Electroweak corrections for LHC physics

Marek Schönherr

Lund

01 Mar 2018
Introduction

Electroweak correction come in two variants: virtual corrections and real emission correction.

Virtual electroweak corrections often studied in the context of jet production at large transverse momentum (EW-Sudakov suppression). Usually negative and rising with p_\perp.

Real electroweak corrections usually constitute a separate process. However, largest BR of W/Z bosons is hadronic, thus (almost) indistinguishable in jet production. Nonetheless may constitute signal in itself.

When large scale differences occur resummation is needed in either case. Practically at LHC13/14 these scale differences are moderate.

Beware of subleading orders.
Outline

1. Next-to-leading order electroweak corrections
 - Setup and subtleties
 - Selected results

2. Electroweak corrections in MCs
 - Approximate inclusion in NLO QCD merging
 - Selected results

3. Real boson radiation
 - Resummation via EW parton showers
 - Case study: Finding W bosons inside jets

4. Conclusions
Electroweak corrections for LHC physics

1. Next-to-leading order electroweak corrections
 - Setup and subtleties
 - Selected results

2. Electroweak corrections in MCs
 - Approximate inclusion in NLO QCD merging
 - Selected results

3. Real boson radiation
 - Resummation via EW parton showers
 - Case study: Finding W bosons inside jets

4. Conclusions
Consistent setup: counting orders and defining signatures

- NLO QCD: $\alpha_s^1 = 1$ parton, only MEs from squared diagrams
- NLO EW: $\alpha^1 = 1$ photon or 1 parton, also MEs from interfering $O(\alpha_s^i\alpha_s^j\alpha^k)$ diagrams, resonances

Tree configuration:

- $pp \rightarrow W + 0 \text{ jets}$
- $pp \rightarrow W + 1 \text{ jet}$
- $pp \rightarrow W + 2 \text{ jets}$
- $pp \rightarrow W + 3 \text{ jets}$
Consistent setup: counting orders and defining signatures

- NLO QCD: $\alpha_s^1 = 1$ parton, only MEs from squared diagrams
- NLO EW: $\alpha^1 = 1$ photon or 1 parton
 also MEs from interfering $O(\alpha_s \alpha^2)$ diagrams, resonances
Consistent setup: counting orders and defining signatures

- NLO QCD: $\alpha_s^1 = 1$ parton, only MEs from squared diagrams
- NLO EW: $\alpha^1 = 1$ photon or 1 parton
 also MEs from interfering $O(g^n\alpha^\pm\alpha^\mp)$ diagrams, resonances
Consistent setup: counting orders and defining signatures

- NLO QCD: $\alpha_s^1 = 1$ parton, only MEs from squared diagrams
- NLO EW: $\alpha^1 = 1$ photon or 1 parton
 also MEs from interfering $O(g^n e^{-\epsilon^m})$ diagrams, resonances
Consistent setup: counting orders and defining signatures

- NLO QCD: $\alpha_s^1 = 1$ parton, only MEs from squared diagrams
- NLO EW: $\alpha^1 = 1$ photon or 1 parton
 also MEs from interfering $O(g_s^{n \pm 1} e^{m \mp 1})$ diagrams, resonances
Consistent setup: counting orders and defining signatures

- NLO QCD: $\alpha_s^1 = 1$ parton, only MEs from squared diagrams
- NLO EW: $\alpha_s^1 = 1$ photon or 1 parton
 also MEs from interfering $\mathcal{O}(g_s^{n\pm1} e^{m\mp1})$ diagrams

Tree configuration:
- $pp \rightarrow W + 0$ jets
- $pp \rightarrow W + 1$ jet
- $pp \rightarrow W + 2$ jets
- $pp \rightarrow W + 3$ jets
Consistent setup: counting orders and defining signatures

- NLO QCD: $\alpha_s^1 = 1$ parton, only MEs from squared diagrams
- NLO EW: $\alpha^1 = 1$ photon or 1 parton
 also MEs from interfering $O(g_s^{n \pm 1} e^{m \mp 1})$ diagrams, resonances
Consistent setup: counting orders and defining signatures

\[
\alpha^n \cdot \alpha^m \cdot \alpha^0 \cdot \alpha^1 \cdot \alpha^2 \cdot \alpha^3 \cdot \alpha^4
\]

- NLO QCD: $\alpha_s^1 = 1$ parton, only MEs from squared diagrams
- NLO EW: $\alpha^1 = 1$ photon or 1 parton
 also MEs from interfering $O(g_s^{n\pm1} e^{m\mp1})$ diagrams, resonances

\[pp \to W + 0 \text{ jets}\]
\[pp \to W + 1 \text{ jet}\]
\[pp \to W + 2 \text{ jets}\]
\[pp \to W + 3 \text{ jets}\]
External photons

- **jet definition**: completely democratic vs. anti-tagging jets with too large photon content

- **democratic**:
 + straight forward, close to experiment for many procs
 - more subtractions (Born configs with FS photons)

- **anti-tagging jets with too large photon content**: dress quarks for collinear safety,
 discard jets if $E_\gamma > z_{\text{thr}} E_{\text{jet}}$ (e.g. $z_{\text{thr}} = 0.5$)
 + fewer contributions
 - difference to experimental jet definition (usually subpercent)
NLO EW subtraction in SHERPA

- adapt QCD subtraction (spl. fns. and colour-/spin-correlated MEs)

- replacements: $\alpha_s \rightarrow \alpha$, $C_F \rightarrow Q_f^2$, $C_A \rightarrow 0$, $T_R \rightarrow N_{c,f} Q_f^2$, $n_f T_R \rightarrow \sum_f N_{c,f} Q_f^2$,
NLO EW subtraction in SHERPA

- adapt QCD subtraction (spl. fns. and colour-/spin-correlated MEs)

- replacements: $\alpha_s \rightarrow \alpha$, $C_F \rightarrow Q_f^2$, $C_A \rightarrow 0$, $T_R \rightarrow N_{c,f} Q_f^2$, $n_f T_R \rightarrow \sum_f N_{c,f} Q_f^2$,

\[
\frac{T_{ij} \cdot T_k}{T_{ij}^2} \rightarrow \frac{Q_{ij} Q_k}{Q_{ij}^2}
\]

\[\sigma_{\text{RIS}} \text{ in dependence on } \alpha\text{-parameter} \]

\[\sigma_{\text{RIS}}(\alpha)/\sigma_{\text{Born}} \%\]

