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1 Introduction

These lectures provide a basic knowledge about flavour physics. To set the nota-
tion and conventions the notes start very elementary1, but they will become more
technical later on.

1.1 The standard model in a real nutshell

All currently known elementary particles can be split into up in three groups:

1. Spin 0 particles: appear in the process of thecreation of mass

2. Spin 1/2 particles: matter constituents

3. Spin 1 particles: forcetransmitters

These three groups contain altogether 25 (= 1+12+12) fundamental particles,
which read explicitly:

1. Spin 0 particle: Creating the masses of the fermions and of the weak gauge
bosons via theHiggs mechanism(Englert and Brout; Higgs; Guralnik, Ha-
gen and Kibble) [2, 3, 4, 5, 6] gives rise to new scalar particles. In the
simplest realisation this is a single neutral particle, theso-calledHiggs bo-
son h, which was predicted in [3, 4, 6]2 and found in 2012 at theLarge
Hadron Collider (LHC) at CERN, Geneva with the experiments ATLAS
and CMS [7, 8].

2. Spin 1/2 particles: matter is built out of fermions, which are split into two
classes: quarks and leptons.

Quarks:

(u

d

) (c

s

)

(

t

b

)

Leptons, λǫπτoσ = light, not heavy:

(νe
e

)

(

νµ
µ

)

(ντ
τ

)

Quarks take part in the strong interaction, the weak interaction and the elec-
tromagnetic interaction. Concerning the latter, theu, c, t quarks have the
electric charge+2/3 and thed, s, b quarks have charge−1/3. Leptons do
not take part in the strong interaction, but in the weak interaction. Concern-
ing the electromagnetic interaction,e−, µ−, τ− have charge−1 and thus
take part, while neutrinos are electrical neutral and hencethey only interact
weakly.

1For a nice introduction to the standard model see e.g. [1].
2All the cited papers can be easily obtained from INSPIRE or arXiv; simply type in Google:

“spires” or “arXiv”.
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3. Spin 1 particles: the fundamental interactions are transferred via corre-
sponding interaction quanta, thegauge bosons:

• electro-magnetic interaction:photon γ

• weak interaction:weak gauge bosonsW+,W−, Z0

• strong interaction:gluonsg1, ..., g8

The weak bosonsW± have the electric charge±1, while all other bosons
are electrically neutral.

Remarks:

• The matter constituents show up in three copies (generations), the individ-
ual species are calledflavour, i.e. u, d, c, s, t, b in the case of the quarks.
In principle all known matter is made up of the first generation - ordinary
matter consists of atoms, which are built of protons, neutrons and electrons
and the protons and neutrons itself are built out of up- and down-quarks, at
least to a first approximation. Looking more carefully one finds also glu-
ons and different quark-antiquark pairs including a non-negligible portion
of strange quarks. Later we will see, what is peculiar about having at least
three generations of matter in the standard model.

• Gauge symmetry forces all gauge bosons and fermions to be exactly mass-
less. The weak gauge bosons and fermions will acquire mass via the Higgs
mechanism, without violating the gauge principle.

1.2 Masses of the elementary particles

In the theoretical tools used to describe flavour observables the hierarchy between
different mass scales will be crucial. Thus we give here a short overview (status:
January 2014, PDG [9]) over the masses of the elementary particles.
For comparison: the mass of a proton is938.272046(21) MeV = 1.672621777 ·
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10−27 kg.

Particle Physical mass MS −mass

t 173.07(89) GeV 160 GeV
h 125.9(4) GeV
Z 91.1876(21) GeV
W 80.385(15) GeV
b 4.78(6) GeV 4.18(3) GeV
τ 1.77682(16) GeV
c 1.67(7) GeV 1.275(25) GeV
µ 105.6583715(35) MeV
s 93.5(2.5) MeV
d 4.7(2) MeV
u 2.15(15) MeV
e 510.998928(11) keV GeV
ν < 1 eV GeV

γ, g1, ..., g8 0 GeV GeV

Remarks:

• In principle it is sufficient to remember only rough values ofthe masses
of the elementary particles. Some of the observables we willinvestigate
below, depend however strongly on the masses, e.g. lifetimes of a weakly
decaying particle are proportional to the inverse fifth power of the mass of
the decaying particle. Hence we provided the precise valuesof the masses.

• Quarks do not exist as free particles but only within bound states. Thus it is
not clear what is actually meant by the mass of a free quark. Wegive here
two commonly used definitions: we identify the pole mass (i.e. the pole
of the corresponding quark propagator) with the physical mass. This works
well for c, b and t, but not for the light quarks. Another commonly used
definition is theMS-mass [10]. For the three heavy quarks we usemq(mq)
and for the three light quarks we quotemq(2 GeV).

• In order to compare more easily with the literature we will use for the nu-
merical evaluations in this lecture:

mb(mb) = 4.248 GeV , mPole
b = 4.65 GeV , (1)

mc(mc) = 1.277 GeV , mPole
c = 1.471 GeV , (2)

mc(mb) = 0.997 GeV . (3)
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1.3 Outline

Flavour physics is the description of effects related to the change of quark and
lepton flavours. In this course we restrict ourselves to quark transitions and since
the top quark does not form bound states we will also not discuss it. Mostly we
will be treating transitions of bottom and charm quarks.
Many of the theoretical tools used to describe these effectsare based on the con-
cept ofeffective field theories, which have also very important applications out-
side flavour physics.
This lecture course consists of 16 + 6 hours of lectures.It is split up into the
following sections

1. General introduction

2. Flavour physics and the CKM matrix

3. Flavour phenomenology

4. Basics of weak decays

5. Effective theories, in particularHeff

6. Inclusive B-decays

7. Lifetimes and lifetime differences - the Heavy Quark Expansion

8. Mixing in particle physics

9. Mixing of neutral mesons

10. Exclusive B-decays

11. Search for new physics

12. Appendix: collection of useful formulae
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2 Flavour Physics and the CKM matrix

