Modelling the Invisible

Prof. Alexander Lenz IPPP, Durham University Orkney Science Festival 11.9.2018

Durham University

16 000 students

Physics:

- 37 professors
- 12 readers
- 11 senior lecturers
- 18 lecturers
- about 100 post-doctoral researchers and fellows
- 150 PhD postgraduate students
- each year we admit about 170 students.

Institute for Particle Physics Phenomenology

@IPPP_Durham

modelling invisible.org

- National institute for theoretical particle physics
- Currently 94 members

@IPPP_Durham at the Orkney Science Festival 2018

Outline

1. What is Elementary Particle Physics?

2. Elementary Particle Physics for (future) experts*

3. Why to spend billions for a particle accelerator?

4. Open question in particle physics

5. How to become a scientist?

Intended for the general public, except expert sections denoted by *

What is our world made off?

- **1. Molecules**
- 2. Atoms
- 3. Electrons + Nuclei
- 4. Protons + Neutrons
- 5. Quarks

THE FOLLOWING FUNDAMENTAL FORCES (=INTERACTIONS) ARE FOUND IN NATURE....

According to our theoretical understanding all forces are transmitted by force carriers.

GRAVITY: lets apples fall from trees Force carrier: Graviton (not yet observed)

ELECTROMAGNETIC INTERACTION: makes lightning in a thunderstorm and is the basis of all electricity and magnetism Force carrier: Photons

WEAK INTERACTION: is responsible for the energy production in the sun and for radioactiv Force carrier: W. Z Bosons

STRONG INTERACTION: binds protons and neutrons into nuclei and quarks into nucleons Force carrier: Gluons

Particles without forces = Chess pieces without rules

Imagine a world without:

- weak force:

no sun is shining

- strong force:

no nuclei

- electro-magnetic force: no atoms

How do we know about that?

Microscopes can only resolve objects that are smaller than the wavelength of light

What to do in order to see objects that are much smaller than the wavelength of light?

The true use of stone circles!

The Large Hadron Collider

Outline

1. What is Elementary Particle Physics?

2. Elementary Particle Physics for (future) experts*

3. Why to spend billions for a particle accelerator?

4. Open question in particle physics

5. How to become a scientist?

Intended for the general public, except expert sections denoted by *

All what we know about particle physics can be

written very compactly in a single formula with 4 lines

Explains thousands of measurements, partly with a precision higher than a per mille

+ many others

James Clarke Maxwell (1831- 1879)

Paul Dirac (1902- 1984)

THE STRANGEST MAN September $11 \rightarrow 9:00 \text{ pm} - 10:00 \text{ pm}$ Orkney Theatre, KGS, Kirkwall

Peter Higgs

PETER HIGGS IN CONVERSATION September 11 \rightarrow 7:30 pm - 8:30 pm Orkney Theatre, KGS, Kirkwall

The Standard Model of Particle Physics 000000 - The contains anti-particles e^{+} е + Y: Jii **CKM** matrix: Explanation for existence of matter in the Universe? This costs too much energy! I think I'll hang out down there \odot Re ϕ Im ϕ

Heavy Flavour Physics

These and similar processes have been measured very precisely (in particular LHCb) and they agree well with complicated quantum theoretical calculations

Outline

- **1. What is Elementary Particle Physics?**
- 2. Elementary Particle Physics for (future) experts*
- 3. Why to spend billions for a particle accelerator?
- 4. Open question in particle physics
- 5. How to become a scientist?

Intended for the general public, except expert sections denoted by *

Fundamental vs. applied research

Fundamental research:

- increase human knowledge unexpected findings
- economic application is **not** the main aim

Applied research:

- improve technology expected/hoped for findings
- economic application is an important aim

As usual:

too little and too much are not good

Fair balance: if our ancestors did only do applied research we would have the most sophisticated torches, but we never had invented the LED

Fundamental research: Spin-offs

- Quantum mechanics *
 - * Laser* computer
 - semi-conductor
 - ***** Quantum Computer
- General Theory of Relativity
- Particle Physics
- General education
- Contribution to culture, internationalisation,...

★ GPS

- * WWW
- ***** radiation therapy
- mechanics @ formula 1 team
- most of our post-docs not in academia

Numbers are also relative

Other big numbers

- 2.849 trillion US\$ UK GDP

- <u>31 billion £</u> Trident replacement
- 27 billion £ Buyout Northern Bank
- 500 million £ Blue passport

Actual LHC contribution

2016: UK 14.64% of 1127.2 million CHF this is equivalent to 22 per UK inhabitant

1 pint per year!