-Ms arXiv:1712.07975

\[\nu_e \bar{\nu}_e \rightarrow t \bar{t} @ \sqrt{s} = 2 \text{ TeV} \]

\[pp \rightarrow t \bar{t} @ \sqrt{s} = 13 \text{ TeV}, \text{ no } \gamma \text{PDF} \]
NLO EW subtraction in SHERPA

- adapt QCD subtraction (spl. fns. and colour-/spin-correlated MEs)

- replacements:
 \[\alpha_s \rightarrow \alpha, \quad C_F \rightarrow Q_f^2, \quad C_A \rightarrow 0, \]
 \[T_R \rightarrow N_{c,f} Q_f^2, \quad n_f T_R \rightarrow \sum_f N_{c,f} Q_f^2, \]
 \[\frac{T_{ij} \cdot T_k}{T_{ij}^2} \rightarrow \frac{Q_{ij} Q_k}{Q_{ij}^2}, \]

\[\sigma_{\text{RGS}}(\alpha)/\sigma_{\text{Born}} \% \]

- \(\nu_e \bar{\nu}_e \to W^+ W^- @ \sqrt{s} = 2 \text{ TeV} \)
 - Subtraction as massive Quark
 - Subtraction as massive Scalar

\[\sigma_{\text{RGS}}(\alpha)/\sigma_{\text{Born}} \% \]

- \(pp \to W^+ W^- @ \sqrt{s} = 13 \text{ TeV}, \text{ no } \gamma\text{PDF} \)
 - Subtraction as massive Quark
 - Subtraction as massive Scalar

\[\sigma_{\text{RGS}}(\alpha)/\sigma_{\text{Born}} \% \]
NLO EW calculations

- **SHERPA+OPENLOOPS:**
 - \(pp \rightarrow V + 0, 1, 2(, 3) \) jets
 - EW report arXiv:1606.02330
 - LH’15 arXiv:1605.04692
 - Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2015)012, JHEP04(2016)021
 - \(pp \rightarrow \gamma j \) ratio
 - LH’15 arXiv:1605.04692
 - Kallweit, Lindert, Maierhöfer, Pozzorini, MS arXiv:1505.05704
 - \(pp \rightarrow \gamma/\ell\ell/\ell\nu/\nu\nu + j \)
 - \(pp \rightarrow Vh \)
 - \(pp \rightarrow 2\ell2\nu \)
 - \(pp \rightarrow t\bar{t}/t\bar{t}j \)
 - \(pp \rightarrow t\bar{t}h \)

- **SHERPA+GOSAM**
 - \(pp \rightarrow \gamma\gamma + 0, 1, 2 \) jets
 - Chiesa et.al. arXiv:1706.09022
 - \(pp \rightarrow \gamma\gamma/\gamma\gamma\ell\nu/\gamma\gamma\ell\ell \)
 - \(pp \rightarrow \gamma\gamma bb \)

- **SHERPA+RECOLA**
 - \(pp \rightarrow V + 0, 1, 2 \) j, \(pp \rightarrow 4\ell \), \(pp \rightarrow t\bar{t}h \)
 - Biedermann et.al. arXiv:1704.05783
Tools and setup

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2015)012, JHEP04(2016)021

- **OPENLOOPS** for virtual corrections using **COLLIER** for tensor integrals
- **SHERPA** for Born, real em., subtraction and phase space integration, **MUNICH** (MEs from OPENLOOPS) for subtraction and p. s. int.
- combine QCD and EW corrections as:
 \[\sigma_{\text{NLO QCD+EW}} = \sigma_{\text{LO}} (1 + \delta_{\text{QCD}} + \delta_{\text{EW}}) \]
 \[\sigma_{\text{NLO QCD\times EW}} = \sigma_{\text{LO}} (1 + \delta_{\text{QCD}}) (1 + \delta_{\text{EW}}) \]
 \[\Rightarrow \text{use difference as indication of potential size of } \mathcal{O}(\alpha_s \alpha) \text{ corrs.} \]
- dress quarks and leptons in $\Delta R = 0.1$,
 if γ in jet, $E_\gamma < \frac{1}{2} E_{\text{jet}}$, discard jet otherwise
Next-to-leading order electroweak corrections

Electroweak corrections in MCs

Real boson radiation

Conclusions

Selected results

\[pp \rightarrow Wjj \ @ 13 \text{ TeV} \]

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

\[d\sigma/dp_{T,W} / [\text{pb/GeV}] \]

\[pp \rightarrow e^-\bar{\nu}_e + 2j @ 13 \text{ TeV} \]

\[d\sigma/dp_{T,j1} / [\text{pb/GeV}] \]

\[d\sigma/dp_{T,j2} / [\text{pb/GeV}] \]
Selected results

\[\text{pp} \to Zjj \, @ \, 13 \, \text{TeV} \]

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021
Selected results

\[pp \rightarrow Zjj \oplus 13 \text{ TeV} \]

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

→ EW corrections independent of the decay mode
Next-to-leading order electroweak corrections
Electroweak corrections in MCs
Real boson radiation
Conclusions

Selected results

Z/γ ratio @ 8 TeV

Kallweit, Lindert, Maierhöfer, Pozzorini, MS arXiv:1505.05704

→ EW corrections different for Z and γ
Z/γ ratio @ 8 TeV

Kallweit, Lindert, Pozzorini, MS for LH’15

- use this ratio to get handle on p_T^{Z} in $Z \rightarrow \nu \bar{\nu}$ for NP searches
- test how well data is described in $Z \rightarrow \ell \ell$
 ⇒ NLO EW improves data description
Z/γ ratio @ 8 TeV

Kallweit, Lindert, Pozzorini, MS for LH’15

- use this ratio to get handle on p_T^Z in $Z \to \nu \bar{\nu}$ for NP searches
- test how well data is described in $Z \to \ell \ell$

⇒ NLO EW improves data description
Diboson production – DF and SF

Combination of QCD and EW correction

- additive – strict fixed order expansion

\[d\sigma_{\text{QCD+EW}}^{\text{NLO}} = d\sigma_{\text{LO}} (1 + \delta_{\text{QCD}} + \delta_{\text{EW}}) \]