2.1 Heavy hadrons

In this lecture course we are considering hadronic bound states containing a heavy
b-quark and/or a heavyc-quark. Mesons consist of a quark and an anti-quark and
baryons of three quarks.
The concrete quark content and some basic properties ofB-mesons andb-baryons
read: (status January 2015, masses from PDG [9] and lifetimes and ratios from
HFAG [11] - my own estimates are indicated by∗):

B-mesons

Bd = (b̄d) B+ = (b̄u) Bs = (b̄s) B+
c = (b̄c)

Mass (GeV) 5.27955(26) 5.27925(26) 5.3667(4) 6.2745(18)
Lifetime (ps) 1.520(4) 1.638(4) 1.509(4) 0.507(9)
τ(X)/τ(Bd) 1 1.076± 0.004 0.993± 0.004 0.334± 0.006∗

b-baryons

Λb = (udb) Ξ0
b = (usb) Ξ−

b = (dsb) Ω−
b = (ssb)

Mass (GeV) 5.6194(6) 5.7918(5) 5.79772(55) 6.071(40)
Lifetime (ps) 1.467(10) 1.465(31) 1.559(37) 1.57

(

+23
−20

)

τ(X)/τ(Bd) 0.965± 0.007 0.964± 0.020∗ 1.026± 0.024∗ 1.03
(

+15
−13

)

∗
Alternative lifetime averages were, e.g., obtained in [12].
In particular the lifetime ratios provide crucial tests of our calculational tools,
since they are not expected to be sizable affected by new physics. If our methods
pass these tests we can apply them to quantities which are expected to be sensitive
to new physics effects. This will be discussed in detail below.
The quark content and some basic properties ofD-mesons andc-baryons read:
(status January 2013, masses and lifetimes from PDG [9]:3

D-mesons

D0 = (ūc) D+ = (d̄c) D+
s = (s̄c)

Mass (GeV) 1.86486(13) 1.86962(15) 1.96849(32)
Lifetime (ps) 0.4101(15) 1.040(7) 0.500(7)
τ(X)/τ(D0) 1 2.536± 0.017 1.219± 0.017

3D0 andD+ have the same relative precision in the lifetimes.
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c-baryons

Λc = (udc) Ξ+
c = (usc) Ξ0

c = (dsc) Ωc = (ssc)

Mass (GeV) 2.28646(14) 2.4676
(

+4
−10

)

2.47109
(

+35
−100

)

2.6952
(

+18
−16

)

Lifetime (ps) 0.200(6) 0.442(26) 0.112
(

+13
−10

)

0.069(12)

τ(X)/τ(D0) 0.488± 0.015 1.08(6) 0.27(3) 0.17± 0.03

The charm sector provides some additional complementary tests of our theoretical
tools, since there the expansion parameter is considerablylarger.
Later on will also discuss kaons and pions, thus we provide also some of their
properties

K-mesons

KS = (s̄d+ sd̄) KL = (s̄d− sd̄) K+ = s̄u
Mass (GeV) 0.497614(24) 0.497614(24) 0.493677(16)
Lifetime (ps) 89.54(4) 51160(210) 12380(21)

Pions

π+ = d̄u π0 = (ūu− dd̄)/
√
2

Mass (GeV) 0.13957018(35) 0.1349766(6)
Lifetime (ps) 26033(5) (8.52± 0.18) · 10−5

2.2 Weak decays of heavy quarks

All these hadrons decay via the charged weak interaction. The dominant processes
are the following tree-level decays:

• freeb-quark tree-level decay:

b→
{

c
u

+W− →
{

c
u

+







































ū+ d
c̄+ s
ū+ s
c̄+ d
e− + ν̄e
µ− + ν̄µ
τ− + ν̄τ
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• freec-quark tree-level decay:

c→
{

s
d

+W+ →
{

s
d

+















d̄+ u
d̄+ s
e+ + νe
µ+ + νµ

If there are quarks in the final state we have sizable QCD-corrections, which is
indicated in the Feynman diagrams by the gluon exchanges. The above transitions
are triggered by the charged weak current; they consist of a transition of a x-quark
into a y-quark via the exchange of aW±-boson. The basic vertex reads

W+ : i g2
2
√
2
γµ(1− γ5)Vxy

W− : i g2
2
√
2
γµ(1− γ5)V ∗

xy

x=(u,c, t )

y=(d,s,b)

W+

W−

y=(d,s,b)

y=(d,s,b)

x=(u,c, t )
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The couplingsVxy are the so-calledCKM (Cabibbo-Kobayashi-Maskawa)
elements [13, 14]. The CKM parameters exhibit a pronounced hierarchy. Typi-
cally this hierarchy is made explicit by expressing the different CKM-elements in
powers of the smallWolfenstein parameter [15] λ ≈ 0.22551, see e.g. CKM-
fitter [16] or UTfit [17]. In the case of inclusiveb-decays the following CKM
elements appear:

Vud, Vcs ∝ λ0 = 1 ,

Vus, Vcd ∝ λ1 ,

Vcb ∝ λ2 ,

Vub ∝ λ3.8 .

