>
<tr>
<th>Selection</th>
<th>Cut</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>$p_T(\ell)$</td>
<td>$[20 \text{ GeV}, \infty)$</td>
</tr>
<tr>
<td></td>
<td>$y(\ell)$</td>
<td>$[-2.5, 2.5]$</td>
</tr>
<tr>
<td></td>
<td>$\Delta R(\ell, \ell)$</td>
<td>$[0.2, \infty)$</td>
</tr>
<tr>
<td>$p_T > 20 \text{ GeV}$</td>
<td>$\Delta \phi(p_T, \ell\ell\ell)$</td>
<td>$[\frac{5}{6} \pi, \pi]$</td>
</tr>
<tr>
<td>1, 2 SFOS</td>
<td>p_T</td>
<td>$[50 \text{ GeV}, \infty)$</td>
</tr>
<tr>
<td></td>
<td>$m_{\ell\ell}^{\text{SFOS}}$</td>
<td>$[0, 70 \text{ GeV}] \land [100 \text{ GeV}, \infty)$</td>
</tr>
</tbody>
</table>

- minimise $t\bar{t}W$, tWW, WZ backgrounds
- scale choice: $\mu = \sum m_{T,i}^W$ ambiguous in all channels, EW corrections largely scale independent: choose $\mu_R = \mu_F = 3 m_W$
- use NNPDF31_nlo_as_0118_luxqed for reliable γPDF
On-shell vs. off-shell triboson production

On-shell production

- only triple res. dgrms, threshold at 3 m_W
- strong interference between diagrams in which different numbers of gauge bosons couple to quark line
- some kinematic width effects recoverable through BW-shape improved spin-correlated decays
- NLO QCD+EW

Dittmaier, Huss, Knippen arXiv:1705.03722
On-shell vs. Off-shell production

Off-shell production

- triple, double and single res. diagrams, importance of single/double resonant topologies as in WW

 Biedermann et.al. arXiv:1605.03419

- includes on-shell WWW production, WZ production with $Z \to 2\ell 2\nu$, Wh production with $h \to WW^*/ZZ^*$

- thresholds given by acceptance cuts

- NLO QCD

 Campanario et.al. arXiv:0809.0790
On-shell vs. off-shell triboson production

$m_{ℓℓℓννν} = m_{WWW}$

- no unique W identification possible in off-shell calculation, even in MC truth, due to occurrence of SF pairs
- on-shell WWW not dominating for incl. xsec
- large cross section from Wh, WZ negligible
- at larger m_{WWW} contribs from double (single) resonant

\rightarrow cross checked with off-shell calculation projected on triple W resonant subset of diagrams
On-shell vs. Off-shell production

- on-shell approximation reasonable for $m_{\ell\ell\ell}$
- large single and double resonant contribs for MET
NLO EW corrections in off-shell trilepton production

- at LO: triple and quartic gauge boson self-interactions
- at NLO EW: appearance of octagons, closed fermion loops, Higgs self-interactions, Yukawa couplings, etc
- genuine NLO EW 2 → 6 calculation with 3 resonances
Triboson production

- off-shell $W^+W^+W^-$ production
- includes 0, 1, 2 SFOS processes (WWW and WZZ structures)
- EW correction (incl. γ-induced) important
- accidental cancellations of EW corr. in $q\bar{q}$ and $q\gamma/\bar{q}\gamma$ channels

Dittmaier, Huss, Knippen
arXiv:1705.03722

but highly obs. dependent
Triboson production – 0, 1, 2 SFOS decomposition

\[pp \rightarrow \ell_1^+ \ell_2^+ \ell_3^- \bar{\nu}_\ell \nu_\ell \nu_\ell @ 13\,\text{TeV} \]

\[
\begin{align*}
\frac{d\sigma}{dm} &= 10^{-2} \quad 10^{-3} \quad 10^{-4} \quad 10^{-5} \quad 10^{-6} \quad 10^{-7} \\
\delta_{\text{EW}} &= -0.1 \quad -0.2 \quad -0.3 \quad -0.4 \\
\frac{d\sigma}{d\sigma_{\text{NLO EW}}} &= 0.1 \quad 0.2 \quad 0.3 \quad 0.4
\end{align*}
\]

MS arXiv:1806.00307
Triboson production – 0, 1, 2 SFOS decomposition

\(pp \rightarrow \ell_1^- \ell_2^+ \ell_3^+ \bar{\ell}_1 \ell_2 \ell_3 @ 13 \text{TeV} \)

Full off-shell results

MS arXiv:1806.00307

\[\frac{d\sigma}{dm} \text{[fb/GeV]} \]

\[m(3\ell) \text{[GeV]} \]

\[\delta_{\text{EW}} \]

\[\delta_{q\bar{q}} \]

\[\delta q\gamma \]

\[50 \quad 100 \quad 200 \quad 500 \quad 1000 \quad 2000 \]

\[-0.3 \quad -0.2 \quad -0.1 \quad 0 \quad 0.1 \]

Marek Schönherr

Electroweak corrections for LHC physics
Triboson production – 0, 1, 2 SFOS decomposition

$pp \rightarrow \ell_1^- \ell_2^+ \ell_3^+ \bar{\nu}_\ell \nu_\ell \nu_\ell @ 13\text{ TeV}$

$e^-e^+e^+\bar{\nu}_e\nu_e\nu_e$ $e^-e^+\bar{\nu}_\mu\nu_\mu\nu_e + \bar{\nu}_\tau\nu_\tau\nu_e$