- multiplicative – contains terms of \(\mathcal{O}(\alpha_s\alpha) \)

\[d\sigma_{\text{QCD}\times\text{EW}}^{\text{NLO}} = d\sigma_{\text{LO}} (1 + \delta_{\text{QCD}}) (1 + \delta_{\text{EW}}) \]

NLO EW for photon initiated processes

- resolved final state photons should be renormalised on-shell (\(\alpha(0) \))
 \(\rightarrow \) absorbs IR divergences from \(\gamma \rightarrow f \bar{f} \) splittings not included

- initial state (and unresolved final state) photons should be renormalised at the hard scale (\(\alpha(m_Z), G_\mu, \overline{\text{MS}}, \text{etc.} \))
 \(\rightarrow \) match IR divergences in PDF evolution and collinear counter term

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598
Diboson production – DF

$\text{pp} \rightarrow e^+ \mu^- \nu_e \bar{\nu}_\mu$

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

- absolute prediction
- relative correction wrt. LO
- NLO QCD (w/ moderate jet veto)
- LO
- NLO QCD+EW
- NLO QCD \times EW
- NLO EW

- large pos. NLO QCD, large neg. NLO EW
 \rightarrow NLO QCD+EW and NLO QCD \times EW differ significantly
Diboson production – DF

relative importance of γ-induced channels wrt. NLO QCD \times EW

- CT14qed (baseline) no γPDF
- LUXqed

- all γPDF agree that γ-ind. > 10% for $p_T > 500$ GeV
- very good agreement between CT14qed and LUXqed
Diboson production – DF

\[\text{pp} \to e^+ \mu^- \nu_e \bar{\nu}_\mu \]

- ZZ dominant at very large \(p_T \)
 \(\rightarrow \) different EW corrections, take care when extrapolating

Marek Schönherr

Electroweak corrections for LHC physics

18/37
Diboson production – SF

\[pp \to e^+ e^- \nu \bar{\nu} \]

- **ZZ** dominant at very large \(p_T \)
 - \(\to \) different EW corrections, take care when extrapolating

\[pp \to W^+ [\to e^+ \nu] W^- [\to e^- \bar{\nu}] \]
\[pp \to Z/\gamma [\to e^+ e^-] Z [\to \nu \bar{\nu}] \]
\[\text{incoherent sum} \]

\[d\sigma/dp_T,\ell^2 \ [\text{GeV}] \]
\[d\sigma/d\sigma_{NLO} \times \text{EW} \]

\[LHC \ 13 \ TeV \]
\[\mu_R = \mu_F = \frac{1}{2} \mu_F^{lep} \]
\[\text{CT14 QED}_{0.05\%} \]
Diboson production – DF

\[pp \rightarrow e^+ \mu^- \nu_e \bar{\nu}_\mu \]

- kinematic suppression for \(p_T^{\nu\nu} \) at LO, unlocked at NLO QCD
- not present in \(\gamma \)-induced \(\Rightarrow \) large contrib
Diboson production – SF

\[pp \rightarrow e^+ e^- \nu \bar{\nu} \]

- kinematic suppression for \(p_T^{\nu\nu} \) for \(WW \), but not \(ZZ \)
- \(ZZ \) dominates for \(\text{MET} > 100 \text{ GeV} \) with large EW corr.

Marek Schönherr

Electroweak corrections for LHC physics

21/37
Top pair production in association with jets

Gütschow, Lindert, MS in prep.

- $pp \to t\bar{t}$
 NNLO QCD + NLO EW
 Czakon et.al. arXiv:1705.04105
 - include NLO corrections to subleading orders
- $pp \to t\bar{t}j$
 NLO QCD + NLO EW
 - include NLO corrections to subleading orders
Top pair production in association with jets

Gütschow, Lindert, MS in prep.

NLO EW factorises from additional jet activity
Top pair production in association with jets

Gütschow, Lindert, MS in prep.

subleading orders important
Electroweak corrections for LHC physics

1. Next-to-leading order electroweak corrections
 - Setup and subtleties
 - Selected results

2. Electroweak corrections in MCs
 - Approximate inclusion in NLO QCD merging
 - Selected results

3. Real boson radiation
 - Resummation via EW parton showers
 - Case study: Finding W bosons inside jets

4. Conclusions
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO \overline{B}-function to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{B}_{n,QCD+EW_{virt}}(\Phi_n) = \overline{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n)$$

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging → validated at fixed order, found to be reliable, diff. $\lesssim 5\%$ for observables not driven by real radiation
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO \bar{B}-function to include NLO EW virtual corrections and integrated approx. real corrections

$$\bar{B}_{n,\text{QCD+EW}}(\Phi_n) = \bar{B}_{n,\text{QCD}}(\Phi_n) + V_{n,\text{EW}}(\Phi_n) + I_{n,\text{EW}}(\Phi_n) + B_{n,\text{mix}}(\Phi_n)$$

exact virtual contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable, diff. $\lesssim 5\%$ for observables not driven by real radiation
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPS@NLO)
- modify Mc@NLO \Bar{B}-function to include NLO EW virtual corrections and integrated approx. real corrections

\[
\Bar{B}_{n,\text{QCD+EW}_{\text{virt}}} (\Phi_n) = \Bar{B}_{n,\text{QCD}} (\Phi_n) + V_{n,\text{EW}} (\Phi_n) + I_{n,\text{EW}} (\Phi_n) + \Bar{B}_{n,\text{mix}} (\Phi_n)
\]

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging → validated at fixed order, found to be reliable, diff. $\lesssim 5\%$ for observables not driven by real radiation
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO \overline{B}-function to include NLO EW virtual corrections and integrated approx. real corrections

 \[
 \overline{B}_{n,\text{QCD+EW virt}}(\Phi_n) = \overline{B}_{n,\text{QCD}}(\Phi_n) + V_{n,\text{EW}}(\Phi_n) + I_{n,\text{EW}}(\Phi_n) + B_{n,\text{mix}}(\Phi_n)
 \]

 optionally include subleading Born

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable, diff. $\lesssim 5\%$ for observables not driven by real radiation
Electroweak corrections in particle-level event generation

- incorporate approximate electroweak corrections in SHERPA’s NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO \bar{B}-function to include NLO EW virtual corrections and integrated approx. real corrections
 \[\bar{B}_{n,QCD+EW_{virt}}(\Phi_n) = \bar{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n) \]
 - optionally include subleading Born
 - exact virtual contribution
 - approximate integrated real contribution
- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 \[\rightarrow \text{validated at fixed order, found to be reliable, diff. } \lesssim 5\% \text{ for observables not driven by real radiation} \]
Results: \(pp \rightarrow \ell^- \bar{\nu} + \text{jets} \)

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

⇒ particle level events including dominant EW corrections
Results: $pp \rightarrow t\bar{t} + \text{jets}$

Gütschow, Lindert, MS in prep.