Typically it is stated in the literature thatVub is of orderλ3, but numerically it is
much closer toλ4. At the time, the Wolfenstein parameterisation was proposed
(1983), the knowledge about the size ofVub was simply not precise enough to dis-
tinguish this difference.
In addition to the above discussed tree-level decays, thereare also transitions that
appear only on loop-level. In the standard model there is e.g. no tree-level transi-
tion of a b-quark into a s-quark. This is the famous absence offlavour changing
neutral currents (FCNC). On loop level such a transition is possible within the
SM, via so-calledpenguin diagrams (invented in 1975 by Shifman, Vainshtein
and Zakharov [18] and baptised by John Ellis in 1977 [19]).

b-decays that proceed only via penguins areb→ ss̄s, ss̄d, dd̄d, dd̄s, sγ, dγ, sl+l−, dl+l−, sg
anddg. b-decays that proceed via tree-level decays and penguins areb→ cc̄s, cc̄d, uūs
anduūd. Forb→ cc̄s penguins are a correction of about9% of the LO decay rate
[20], for b→ uūs penguins are by far the dominant contribution [21].
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2.3 Weak decays of heavy hadrons

In reality weak decays of mesons are however much more complicated, than the
decay of a free quark, because of strong interactions, whichis depicted in the
following diagrams. In principle the binding of the quarks into a meson is a non-
perturbative problem, i.e. the exchange of one gluon is as important as the ex-
change of numerous ones.
Meson decays can be classified according to their final states:

• Leptonic decayshave only leptons in the final state, e.g.B− → τ− ν̄τ .

Such decays have the simplest hadronic structure. Gluons bind the quark of
the initial state into a hadron. All non-perturbative effects are described by
decay constants.

• Semi-leptonic decayshave leptons and hadrons in the final state, e.g.B− →
D0 e− ν̄e.

15



Now the hadronic structure is more complicated. We have the binding of
hadrons in the initial state and in the final states. Moreoverthere is the
possibility of having strong interactions between the initial and final states.
The non-perturbative physics is in this case described by form factors.

• Non-leptonic decayshave only hadrons in the final state, e.g.B− →
D0 π−.

These are the most complicated decays and they can only be treated by
making additional assumptions that allow then for a factorisation.

Later on, when investigating these decays in more theoretical detail, we will see,
however, that thefree quark decay is a very good approximation, if the decaying
quark is heavy enough. This can be shown within the frameworkof the Heavy
Quark Expansion (HQE), see, e.g., [22] for a review and references therein. For
theb-quark this approximation works quite well; it is currentlydiscussed whether
it also works for thec-quark.

2.4 Exercise 1

1. Draw the Feynman diagrams for the decaysB̄d → D+π− andB̄d → π+π−.
What would you expect in theory for the ratio

Br(B̄d → D+π−)

Br(B̄d → π+π−)
?

16



Compare your expectation with the measured values taken from the PDG.
Solution:

b

d

B
d

D+

u

d

−

d

W−
c b

d

B
d

+

u

d

−

d

W−
u

Br(B̄d → D+π−)

Br(B̄d → π+π−)

Theory

=
|Vcb|2
|Vub|2

=
1

λ4
= 386.667 ,

Br(B̄d → D+π−)

Br(B̄d → π+π−)

PDG

=
(2.68± 0.13) · 10−3

(5.12± 0.19) · 10−6
= 523.438 .

The agreement with our naive estimate is quite impressive!

2. What size do you expect for thesemi leptonic branching ratio

Bsl =
Γ(b→ cν̄ee

−)

Γtot
,

if the masses in the final states and sub-dominantb → u-transitions are
neglected?

Solution:

Bsl =
Γ(b→ cν̄ee

−)

Γtot

=
Γ(b→ cν̄ee

−)

Γ(b→ cūd, s) + Γ(b→ cc̄d, s) + 3Γ(b→ cν̄ee−)

=
1

3 + 3 + 3
= 0.111111 .

Accidentally this naive estimate agrees perfectly with the measured
value of Bsl = 0.1033± 0.0028 for Bd mesons [9].

3. Rank all possible inclusive (tree-level) decays according to their branching
ratios. Now also the masses of the particles in the final states are taken into

17



account. The phase space factor for one Charm-quark in the final state is
about 0.67, for one tau lepton 0.28, for two charm quarks 0.40and for one
tau and one charm 0.13.

Solution:

Decay naive naive NLO-QCD[20]
b→ cūd ∝ λ4 · 3 · PS1 = 41.1999% 44.6%
b→ cc̄s ∝ λ4 · 3 · PS2 = 24.597% 23.2%
b→ cν̄ee

− ∝ λ4 · 1 · PS1 = 13.7333% 11.6%
b→ cν̄µµ

− ∝ λ4 · 1 · PS1 = 13.7333% 11.6%
b→ cν̄τ τ

− ∝ λ4 · 1 · PS2 = 2.66467% 2.7%
b→ cūs ∝ λ6 · 3 · PS1 = 2.09521% 2.4%
b→ cc̄d ∝ λ6 · 3 · PS2 = 1.25087% 1.3%
b→ uūd ∝ λ7.6 · 3 · 1 = 0.288548% 0.6%
b→ uc̄s ∝ λ7.6 · 3 · PS1 = 0.193327% 0.4%
!b→ uūs ∝ λ9.6 · 3 · 1 = 0.0146741% 0.2%
b→ uν̄ee

− ∝ λ7.6 · 1 · 1 = 0.0961828% 0.2%
b→ uν̄µµ

− ∝ λ7.6 · 1 · 1 = 0.0961829% 0.2%
b→ uν̄ττ

− ∝ λ7.6 · 1 · PS1 = 0.0269312% 0.1%
b→ uc̄d ∝ λ9.6 · 3 · PS1 = 0.00983162% 0.00%

For the decay b → uūs the penguin contribution is dominant, so our
power counting does not work for this decay.

4. What size do you now expect for the semi leptonic branchingratio?

Solution:
Bsl = 0.137333 .

Mass corrections turn out to be very sizable. By accident the naive
leading estimate reproduced already perfectly the experiment value:
Bsl = 0.1033 ± 0.0028 for Bd mesons [9]. Later on we will see, that
QCD-corrections [20] will bring down again the theoretical value to
the experimental one Bsl = 0.116.