This is THE pint of science!

Hard facts

Why Making a Lot of Money Is Not an Unspiritual Thing to Do

Forecasting the Socio-Economic Impact of the Large Hadron Collider: a Cost-Benefit Analysis to 2025 and Beyond

Massimo Florio¹, Stefano Forte², and Emanuela Sirtori³

a) Scientist	—- knowledge
b) Post-doc/PhD	human capital
c) Companies	—- technological spillover
d) General public	direct cultural effects

2025, assuming a range of values for some critical stochastic variables. We conservatively estimate that there is around a 90% probability that benefits exceed costs, with an expected net present value of about 2.9 billion euro, not considering the unpredictable applications of scientific discovery.

no unexpected inventions taken into account! Google: 1603.00886

There is more in life than money...

SENATOR PASTORE: Is there anything connected in the hopes of this accelerator that in any way involves the security of the country? DR. WILSON: No, it has nothing to do directly with defending our country except to help make it worth defending.

Physics is like sex: sure, it may give some practical results, but that's not why we do it.

(Richard Feynman)

Outline

- **1. What is Elementary Particle Physics?**
- 2. Elementary Particle Physics for (future) experts*
- 3. Why to spend billions for a particle accelerator?

4. Open question in particle physics

5. How to become a scientist?

Intended for the general public, except expert sections denoted by *

Open questions in particle physics

What is the origin of **JARK WATTER?** How was **MATTER CREATED** in the Universe? Why are **MEUTRINOS** almost **MASSLESS?** Why do we have three copies of **Quarks** and **LEPTONS?** Is there a **QUARTON THEORY OF GRAVITY?** the top **QUARKS SO MUCH HEAVIER** than the **ELECTRON**?

Matter content of the Universe

2% Luminous ordinary matter (stars and luminous gas, radiation)

14% Non-luminous ordinary matter (intergalactic gas, neutrinos, planets and holes)

84% Dark matter

Along with 'Antimatter,' and 'Dark Matter,' we've recently discovered the existence of 'Doesn't Matter,' which appears to have no effect on the universe whatsoever."

Indirect Search for New Physics

Indirect Search for New Physics: To find hints for New Physics beyond the Standard Model we can either use brute force (= higher energies) or more subtle strategies like high precision measurements.

New contributions to an observable f are identified

 $f^{\rm SM} + f^{\rm NP} = f^{\rm Exp}$

My favourite process: B-mixing

Hot Topic: Anomalies

Observables:

- Branching ratios $Br(B_s \to \phi \mu \mu), Br(B \to K^* \mu \mu),$
- Angular observables, e.g. P'_5
- Ratios $R_K = \frac{Br(B^+ \to K^+ \mu^- \mu^+)}{Br(B^+ \to K^+ e^- e^+)}$

hadronic uncertainties cancel partially

hadronic uncertainties cancel completely

The first glimpse of physics beyond the standard model?

$$Q_{9V} = \frac{\alpha_e}{4\pi} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{l} \gamma^\mu l \right)$$
$$Q_{10A} = \frac{\alpha_e}{4\pi} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{l} \gamma^\mu \gamma^5 l \right)$$

4. Open questions in particle physics

Outline

- **1. What is Elementary Particle Physics?**
- 2. Elementary Particle Physics for (future) experts*
- 3. Why to spend billions for a particle accelerator?
- 4. Open question in particle physics
- 5. How to become a scientist?

Intended for the general public, except expert sections denoted by *

5. How to become a scientist?

Be curious and do not stop asking questions

Formal education:

- 1. University degree: 3 4 years
- 2. PhD: 4 years
- 3. Post-docs: several 2-3 year positions
- 4. After a lot of hard work and some luck: get your first permanent position and start to do a lot of administration....

87 papers found, 83 of them citeable (published or arXiv)

Citation summary results	Citeable papers	Published only
Total number of papers analyzed:	<u>83</u>	<u>55</u>
Total number of citations:	6,691	4,904
Average citations per paper:	80.6	89.2
Breakdown of papers by citations:		
Renowned papers (500+)	<u>2</u>	<u>1</u>
Famous papers (250-499)	<u>7</u>	<u>5</u>
Very well-known papers (100-249)	<u>11</u>	<u>10</u>
Well-known papers (50-99)	<u>10</u>	<u>9</u>
Known papers (10-49)	<u>31</u>	<u>22</u>
Less known papers (1-9)	<u>19</u>	<u>7</u>
Unknown papers (0)	<u>3</u>	<u>1</u>
h _{HEP} index [?]	37	34
See additional metrics		

Thanks a lot for having us here!