$pp \rightarrow \ell^-, \ell^+, \ell^+, \bar{\nu}_\ell \nu_\ell \nu_\ell \nu_\ell$

$d\sigma / d\sigma_{NLO EW}$

SHERPA+RECOLA

δ_{EW}

$\delta_{q\bar{q}}$

$\delta_{q\gamma}$

δ_{EW}

$\delta_{q\bar{q}}$

$\delta_{q\gamma}$

$d\sigma / d\sigma_{NLO EW}$

$SHERPA+RECOLA$

δ_{EW}

$\delta_{q\bar{q}}$

$\delta_{q\gamma}$

δ_{EW}

$\delta_{q\bar{q}}$

$\delta_{q\gamma}$

$m(3\ell) [\text{GeV}]$

$d\sigma / d\sigma_{NLO EW}$

$SHERPA+RECOLA$

δ_{EW}

$\delta_{q\bar{q}}$

$\delta_{q\gamma}$

δ_{EW}

$\delta_{q\bar{q}}$

$\delta_{q\gamma}$

$m(3\ell) [\text{GeV}]$

δ_{EW}

$\delta_{q\bar{q}}$

$\delta_{q\gamma}$

δ_{EW}

$\delta_{q\bar{q}}$

$\delta_{q\gamma}$

$m(3\ell) [\text{GeV}]$
Triboson production

- 1, 2 SFOS: req. $p_T > 50$ GeV to suppress WZ background
- substantial γ-induced contributions
- accidental cancellations
Triboson production

\[pp \rightarrow \ell_1^- \ell_2^- \ell_3^- \nu_1 \nu_2 \nu_3 \] at 13 TeV

\[\frac{d\sigma}{dp_T} [fb/GeV] \]

1st lepton

2nd lepton

3rd lepton

MS arXiv:1806.00307
Electroweak corrections for LHC physics

1. Next-to-leading order electroweak corrections
 Setup, subtleties and automation
 Selected results

2. Triboson production
 On-shell vs. Off-shell production
 Full off-shell results

3. Electroweak corrections in MCs
 Approximate inclusion in NLO QCD multijet merging
 Selected results

4. Conclusions
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPS@NLO)
- tailored to large-\(p_T\) regions where EW corrections dominated by virtual \(W/Z\) exchange and RG running
- modify MC@NLO \(\bar{B}\)-function to include NLO EW virtual corrections and integrated approx. real corrections

\[
\bar{B}_{n,QCD+EW_{virt}}(\Phi_n) = \bar{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n)
\]

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPS@NLO)
- tailored to large-p_T regions where EW corrections dominated by virtual W/Z exchange and RG running
- modify MC@NLO \bar{B}-function to include NLO EW virtual corrections and integrated approx. real corrections

\[\bar{B}_{n,QCD+EW_{virt}}(\Phi_n) = \bar{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n) \]

exact virtual contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- tailored to large-p_T regions where EW corrections dominated by virtual W/Z exchange and RG running
- modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections

$$B_{n,QCD+EW_{virt}}(\Phi_n) = B_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n)$$

- exact virtual contribution
- approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPS@NLO)
- tailored to large-p_T regions where EW corrections dominated by virtual W/Z exchange and RG running
- modify MC@NLO \overline{B}-function to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{B}_{n,QCD+EW_{\text{virt}}} (\Phi_n) = \overline{B}_{n,QCD} (\Phi_n) + V_{n,EW} (\Phi_n) + I_{n,EW} (\Phi_n) + B_{n,\text{mix}} (\Phi_n)$$

- optionally include subleading Born

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPs@NLO)
- tailored to large-\(p_T\) regions where EW corrections dominated by virtual \(W/Z\) exchange and RG running
- modify MC@NLO \(\mathcal{B}\)-function to include NLO EW virtual corrections and integrated approx. real corrections

 \[
 \mathcal{B}_{n,QCD+EW_{virt}}(\Phi_n) = \mathcal{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n)
 \]

 optionally include subleading Born

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
Results: $pp \rightarrow t\bar{t} + \text{jets}$

G"utschow, Lindert, MS in arXiv:1803.00950

- $pp \rightarrow t\bar{t} + 0, 1j@NLO$
 + $2, 3, 4j@LO$
- additional LO multiplicities inherit electroweak corrections through MENLOPs differential K-factor
 Höche, Krauss, MS, Siegert
 arXiv:1009.1127
- improved description of data
Conclusions

- Electroweak effects are important at LHC, HE–LHC, FCC, etc.
- Become large whenever the scale is large compared to the EW scale.
- Precise definition of physics objects needed
 ⇒ Differentiate short-distance parton and long-distance measurable object.
- Can be incorporated in multijet-merged particle-level calculations to improve description in those regions
 → Currently tailored to TeV-scale physics.
- Automation of NLO EW follows on the heels of NLO QCD
 → Much more care with consistent schemes and order counting
 → Very rich phenomenology
 → Can induce peaks, edges or kinks in distributions
 → Includes many more pitfalls than NLO QCD.
Thank you for your attention!
Backup
Top pair production in association with jets

Observation: NLO EW factorises from additional jet activity when rather inclusive on jet definition.
Top pair production in association with jets

Gütschow, Lindert, MS in arXiv:1803.00950

Observation: subleading orders important