2.5 CKM, FCNC,... within the SM

The Lagrangian of the standard model [23, 24] reads schematically

L = −1
4
FµνF

µν
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+iΨ̄ 6DΨ

+|DµΦ|2 − V (Φ)

+Ψ̄iYijΦΨj + h.c. . (4)

The first line of Eq.(4) describes the gauge fields of the strong, weak and electro-
magnetic interaction, the second line massless fermions and their interaction with
the gauge fields. The third line represents the free scalar field, the Higgs potential
and the interaction of the scalar field with the gauge fields. The special form of
the Higgs potential will result in masses for some of the gauge bosons. The last
line describes the interaction between fermions and the scalar field, the so-called
Yukawa interaction. When the Higgs fieldΦ is replaced by its vacuum expectation
valuev/

√
2 one is left with a fermion mass term of the formvYij/

√
2 · Ψ̄iΨj , so

the mass is given bymij = vYij/
√
2.

The full standard model Lagrangian is invariant under Poincare transformations
and localSU(3)C × SU(2)L × U(1)Y gauge transformations -SU(3) describes
the strong interaction,c stands for colour,SU(2) describes the weak interaction,
L stands for left-handed,U(1) describes the electromagnetic interaction andY
stands for hypercharge. Looking at theSU(2)L × U(1)Y -part in more detail one
gets in the case of one generation of fermions the following expressions:

L = −1
4
W a

µνW
µν a − 1

4
BµνB

µν

+Ψ̄Lγ
µ

(

i∂µ − g1YLBµ − g2qL
~σ · ~Wµ

2

)

ΨL

+Ψ̄Rγ
µ

(

i∂µ − g1YRBµ − g2qR
~σ · ~Wµ

2

)

ΨR

+

∣

∣

∣

∣

∣

(

i∂µ − g1YΦBµ − g2qΦ
~σ · ~Wµ

2

)

Φ

∣

∣

∣

∣

∣

2

− V (Φ†Φ)

−
(

Ψ̄LΦ
cYuuR + ūRΦ

c†YuΨL

)

−
(

Ψ̄LΦYddR + d̄RΦ
†YdΨL

)

. (5)

Let us discuss first the notation:

• ΨL andΨR denote left- and right-handed spinors describing the fermions

ΨL,R =
1± γ5

2
Ψ . (6)

MoreoverΨL denotes aSU(2)L doublet, i.e. one can write

ΨL =

(

uL
dL

)

. (7)
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uL is the four component Dirac spinor of the up-quark it has weakisospin
+1/2 anddL is the four component Dirac spinor of the down quark with
weak isospin−1/2. ΨR denotesSU(2)L singlets.

• g1 is the gauge coupling of theU(1)Y interaction transmitted via theBµ

gauge field,Bµν is the corresponding field strength tensor.YL,R,φ are the
hyper charges of the left-handed fermions, right-handed fermions and of
the Higgs field.

• g2 is the gauge coupling of theSU(2)L interaction transmitted via the three
~Wµ gauge fields,W a

µν(a = 1, 2, 3) is the corresponding field strength tensor
and~σ denotes the Pauli matrices. The fact that only left-handed fermions
take part in the weak interaction and right-handed do not, isfulfilled by the
following choice of the charges:qR = 0 andqL = qΦ = 1. This describes
correctly the experimentally foundmaximal parity-violationof the weak
interaction.

• Also the Higgs field is aSU(2)L doublet

Φ =

(

φ+

φ0

)

, (8)

with hyperchargeY = 1/2. The complex Higgs doublet has four degrees
of freedom and the following quantum numbers.

φ+ φ0

Q +1 0
T3 +1/2 −1/2
Y +1/2 +1/2

.

Using theunitary gauge one can expand the Higgs field in the following
way

Φ =

(

0
v+H√

2

)

. (9)

v is the non-vanishing vacuum expectation value of the Higgs fieldΦ (v ≈
246.22 GeV)4 andH is the physical Higgs field, which was recently found
at the LHC [7, 8].
Yu,d are the Yukawa couplings of the up- and down-quarks. To give both

4Originally v is defined as the minimum of the Higgs potential,v =
√

−µ2/λ. Expressing the
gauge boson masses in terms ofv one getsMW = g2v/2. Comparing this with the definition of

the Fermi constantGF /
√
2 = g22/(8M

2
W ) one sees thatv =

√

1/(
√
2GF ).
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the up-quarks and the down-quarks a mass we have to introducea second
Higgs field, which is not independent from the original one (in some exten-
sions of the standard model, it will be independent, e.g. in the Two-Higgs
Doublet Model (2HDM ) or the Minimal Supersymmetric Standard Model
(MSSM)).

Φc = iσ2Φ
∗ =

(

φ0∗

−φ+∗

)

. (10)

This field can also be expanded as

Φc =
1√
2

(

v +H
0

)

. (11)

After spontaneous symmetry breaking the Yukawa term reads

LY ukawa = −
(

Ψ̄LΦ
cYuuR + ūRΦ

c†YuΨL

)

−
(

Ψ̄LΦYddR + d̄RΦ
†YdΨL

)

= −vYu√
2
(ūLuR + ūRuL)−

vYd√
2

(

d̄LdR + d̄RdL
)

. (12)

This is now a simple mass term for the up- and down quarks with the masses
mu,d = vYu,d/

√
2.