- $pp \rightarrow t\bar{t} + 0, 1j@\text{NLO}$
 $+ 2, 3, 4j@\text{LO}$

- additional LO multiplicities inherit electroweak corrections through MENLOPS differential K-factor
 Höche, Krauss, MS, Siegert
 \text{arXiv:1009.1127}

- improved description of data
Electroweak corrections for LHC physics

1. Next-to-leading order electroweak corrections
 Setup and subtleties
 Selected results

2. Electroweak corrections in MCs
 Approximate inclusion in NLO QCD merging
 Selected results

3. Real boson radiation
 Resummation via EW parton showers
 Case study: Finding W bosons inside jets

4. Conclusions
Collinear limit with $E \gg m$

- QED parton showers well known and available in every major shower
- approximation to collinear (vector) boson emission in limit $E \gg m$, in dipole language (splitter-spectator pairs): $f(s) \rightarrow f'(t)V(s)$

$$d\sigma_{n+V} = d\sigma_n \sum_f \sum_s n_{\text{spec}} dt\, dz\, d\phi\, \frac{1}{n_{\text{spec}}} \, J(t, z) \, K_{f(s)\rightarrow f'(t)V(s)}(t, z)$$

- emitter fermion f, suitable spectator s
- flavour change $f \rightarrow f'$ in case of W emissions
- IS kernels contain ratio of PDFs (change in $x, Q, \text{flavour}$)
- similar ansatz with diff. kernels in Christiansen, Sjöstrand JHEP04(2014)115
- new developments Chen, Han, Tweedie arXiv:1611.00788 Bauer, Ferland, Webber JHEP08(2017)036
Splitting kernels

- use Denner-Hebenstreit expressions modified into CDST form

\[\mathcal{K}_{f(s)\rightarrow f'W(s)}(t, z) = \frac{\alpha}{2\pi t} \left[f_W c^W_{\perp} \tilde{V}_{f(s)\rightarrow f'W(s)}(t, z) + f_h c^W_{L} \frac{1}{2} (1 - z) \right] \]

\[\mathcal{K}_{f(s)\rightarrow fZ(s)}(t, z) = \frac{\alpha}{2\pi t} \left[f_Z c^Z_{\perp} \tilde{V}_{f(s)\rightarrow fZ(s)}(t, z) + f_h c^Z_{L} \frac{1}{2} (1 - z) \right] \]

with

\[c^W_{\perp} = s_{\text{eff}} \frac{1}{2s^2_W} |V_{ff'}|^2, \quad c^Z_{\perp} = s_{\text{eff}} s^2_W Q_f^2 + (1 - s_{\text{eff}}) \frac{(l_f^3 - s^2_W Q_f^2)}{s^2_W c^2_W}, \]

\[c^W_{L} = \frac{1}{2s^2_W} |V_{ff'}|^2 \left[s_{\text{eff}} \frac{m^2_{f'}}{m^2_W} + (1 - s_{\text{eff}}) \frac{m^2_f}{m^2_W} \right], \quad c^Z_{L} = \frac{l^3_f}{s^2_W} \frac{m^2_{f'}}{m^2_W}, \]

- couplings \(ff'V \) depend on spin of \(f \), but standard parton showers are spin averaged (no spin information)
- process dependent average spin of fermion line \(s_{\text{eff}} \)
 \(\Rightarrow pp \rightarrow jj: s_{\text{eff}} = \frac{1}{2}, pp \rightarrow W: s_{\text{eff}} = 1, \) undefined in general
- factors \(f_W, f_Z, f_h \) modify couplings to test sensitivity
Can we see radiated W bosons inside jets at the LHC (14 TeV)?

- need high-p_{\perp} jets to produce real W bosons at sufficient rate
- need high-p_{\perp} jets to satisfy assumption $E \gg m$

Boosted analysis:

- isolated leptons ($p_{\perp} > 25$ GeV, $|\eta| < 2.5$, max. 10% in $\Delta R = 0.2$)
- find jets (anti-k_{\perp}, $R = 1.5$, $p_{\perp} > 200$ GeV) on remainder
- two cases: no isolated leptons \Rightarrow hadronic analysis

 one isolated lepton \Rightarrow leptonic analysis
- require further two jets with $p_{\perp} > 500, 750, 1000$ GeV to drive W radiation into collinear region
Case study: Finding W bosons inside jets

Hadronic analysis

- recluster fat jets into C/A ($R = 0.3, \ p_\perp > 20 \ \text{GeV}$) microjets
- discard leading microjet as likely from leading quark
- use m_{23} as em. gluons tend to be softer than decay prod. of em. W
- accept candidate if $m_{23} \in [70, 86] \ \text{GeV}$

\Rightarrow large, but continuous QCD background, clear signal shape
\Rightarrow more W emissions with hight p_\perp, but peak shifts
Hadronic analysis

- recluster fat jets into C/A ($R = 0.3$, $p_\perp > 20$ GeV) microjets
- discard leading microjet as likely from leading quark
- use m_{23} as em. gluons tend to be softer then decay prod. of em. W
- accept candidate if $m_{23} \in [70, 86]$ GeV
 ⇒ large, but continuous QCD background, clear signal shape
 ⇒ more W emissions with hight p_\perp, but peak shifts
Hadronic analysis

- recluster fat jets into C/A ($R = 0.3$, $p_\perp > 20$ GeV) microjets
- discard leading microjet as likely from leading quark
- use m_{23} as em. gluons tend to be softer then decay prod. of em. W
- accept candidate if $m_{23} \in [70, 86]$ GeV

⇒ large, but continuous QCD background, clear signal shape
⇒ more W emissions with hight p_\perp, but peak shifts
NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_T^{j_1} > 500$ GeV, central μ and jet

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak
- large $pp \to Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1j, no $p_T^{j_2} > 100$ GeV
- describe $pp \to Wjj$ @ NLO, $p_T^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat
- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos.
- \to possible double counting with BG
- merge using exclusive sums
NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from
Krauss, Petrov, MS, Spannowsk PRD89(2014)114006