For three generations of quarks the situation gets still a little more involved. The
Yukawa interaction reads now

LY ukawa =

= −
(

Q̄1,L, Q̄2,L, Q̄3,L

)

ΦcŶu





uR
cR
tR



 + (ūR, c̄R, t̄R)Φ
c†Ŷu





Q1,L

Q2,L

Q3,L





−
(

Q̄1,L, Q̄2,L, Q̄3,L

)

ΦŶd





dR
sR
bR



+
(

d̄R, s̄R, b̄R
)

Φ†Ŷd





Q1,L

Q2,L

Q3,L



 ,

(13)

with the threeSU(2)L doublets

Q1,L =

(

uL
dL

)

, Q2,L =

(

cL
sL

)

, Q3,L =

(

tL
bL

)

. (14)

Note, that now in general the Yukawa coupling matricesŶu,d do not have to be
diagonal! After spontaneous symmetry breaking one gets thefollowing structure
of the fermion mass terms:

Ψ̄u
LM̂1Ψ

u
R + Ψ̄u

RM̂1Ψ
u
L + Ψ̄d

LM̂2Ψ
d
R + Ψ̄d

RM̂2Ψ
d
L , (15)
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with

Ψu =





u
c
t



 , (16)

Ψd =





d
s
b



 , (17)

M̂1 =
v√
2
Ŷu , (18)

M̂2 =
v√
2
Ŷd . (19)

Again, in general the mass matriceŝM1 andM̂2 do not have to be diagonal, but
they can be diagonalised with unitary transformations

Ψu → U1Ψ
u with U †

1U1 = 1 , (20)

Ψd → U2Ψ
d with U †

2U2 = 1 . (21)

The transformed mass matrices read

U †
1M̂1U1 =

v√
2
U †
1 ŶuU1 =





mu

mc

mt



 , (22)

U †
2M̂2U2 =

v√
2
U †
2 ŶdU2 =





md

ms

mb



 . (23)

The states that belong to a diagonal mass matrix are calledmass eigenstatesor
physical eigenstates, the states that couple to the weak gauge bosons are called
weak eigenstates. In principle the mass matrices could also be diagonal from the
beginning on. We will start, however, with the most general possibility and finally
experimental data will show what is realised in nature.

The transformation between weak and mass eigenstates does not affect the elec-
tromagnetic interaction and also not the neutral weak current. In this cases up-like
quarks couple to up-like ones and down-like quarks to down-like ones, so one has
always the combinationsU †

1U1 andU †
2U2 in the interaction terms. By definition

this combinations give the unit matrix. Thus all neutral interactions are diagonal,
in other wordsthere are no flavour changing neutral currents (FCNC) in the
standard model at tree-level.The originally diagonal charged current interaction
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can however become non-diagonal by this transformation

(ū, c̄, t̄) γµ (1− γ5)





1
1

1









d
s
b





→ (ū, c̄, t̄) γµ (1− γ5)U †
1U2





d
s
b





→ (ū, c̄, t̄) γµ (1− γ5)





.. .. ..

.. .. ..

.. .. ..









d
s
b



 . (24)

This defines the famousCabibbo-Kobayashi-Maskawa-Matrix orCKM-Matrix

VCKM := U †
1U2 . (25)

From a theory point of view it is not excluded thatU †
1U2 is diagonal (e.g.U1

andU2 are unit matrices orU1 = U2). In the end experimental data will show
(and have shown) if the CKM-matrix is non-diagonal and thus allows transitions
between different families. Historically this matrix was invented in two steps:

• 1963: 2x2 Quark mixing by Cabibbo [13]

• 1973: 3x3 Quark mixing by Kobayashi and Maskawa [14]; NP 2008

Let us look a little more in the properties of this matrix:
By construction the CKM-Matrix is a unitary matrix, it connects the weak eigen-
statesq′ with the mass eigenstatesq. Instead of transforming both the up-type and
down-type quark fields one can also solely transform the down-type fields:





d
s
b



 = VCKM





d′

s′

b′



 . (26)

One can show, that a general unitaryN ×N-matrix hasN(N − 1)/2 real param-
eters and(N − 1)(N − 2)/2 phases, if unphysical phases are discarded (?refer-
ence?).

N = 2 1 real parameter 0 phases
N = 3 3 real parameters 1 phase
N = 4 6 real parameters 3 phases
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As will be discussed below a complex coupling, e.g. a complexCKM-element,
leads to an effect calledCP-violation. This will have important consequences on
the existence of matter in the universe. Kobayashi and Maskawa found in 1973
that one needs at least three families of quarks (i.e. six quarks) to implement CP-
violation in the standard model. At that time only three quarks were known, the
charm-quark was found in 1974.
As we have seen already, the CKM-Matrix allows non-diagonalcouplings of the
charged currents, i.e. the u-quark does not only couple to the d-quark via a charged
W boson, but it also couples to the s-quark and the b-quark. Theentries of the
CKM-matrix give the respective coupling strengths

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (27)

Coupling ∝ g2

2
√
2
γµ(1− γ5)Vud (28)

For a unitary3 × 3 matrix with 3 real angles and 1 complex phase, different
parameterisations are possible. The so-calledstandard parameterisationreads

VCKM3 =





c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13
s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13



 ,

(29)
with

sij := sin(θij) and cij := cos(θij) . (30)

The three angles areθ12, θ23 andθ13, the complex phase describing CP-violation
is δ13. This parameterisation is exact and it is typically used fornumerical calcu-
lations. There is also a very ostensive parameterisation, the so-calledWolfenstein
parameterisation [15]. This parameterisation uses the experimentally foundhi-
erarchyVud ≈ 1 ≈ Vcs andVus ≈ 0.22551 =: λ to perform a Taylor expansion
in λ. Here one also has 3 real parametersλ, A andρ and one complex coupling
denoted byη.