LHC@8 TeV, $p_T^{j_1} > 500$ GeV, central μ and jet

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak
 large $pp \to Wjj$ component opening PS

- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1j, no $p_T^{j_2} > 100$ GeV
- describe $pp \to Wjj @ NLO$, $p_T^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat
- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos.
 \to possible double counting with BG
- merge using exclusive sums
Case study: Finding W bosons inside jets

NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_T^{j_1} > 500$ GeV, central μ and jet

- LO $pp \rightarrow Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
 - subleading Born (γPDF) imp. at large ΔR
 - restrict to exactly 1j, no $p_T^{j_2} > 100$ GeV
 - describe $pp \rightarrow Wjj$ @ NLO, $p_T^{j_2} > 100$ GeV
 - pos. NLO QCD, neg. NLO EW, \sim flat
 - subleading Born contribs positive
 - sub2leading Born (diboson etc) contrbs pos.
 - \rightarrow possible double counting with BG
 - merge using exclusive sums
NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_{T}^{j_1} > 500$ GeV, central μ and jet

- LO $pp \to Wj$ with $\Delta\phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak
 large $pp \to Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR

- restrict to exactly 1j, no $p_{T}^{j_2} > 100$ GeV
- describe $pp \to Wjj @$ NLO, $p_{T}^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat
- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos.
 \rightarrow possible double counting with BG
- merge using exclusive sums
Case study: Finding W bosons inside jets

NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_T^{j_1} > 500$ GeV, central μ and jet

- LO $pp \rightarrow Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1j, no $p_T^{j_2} > 100$ GeV
- describe $pp \rightarrow Wjj @ NLO$, $p_T^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat
- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos. \rightarrow possible double counting with BG
- merge using exclusive sums
NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_{\perp}^{j_1} > 500$ GeV, central μ and jet

- LO $pp \rightarrow Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1 j, no $p_{\perp}^{j_2} > 100$ GeV
- describe $pp \rightarrow Wjj$ @ NLO, $p_{\perp}^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat
- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos. \rightarrow possible double counting with BG
- merge using exclusive sums
NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_{j_1}^\perp > 500$ GeV, central μ and jet

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak
- large $pp \to Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1j, no $p_{j_2}^\perp > 100$ GeV
- describe $pp \to Wjj \, @ \, $ NLO, $p_{j_2}^\perp > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat

- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos.
- \to possible double counting with BG
- merge using exclusive sums
Next-to-leading order electroweak corrections

Electroweak corrections in MCs

Real boson radiation

Conclusions

Case study: Finding W bosons inside jets

NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_{T}^{j_1} > 500$ GeV, central μ and jet

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \to Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1j, no $p_{T}^{j_2} > 100$ GeV
- describe $pp \to Wjj$ @ NLO, $p_{T}^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat

- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos.
- \to possible double counting with BG
- merge using exclusive sums
NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_{j_1}^\perp > 500$ GeV, central μ and jet

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \to Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1 jet, no $p_{j_2}^\perp > 100$ GeV
- describe $pp \to Wjj @ NLO, p_{\perp}^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat
- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos. \to possible double counting with BG
- merge using exclusive sums
Case study: Finding W bosons inside jets

NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_T^{j_1} > 500$ GeV, central μ and jet

- LO $pp \rightarrow Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak
- large $pp \rightarrow Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1 jet, no $p_T^{j_2} > 100$ GeV
- describe $pp \rightarrow Wjj$ @ NLO, $p_T^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat
- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos.
- \rightarrow possible double counting with BG

$$\Delta R(\mu, j_1)$$

Angular separation of leading jet and muon

<table>
<thead>
<tr>
<th>LO</th>
<th>NLO QCD</th>
<th>NLO QCD+EW</th>
<th>NLO QCD+EW+subLO</th>
<th>NLO QCD+EW+subLO+subLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ratio wrt. NLO QCD

- 0.5
- 1
- 1.5

$p_{T}^{j_1,2}$
NLO EW predictions for $\Delta R(\mu, j_1)$

Measure coll. W emissions, simplified from Krauss, Petrov, MS, Spannowsky PRD89(2014)114006

LHC@8TeV, $p_T^{j_1} > 500$ GeV, central μ and jet

- LO $pp \rightarrow Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak
- large $pp \rightarrow Wjj$ component opening PS
- subleading Born (γPDF) imp. at large ΔR
- restrict to exactly 1j, no $p_T^{j_2} > 100$ GeV
- describe $pp \rightarrow Wjj @ NLO$, $p_T^{j_2} > 100$ GeV
- pos. NLO QCD, neg. NLO EW, \sim flat
- subleading Born contribs positive
- sub2leading Born (diboson etc) conts. pos.
- \rightarrow possible double counting with BG
- merge using exclusive sums
Case study: Finding W bosons inside jets

NLO EW predictions for $\Delta R(\mu, j_1)$

Data comparison
M. Wu ICHEP’16, ATLAS arXiv:1609.07045
- **ALPGEN+PYTHIA**

 $pp \rightarrow W + \text{jets MLM merged}$
 Mangano et.al. JHEP07(2003)001

- **PYTHIA 8**

 $pp \rightarrow Wj + \text{QCD shower}$

 $pp \rightarrow jj + \text{QCD+EW shower}$
 Christiansen, Prestel EPJC76(2016)39

- **SHERPA+OPENLOOPS**

 NLO QCD+EW+subLO

 $pp \rightarrow Wj / Wjj$ excl. sum
 Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

- **NNLO QCD**

 $pp \rightarrow Wj$
 Boughezal, Liu, Petriello arXiv:1602.06965
Case study: Finding W bosons inside jets

NLO EW predictions for $\Delta R(\mu, j_1)$

Data comparison

M. Wu ICHEP’16, ATLAS arXiv:1609.07045

- **ALPGEN+PYTHIA**

 $pp \rightarrow W + \text{jets}$ MLM merged

 Mangano et.al. JHEP07(2003)001

- **PYTHIA 8**

 $pp \rightarrow Wj + \text{QCD shower}$

 Christiansen, Prestel EPJC76(2016)39

- **SHERPA+OPENLOOPS**

 NLO QCD+EW+subLO

 $pp \rightarrow Wj/Wjj$ excl. sum

 Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

- **NNLO QCD**

 $pp \rightarrow Wj$

 Boughezal, Liu, Petriello arXiv:1602.06965
NLO EW predictions for $\Delta R(\mu, j_1)$

Data comparison

M. Wu ICHEP’16, ATLAS arXiv:1609.07045
 - ALPGEN+PYTHIA
 $pp \to W + $ jets MLM merged
 Mangano et.al. JHEP07(2003)001
 - PYTHIA 8
 $pp \to Wj + QCD$ shower
 Christiansen, Prestel EPJC76(2016)39
 - SHERPA+OPENLOOPS
 NLO QCD+EW+subLO
 $pp \to Wj/Wjj$ excl. sum
 Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021
 - NNLO QCD
 Boughezal, Liu, Petriello arXiv:1602.06965
Conclusions

- Electroweak effects are important at LHC, HE–LHC, FCC, etc.
- Become large whenever the scale is large compared to the EW scale
- Can be incorporated in multijet merging to improve description in those regions
 ⇒ included since SHERPA-2.2.1 (now SHERPA-2.2.4)
- Automation of NLO EW follows on the heels of NLO QCD
 → much more care with consistent schemes and order counting
 → very rich phenomenology
 → includes many more pitfalls than NLO QCD
 ⇒ included in next major SHERPA release
- EW parton showers suffer from strong spin dependence of W/Z emission as parton showers are usually do not have spin information
 ⇒ not included in SHERPA public release
Thank you for your attention!
Backup
Next-to-leading order electroweak corrections

Electroweak corrections in MCs

Real boson radiation

Conclusions

\[pp \rightarrow Wj \ @ 13 \text{ TeV} \]

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

- NLO QCD to \(p_T^j \) dominated by hard dijet topologies
 \(\rightarrow \) LO, no EW corr.
 Rubin, Salam, Sapeta
 JHEP09(2010)084

- need merging

- remove dijet configs through \(\Delta \phi_{j_1 j_2} < \frac{3}{4} \pi \)
 \(\rightarrow \) EW Sudakov recovered
pp → Wj @ 13 TeV

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

- NLO QCD to $p_T^{j_1}$ dominated by hard dijet topologies
 → LO, no EW corr.
 Rubin, Salam, Sapeta
 JHEP09(2010)084

- need merging

- remove dijet configs through $\Delta \phi_{j_1 j_2} < \frac{3}{4} \pi$
 → EW Sudakov recovered
Example: Forward-backward asymmetry @ Tevatron

Höche, Huang, Luisoni, MS, Winter Phys.Rev.D88(2013)1,014040

Chose two different $\mu_\text{core} \rightarrow$ largest impact
Electroweak histories not an issue, but merging works nicely
Recent NNLO+NNLL results:
Forward-backward asymmetry @ Tevatron

Czakon, Fiedler, Mitov arXiv:1411.3007

MEPS@NLO result very well reproduced by higher order calculation
Merging systematics: \(pp \to \ell^- \bar{\nu} + \text{jets} \)

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

\[\text{pp} \to \ell^- \bar{\nu} + 0,1,2 \text{j} \oplus 13 \text{TeV} \]

\[\text{MEPS@LO} \]

⇒ dead zones in incl. obs. if \(Q_{\text{cut}} \) too high
Merging systematics: \(pp \rightarrow \ell^- \bar{\nu} + \text{jets} \)

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

\[
\frac{d\sigma}{d\vec{d}_{12}} [\text{pb/GeV}] \\
\text{SHERPA+OPENLOOPS} \\
\text{Q}_{\text{cut}} = 10 \text{ GeV} \\
\text{Q}_{\text{cut}} = 15 \text{ GeV} \\
\text{Q}_{\text{cut}} = 20 \text{ GeV} \\
\text{Q}_{\text{cut}} = 30 \text{ GeV} \\
\text{Q}_{\text{cut}} = 40 \text{ GeV} \\
\text{Q}_{\text{cut}} = 60 \text{ GeV} \\
\text{Q}_{\text{cut}} = 100 \text{ GeV} \\
\text{Q}_{\text{cut}} = 200 \text{ GeV} \\
\]

\[p_{T}^{W} > 1 \text{ TeV} \]

\[p_{T}^{j} > 1 \text{ TeV} \]

\[
\Rightarrow \text{dead zones in incl. obs. if } Q_{\text{cut}} \text{ too high}
\]
Merging systematics: \(pp \rightarrow \ell^- \bar{\nu} + \text{jets} \)

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

⇒ dead zones in incl. obs. if \(Q_{\text{cut}} \) too high
Merging systematics: \(pp \rightarrow \ell^- \bar{\nu} + \text{jets} \)

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

\[\Rightarrow \text{dead zones in incl. obs. if } Q_{\text{cut}} \text{ too high} \]
Merging systematics: $pp \rightarrow \ell^- \bar{\nu} + \text{jets}$

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2016)021

$pp \rightarrow \ell^- \bar{\nu} + 0,1,2 \text{j} @ 13 \text{TeV}$

- **MEPS@NLO QCD**
 - $d\sigma^{\text{NLO}}(Q_{\text{cut}})/d\sigma^{\text{NLO}}(20 \text{ GeV})$
 - $Q_{\text{cut}} = 10 \text{ GeV}$
 - $Q_{\text{cut}} = 15 \text{ GeV}$
 - $Q_{\text{cut}} = 20 \text{ GeV}$
 - $Q_{\text{cut}} = 30 \text{ GeV}$
 - $Q_{\text{cut}} = 40 \text{ GeV}$

- **MEPS@LO**
 - $Q_{\text{cut}} = 60 \text{ GeV}$
 - $Q_{\text{cut}} = 100 \text{ GeV}$
 - $Q_{\text{cut}} = 200 \text{ GeV}$

\Rightarrow TeV region stable ($\lesssim 5\%$), $Q_{\text{cut}} = 20 \text{ GeV}$ suitable for whole range
QCD multijet merging – LO case

Parton showers
resummation of (soft-)collinear limit
→ intrajet evolution

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPS combines multiple LOPs – keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
QCD multijet merging – LO case

- **Matrix elements**
 - fixed-order in α_s
 - \(\rightarrow\) hard wide-angle emissions
 - \(\rightarrow\) interference terms

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space

- MEPS combines multiple LO PS – keeping either accuracy
- NLOPS elevate LO PS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LO PS
QCD multijet merging – LO case

- Matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space.
- MEPS combines multiple LOps – keeping either accuracy.
- NLOps elevate LOps to NLO accuracy.
- MENLOps supplements core NLOps with higher multiplicities LOps.