VCKM =













1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1













. (31)

In this form the hierarchies can be read of very nicely. Transitions within a family
are strongly favoured, transitions between the first and second family are sup-
pressed by one power ofλ, transition between the second and third family are
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suppressed by two powers ofλ and transitions between the first and the third fam-
ily by at least three powers. The most recent numerical values for the Wolfenstein
parameter read (status January 2015 from the CKMfitter page [16])

λ = 0.22548+0.00068
−0.00034 , (32)

A = 0.810+0.018
−0.024 , (33)

ρ̄ = 0.1453+0.0133
−0.0075 , (34)

η̄ = 0.343+0.011
−0.012 . (35)

Remarks:

• The non-vanishing value ofη describes CP-violation within the standard
model.

• Numerically one gets|Vub| = 0.00355 = λ3.78699, soVub is more of the
orderλ4 thanλ3 as historically assumed.

For the values of all CKM elements one gets (status January from the CKMfitter
page [16])

VCKM =





0.974242+0.000079
−0.000158 0.22548+0.00068

−0.00034 0.00355+0.00017
−0.00015

0.22534+0.00068
−0.00034 0.97341+0.00011

−0.00018 0.04117+0.00090
−0.00114

0.00855+0.00021
−0.00027 0.04043+0.00088

−0.00112 0.999146+0.000046
−0.000038



 .

(36)

Remarks:

• From this experimental numbers we clearly can see, that the CKM-matrix is
non-diagonal. So our initial ansatz with non-diagonal Yukawa interactions
was necessary!

• One also clearly sees the hierarchy of the CKM-matrix. Transitions within
a family are clearly favoured, while changes of the family are disfavoured.
In the lepton sector there is a very different hierarchy.

• The above given numbers have very small uncertainties. Thisrelies cru-
cially on the assumption of having a unitary3 × 3 CKM matrix. Giving
up this assumption, e.g. in models with four fermion generations the uncer-
tainties will be considerably larger.
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2.6 Exercise II:

Derive the Wolfenstein parameterisation!

1. Experimentally it was known that1 ≈ Vud > Vus ≫ Vub. Start by defining
the expansion parameterλ := Vus and derivec13 ≈ 1.

2. Write down the standard parameterisation of the CKM-matrix, wheres12
andc12 are expressed in terms ofλ. Include corrections up to orderλ3.

3. Looking closer at experimental data one finds1 ≈ Vud > Vus > Vcb > Vub.
Make the ansatzVcb =: Aλ2 andVub =: Aλ3(ρ− iη) and express the whole
CKM matrix in terms ofλ.

2.7 A clue to explain existence

In this section we will motivate the huge interest in effectsrelated to the violation
of a mathematical symmetry called CP (Charge Parity). This is an extremely
fundamental issue and it is related to the origin of matter inthe universe.
There is an observed asymmetry between matter and antimatter in the universe,
which can be parameterised by the baryon to photon ratioηB, which was measured
by PLANCK [25] to be

ηB =
nB − nB̄

nγ
≈ (6.05± 0.07) · 10−10 (37)

nB is the number of baryons in the universe,nB̄ the number of anti-baryons and
nγ the number of photons. The tiny5 matter excess is responsible for the whole
visible universe! In the very early universe the relative excess of matter over
antimatter was much smaller, compared to now

ηB(t ≈ 0) =
10000000001− 10000000000

nγ
(38)

ηB(today) =
1− 0

nγ
(39)

Now we have two possibilities for the initial conditions:

• ηB(t = 0) = 0: this seems to benatural, but how can thenηB(t > 0) 6= 0
be produced?
Starting from symmetric initial conditions in the big bang everything should

5The numerical value is obtained by investigating primordial nucleosynthesis and the cosmic
microwave background, see e.g. the PLANCK homepage.
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have annihilated itself, which we do not observe (because weexist!) or there
are regions in the universe, which consist of antimatter, sothat there is in
total an exactly equal amount of matter and antimatter. Thiswe also do not
observe.6

• ηB(t = 0) 6= 0: is not excluded, even if it might seemunnatural. But
during an inflationary phase (and everything points towardsthis scenario)
every finite value ofηB will be almost perfectly thinned out to zero.

Sakharov has shown in 1967 [26] how one can solve this puzzle.If the basic
laws of nature have certain properties, then one can create abaryon asymmetry
dynamically (Baryogenesis). In order not to be wiped out by inflation one expects
that the asymmetry has to be produced somewhere between the time of inflation
(T ≥ 1016 GeV) and the electroweak phase transition (T ≈ 100 GeV). The basics
properties Sakharov found are:

a) C and CP-Violation: C is the charge parity, it changes the sign of the
charges of the elementary particles; P is the usual parity, aspace reflection.
The violation of parity in the weak interaction was theoretically proposed
in 1956 by Lee and Yang (NP 1957) [27] and almost immediately verified
by the experiment of Wu [28]. In 1964 a tiny CP violation effect was found
in the neutral K-system - in an observable denoted byǫK - by Christenson,
Cronin, Fitch, Turlay [29] (NP 1980).
We know three ways of implementing CP violation in our models:

1. via complex Yukawa-couplings, as in the CKM matrix.

2. via complex parameters in the Higgs potential, see e.g. 2 Higgs dou-
blett models in the end of the lectures

3. a la strong CP - this we will not be discussed in this lecturenotes

b) B Violation: The necessity to violate the baryon number is obvious.
Examples for baryon number violating processes are:

1. Sphalerons in the SM

2. Decay of heavy X, Y Bosons in GUTs - triggers proton decay

3. SUSY without R-Parity - triggers proton decay

c) Phase out of thermal equilibrium: In order to decide whether one is in
thermal equilibrium or not one has to compare the expansion rate of the uni-
verse with the reaction rate of processes that can create a matter-antimatter

6See e.g. the homepage of theAlphaMagneticSpectrometer experiment; the current bound
for the anti-He to He ratio will be improved from10−6 to 10−9.
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asymmetry. In principle the universe is after inflation almost always in ther-
mal equilibrium. Deviations of it are possible via

– Out-of-equilibrium decay of heavy particles, e.g.

∗ Nucleo synthesis

∗ Decoupling of Neutrinos

∗ Decoupling of Photons

– First order phase transitions, e.g.

∗ Inflation

∗ Electroweak phase transition?

Remarks:

• Sakharov’s paper was sent to the journal on 23.9.1966 and published on
1.1.1967; it was cited for the first time in 1976 by Okun and Zeldovich;
beginning of 2015 it has 2080 citations⇒ be patient with your papers!

• The paper is quite cryptic; it discusses the decays of maximons (m ≈
MP lanck)...

• All three ingredients have to be part of the fundamental theory, not only in
principal, but also to a sufficient extent.

For lecture notes on baryogenesis see e.g. [30, 31, 32, 33]. Currently there a three
main types of models discussed, which could create a baryon asymmetry.

2.7.1 Electroweak Baryogenesis

Here one assumes that the baryon asymmetry will be created during the elec-
troweak phase transition at an energy/temperature of aboutT ≈ 100GeV. The first
candidate for this scenario is clearly the standard model. So let us see, whether
the Sakharov criteria might be fulfilled within the standardmodel.

a) In the standard model C and CP violation are implemented. For a measure
of the magnitude of CP violation one typically uses the Jarlskog invariant
J [34], which reads in the standard model

J = (m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s−m2

d) ·A .
(40)

mq denotes the mass of the quarkq andA the area of the unitarity triangle,
which will be discussed below.A is large, if the CKM-elements have also
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large imaginary, i.e. CP violating contributions. NormalisingJ to the scale
of the electroweak phase transition one gets a very small number:

J

(100GeV)12
≈ 10−20 ≪ 6× 10−10 ≈ ηB (41)

see e.g. [35]. So it seems that the amount of CP violation in the standard
model is not sufficient to explain the baryon asymmetry.

b) In the standard model baryon number (B) and lepton number (L) are con-
served to leading order in perturbation theory. Including quantum effects (in
particular the Adler-Bell-Jackiew anomaly) one finds thatB andL are no
longer conserved separately, butB − L is still conserved. Considering also
non-perturbative effects (there exist no Feynman diagrams!), in particular
thermal effects one can create the needed violation ofB. These effects are
calledsphalerons(greek: weak, dangerous) [36, 37]. At temperatures T<
100 GeV this effect is exponentially suppressed, while it grows very rapidly
above 100 GeV.

c) Finally one needs to be out of thermal equilibrium at 100 GeV. During a
second order phase transition the parameters change in a continuous way
and one stays always in thermal equilibrium:

T=0

C

effV [φ]

φ

T>>TC T>T

In order to leave thermal equilibrium a first order transition is needed:
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T>TC T=T

T=0

C

effV [φ]

φ

To answer the question of the nature of the electroweak phasetransition one
has to calculate the effective Higgs potential (classical potential plus quan-
tum effects) in dependence of the Higgs mass at finite temperature. One
finds for massesmH < 72 GeV a first order transition, while the transition
is continuous for higher masses, see e.g. [38, 39, 40, 41].

1st order

2nd order
smooth
crossover

mH
75 GeV

T
sym. phase

phase
broken 

Thus the experimental value of the Higgs mass of 126 GeV clearly points
towards a continuous transition within the standard model.

To summarise: in the standard model we have C and CP violation, we have B
number violation and we have a possibility to have a phase outof thermal equi-
librium. Looking closer one finds however that the amount of CP violation is not
sufficient and that the experimental measured value of the Higgs mass is too high
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to give a first order phase transition.
Thus we have to extend the standard model in order to create the observed baryon
asymmetry.This is a very strong indication for physics beyond the standard
model.
Staying with baryogenesis at the electroweak scale there are several possibilities
to extend the standard model in such a way that the Sakharov criterias can be
fulfilled, e.g.:

• Extended fermion sector, e.g. fourth generation models

– The Jarlskog measure can easily be increased by 10 orders of magni-
tude [42]

– Non perturbative effects due to large Yukawa couplings might modify
the effective potential

The most simple fourth generations are, however, excluded by the measured
properties of the Higgs boson [43, 44, 45]

• Extended Higgs sectors, e.g. 2 Higgs-Doublet model:

– New CP violating effects can appear in the Higgs sector, see e.g. [46]

– Now a first order phase transition is possible, see e.g. [47, 48, 49, 50,
51, 52, 53].

• SUSY without R-parity:

– New CP-violating effects possible

– First order phase transition possible for certain mass spectra, see e.g.[54]

• ?Out-of-Equilibrium decay of new unknown particles with massesm ≈ 100
GeV???

• ...

2.7.2 GUT-Baryo genesis

Here one assumes that the baryon asymmetry will be created during the elec-
troweak phase transition at an energy/temperature of aboutT ≈ 1015 GeV, the
unification scale of the strong, weak and electromagnetic interaction.

a) Due to the extended Higgs sector there is a lot of room for new CP violating
effects.
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b) Baryon number violating processes are now already induced pertubatively
by the decays of the heavy X and Y bosons.

c) When the temperature falls below the GUT-scale (≈ mX,Y ), the production
and the decay of the X,Y leave the equilibrium.

If a baryon asymmetry is produced at a very high scale, like the GUT scale,
then there is always the danger that this asymmetry will be washed out later by
sphaleron processes. Wash-out Processes (i.e. B asymmetry→ B symmetry via
inverse decay and rescattering) were investigated e.g. by Rocky Kolb (Post-Doc)
and Stephen Wolfram (Grad. Student, founder of MATHEMATICA) [55, 56].