MEPS (CKKW, MLM)

Catani, Krauss, Kuhn, Webber JHEP11(2001)063
Lönnblad JHEP05(2002)046
Höche, Krauss, Schumann, Siegert JHEP05(2009)053

- MEPS combines multiple LOps – keeping either accuracy.
QCD multijet merging – NLO case

- Matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPS combines multiple LOPs – keeping either accuracy
- NLOPS elevate LOPs to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPs
QCD multijet merging – NLO case

- Matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space.
- MEPS combines multiple LOPS – keeping either accuracy.
- NLOPS elevate LOPS to NLO accuracy.
- MENLOPS supplements core NLOPS with higher multiplicities LOPS.

Hamilton, Nason JHEP06(2010)039
Höche, Krauss, MS, Siegert JHEP08(2011)123
Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144
QCD multijet merging – NLO case

- Matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space.
- MEPS combines multiple LOPS – keeping either accuracy.
- NLOPS elevate LOPS to NLO accuracy.
- MENLOPS supplements core NLOPS with higher multiplicities LOPS.
- MEPS@NLO combines multiple NLOPS – keeping either accuracy.

Lavesson, Lönnblad JHEP12(2008)070
Höche, Krauss, MS, Siegert JHEP04(2013)027
Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144
Lönnblad, Prestel JHEP03(2013)166
Plätzer JHEP08(2013)114
QCD multijet merging – NLO case

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPS combines multiple LOPS – keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NLO combines multiple NLOPS – keeping either accuracy

Lavesson, Lönnblad JHEP12(2008)070
Höche, Krauss, MS, Siegert JHEP04(2013)027
Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144
Lönnblad, Prestel JHEP03(2013)166
Plätzer JHEP08(2013)114
M@NLO

Transverse momentum of the Higgs boson

\[\frac{d\sigma}{dp_{\perp}} \text{ [pb/GeV]} \]

- *first emission by N@LOs*, restrict to \(Q_1 < Q_{\text{cut}} \)
- *N@LOs* \(pp \rightarrow h \text{ + jet} \) for \(Q_1 > Q_{\text{cut}} \)
- restrict emission off \(pp \rightarrow h \text{ + jet} \) to \(Q_2 < Q_{\text{cut}} \)
- *N@LOs* \(pp \rightarrow h \text{ + 2jets} \) for \(Q_2 > Q_{\text{cut}} \)
- iterate
- sum all contribs
MEPs@NLO

Transverse momentum of the Higgs boson

\[\frac{d\sigma}{dp_T} \text{ [pb/GeV]} \]

- first emission by NLOPS, restrict to \(Q_1 < Q_{\text{cut}} \)
 - NLOPS
 - \(pp \to h + \text{jet for } Q_1 > Q_{\text{cut}} \)
 - restrict emission off
 - \(pp \to h + \text{jet to } Q_2 < Q_{\text{cut}} \)
 - NLOPS
 - \(pp \to h + 2\text{jets for } Q_2 > Q_{\text{cut}} \)
 - iterate
 - sum all contribs

MEPs@NLO

- first emission by NLOPS, restrict to $Q_1 < Q_{cut}$
- NLOPS
 $pp \rightarrow h + \text{jet for } Q_1 > Q_{cut}$
 - restrict emission off $pp \rightarrow h + \text{jet to } Q_2 < Q_{cut}$
 - NLOPS
 $pp \rightarrow h + 2\text{jets for } Q_2 > Q_{cut}$
 - iterate
 - sum all contribs

Transverse momentum of the Higgs boson

\[
p_{\perp}(h) \ [\text{GeV}]
\]

\[
d\sigma/dp_{\perp} \ [\text{pb/GeV}]
\]
MEPS@NLO

Transverse momentum of the Higgs boson

- first emission by NLOPS, restrict to $Q_1 < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + \text{jet}$ for $Q_1 > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet}$ to $Q_2 < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2\text{jets}$ for $Q_2 > Q_{\text{cut}}$
- iterate
- sum all contribs
Next-to-leading order electroweak corrections

Electroweak corrections in MCs

Real boson radiation

Conclusions

MePS@NLO

Transverse momentum of the Higgs boson

- first emission by NLOPS, restrict to $Q_1 < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + \text{jet}$ for $Q_1 > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet}$ to $Q_2 < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2\text{jets}$ for $Q_2 > Q_{\text{cut}}$
- iterate
- sum all contribs
MEPs@NLO

- first emission by NLOPS, restrict to $Q_1 < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + \text{jet for } Q_1 > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to } Q_2 < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + \text{2jets for } Q_2 > Q_{\text{cut}}$
- iterate
- sum all contribs
MeP@NLO

Transverse momentum of the Higgs boson

- first emission by NLOPS, restrict to $Q_1 < Q_{cut}$
- NLOPS
 - $pp \rightarrow h + \text{jet for } Q_1 > Q_{cut}$
- restrict emission off
 - $pp \rightarrow h + \text{jet to } Q_2 < Q_{cut}$
- NLOPS
 - $pp \rightarrow h + 2\text{jets for } Q_2 > Q_{cut}$
- iterate
- sum all contribs
First emission by NLOPS, restrict to $Q_1 < Q_{cut}$

NLOPS

$pp \rightarrow h + \text{jet}$ for $Q_1 > Q_{cut}$

restrict emission off $pp \rightarrow h + \text{jet}$ to $Q_2 < Q_{cut}$

NLOPS

$pp \rightarrow h + 2\text{jets}$ for $Q_2 > Q_{cut}$

iterate

sum all contribs
QCD multijet merging – identifying a history

Example: Drell-Yan production in association with jets

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probability determined through splitting kernels
- identify a shower history (probabilistically), determine scale t_i up to predefined t_I

\[
\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i) \]

\[\text{Marek Schönherr} \quad \text{Electroweak corrections for LHC physics} \quad 50/37\]
QCD multijet merging – identifying a history

Example: Drell-Yan production in association with jets

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probability determined through splitting kernels
- identify a shower history (probabilistically), determine scale t_i up to predefined t_I
- choose

$$
\alpha_s^{n+k}(\mu^2_R) = \alpha_s^k(\mu^2_{core}) \prod_{i=1}^{n} \alpha_s(t_i)
$$
QCD multijet merging – identifying a history

Example: Drell-Yan production in association with jets

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probability determined through splitting kernels
- identify a shower history (probabilistically), determine scale t_i up to predefined t_I

\[
\alpha_{s}^{n+k}(\mu_R^2) = \alpha_{s}^{k}(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_{s}(t_i)
\]
QCD multijet merging – identifying a history

Example: Drell-Yan production in association with jets

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probability determined through splitting kernels
- identify a shower history (probabilistically), determine scale t_i up to predefined t_I

\[
\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)
\]
QCD multijet merging – identifying a history

Example: Drell-Yan production in association with jets

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probability determined through splitting kernels
- identify a shower history (probabilistically), determine scale t_i up to predefined t_I

\[
\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)
\]
QCD multijet merging – identifying a history

Example: Drell-Yan production in association with jets

- cluster external particles using inverse parton shower \[\rightarrow \] flavour conscious, initial state aware, probability determined through splitting kernels

- identify a shower history (probabilistically), determine scale \(t_i \) up to predefined \(t_I \)

- choose

\[
\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{core}^2) \prod_{i=1}^{n} \alpha_s(t_i)
\]
QCD multijet merging – identifying a history

Example: Drell-Yan production in association with jets

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probability determined through splitting kernels
- identify a shower history (probabilistically), determine scale t_i up to predefined t_I
- choose

$$\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^n \alpha_s(t_i)$$
QCD multijet merging – identifying a history

ME also provides expression beyond t_I

two types of configuration: $pp \rightarrow Z + \text{jets}$ and $pp \rightarrow \text{jets} + Z$

- different core process, naively not part of $pp \rightarrow Z + \text{jets}$ but indistinguishable
- configuration that would have arisen from dijets plus QCD+EW showering
- necessitates EW splitting kernels to calculate splitting probability
- leads to different scale choices and Sudakov factors
QCD multijet merging – identifying a history

ME also provides expression beyond t_l

two types of configuration: $pp \rightarrow Z+\text{jets}$ and $pp \rightarrow \text{jets}+Z$

- different core process, naively not part of $pp \rightarrow Z+\text{jets}$ but indistinguishable
- configuration that would have arisen from dijets plus QCD+EW showering
- necessitates EW splitting kernels to calculate splitting probability
- leads to different scale choices and Sudakov factors
QCD multijet merging – identifying a history

ME also provides expression beyond t_1

Two types of configuration: $pp \rightarrow Z+$jets and $pp \rightarrow$jets+Z

- different core process, naively not part of $pp \rightarrow Z+$jets but indistinguishable
- configuration that would have arisen from dijets plus QCD+EW showering
- necessitates EW splitting kernels to calculate splitting probability
- leads to different scale choices and Sudakov factors
QCD multijet merging – identifying a history

ME also provides expression beyond t_1

two types of configuration: $pp \rightarrow Z + \text{jets}$ and $pp \rightarrow \text{jets} + Z$

- different core process, naïvely not part of $pp \rightarrow Z + \text{jets}$ but indistinguishable
- configuration that would have arisen from dijets plus QCD+EW showering
- necessitates EW splitting kernels to calculate splitting probability
- leads to different scale choices and Sudakov factors
QCD multijet merging – identifying a history

ME also provides expression beyond t_I

two types of configuration: $pp \rightarrow Z+\text{jets}$ and $pp \rightarrow \text{jets}+Z$

- different core process, naïvely not part of $pp \rightarrow Z+\text{jets}$ but indistinguishable
- configuration that would have arisen from dijets plus QCD+EW showering
- necessitates EW splitting kernels to calculate splitting probability
- leads to different scale choices and Sudakov factors
QCD multijet merging – identifying a history

VS.
Importance of electroweak clustering

$$\Rightarrow$$ large impact at high p_{\perp} and multiplicity
Importance of electroweak clustering

ATLAS

\[L \, dt = 4.6 \, fb^{-1} \]

anti-\(k_T \) jets, \(R = 0.4 \)

\(p_T^{\text{jet}} > 30 \, \text{GeV}, |y^{\text{jet}}| < 4.4 \)

\(\sigma(Z/\gamma^* \to \ell^+ \ell^- + \text{jets}) \) [pb]

Data 2011 (\(\sqrt{s} = 7 \, \text{TeV} \))

ALPGEN

SHERPA

MC@NLO

BLACKHAT + SHERPA

MC / Data

0.6

0.8

1

1.2

1.4

NLO / Data

0.6

0.8

1

1.2

1.4

ATLAS

\[L \, dt = 4.6 \, fb^{-1} \]

anti-\(k_T \) jets, \(R = 0.4 \)

\(p_T^{\text{jet}} > 30 \, \text{GeV}, |y^{\text{jet}}| < 4.4 \)

\(\frac{1}{\sigma(Z/\gamma^* \to \ell^+ \ell^- + \text{jets})} \, \frac{d\sigma}{dp_T} \) [1/GeV]

Data 2011 (\(\sqrt{s} = 7 \, \text{TeV} \))

ALPGEN

SHERPA

MC@NLO

BLACKHAT + SHERPA

MC / Data

0.6

0.8

1

1.2

1.4

p_T (leading jet) [GeV]
Hadronic analysis

- use event shape variables on microjets of reconstructed W candidate to enhance S/B, e.g. ellipticity

\[\hat{t} = \frac{T_{\text{min}}}{T_{\text{maj}}} \]

→ small when radiation pattern is 1D ($W \rightarrow q\bar{q}$)

- fat jet $p_{T} > 750$ GeV optimal best balance between cross section and emission rate

⇒ additional discrimination
Hadronic analysis

Can we distinguish between \(f = 1 \) and \(f = 2 \)?
(simplified version of: How accurate can we measure the coupling?)

- signal: \(f = 2 \), background: \(f = 1 \) (SM)
- moderate sensitivity even under ideal conditions
 benefits from larger emission at large \(p_T \) despite smaller cross section
Leptonic analysis

Can we distinguish between $f = 1$ and $f = 1.1$? (simplified version of: How accurate can we measure the coupling?)

- signal: $f = 1.1$, background: $f = 1.0$ (SM)
- improved sensitivity, despite small cross sections, benefits from ideal background rejection