2.7.3 Lepto genesis

For a review of lepto genesis see e.g. [57].
There is no experimental bound on

ηL =
nL − nL̄

nγ
, (42)

since charged leptons can always transform in more or less invisible neutrinos.
The basic idea of lepto genesis (1986, Fukugita and Yanagida[58]) consists of
two steps:

1. Produce first a lepton asymmetry via neutrino processes (in order not to
violate charge conservation). For this a violation of CP is mandatory.
One possibility would be the decay of super-heavy right-handed Majorana
neutrinos (∆L = 2). Such neutrinos could also explain the origin of the
small neutrino masses.

2. Transform the lepton asymmetry into a baryon asymmetry via Sphalerons
(B + L is violated, whileB − L is conserved).

2.8 CP violation

A violation of the CP symmetry corresponds to the appearanceof a complex cou-
pling in the theory. In the standard model this happens in theYukawa sector, in
particular the CKM elements can be complex if there are at least three generations
of fermions.
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3 Flavour phenomenology

3.1 Overview

Decays of hadrons containing a beauty-quark or a charm-quark are perfectly suited
for:

a) Precise determination of the standard model parameter, like CKM ele-
ments and quark masses.

b) Indirect search for new physics- heavy new particle might might give
virtual contributions that are of comparable size as the standard model con-
tributions.

c) Understanding of the origin and the mechanism ofCP violation.

Having a closer look at these decays, one finds:

a) The CKM parameter appearing in decays of b-hadrons are among the least
well known:Vcb, Vub, Vtb, Vts andVtd.

b) Certain decay modes, e.g.b → ss̄s can not happen at tree-level in the
standard model since we do not have FCNCs. But such decays canproceed
via loop effects in the standard model. The probability for penguin decays
is typically much smaller than for tree-level decays since penguins are an
higher order effect in the weak interaction. Virtual corrections due to heavy
new physics particles might have a similar size as penguin decays. Although
being only a tiny correction to tree-level decays, new physics effects might
be a large effect in loop induced b-decays and therefore these decay modes
are especially well suited for the search for new physics.

c) CP violating effects are expected to be large in theb-system. In theK-
system these effects are of the order of10−3 (the analogue ofǫK in the
B-system are the semi leptonic asymmetries which are also very small, see
the discussion below). Bigi and Sanda pointed out in 1981 that the size of
CP violation in exclusive decays of B-mesons might be large,i.e. of order
one [59].7

7This was based on a work by Carter and Sanda [60]. Ashton Baldwin ”Ash” Carter (born on
September 24, 1954) was nominated by President Barack Obamaon December 5, 2014 to become
the United States Secretary of Defense.
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3.2 The unitarity triangle

This programme is closely related to the determination of the CKM-matrix and in
particular to the determination of the so-called unitaritytriangle. By construction
we have

VCKMV
†
CKM = 1 . (43)

In the case of three generations this gives us nine conditions. Three combinations
of CKM elements, whose sum is equal to one and six combinations whose sum is
equal to zero, in particular

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (44)

Using the Wolfenstein parameterisation we get for this sum

Aλ3 [(ρ+ iη)− 1 + (1− (ρ+ iη))] = 0 . (45)

SinceA andλ are already quite well known one concentrates on the determina-
tion of ρ andη. The above sum of three complex numbers can be represented
graphically as a triangle, the so-calledunitarity triangle, in the complexρ − η
plane.

ρ+i η 1−ρ−i η

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

The determination of the unitarity triangle is in particular interesting since a non-
vanishingη describes CP-violation in the standard model.
In principle the following strategy is used (for a review seee.g.[61]):
Compare the experimental value of some flavour observable with the correspond-
ing theory expression, whereρ andη are left as free parameters and plot the con-
straint on these two parameters in the complexρ− η plane e.g.:

34



• The amplitude of a beauty-quark decaying into an up-quark isproportional
to Vub. Therefore the branching fraction of B-mesons decaying semi lep-
tonically into mesons that contain the up-quark from the beauty decay is
proportional to|Vub|2:

B(B → Xueν) = ãtheory· |Vub|2 = atheory·
(

ρ2 + η2
)

,

⇒ ρ2 + η2 =
BExp.(B → Xueν)

atheory
, (46)

wherea contains the result of the theoretical calculation. By comparing
experiment and theory for this decay and leavingρ andη as free parameters
we get a constraint in theρ − η-plane in the form of a circle around(0, 0)
with the radiusBExp.(B → Xueν)/atheory.

• Investigating the system of neutral B-mesons one finds that the physical
eigenstates are a mixture of the flavour eigenstates. This effect will be dis-
cussed in more detail below. As a result of this mixing the twophysical
eigenstates have different masses, the difference of the two masses is de-
noted by∆MBd

. Theoretically one finds∆MBd
∝ |Vtd|2 ∝ (ρ− 1)2 + η2.

Comparing experiment and theory we obtain a circle around(1, 0).

• Comparing theory and experiment for the CP-violation effect in the neutral
K-system, denoted by the quantityǫK , we get an hyperbola in theρ − η-
plane.

The overlap of all these regions gives finally the values forρ andη. In the fol-
lowing figure all the above discussed quantities are included schematically. The
constraint from the semi leptonic decay is shown in green, the constraint from
B-mixing is shown in blue and the hyperbolic constraint fromǫk is displayed in
pink. This figure is just meant to visualise the method in principle, later on we
show a plot with the latest experimental numbers.
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Remarks:

• The above programme was performed in the last years with great success!
As a result of these efforts Kobayashi and Maskawa were awarded with the
Nobel Prize in 2008.

• The presented method to determineρ andη is equivalent to an indirect de-
termination of the angleβ. Bigi and Sanda have shown that this angle can be
extracted directly, with almost no theoretical uncertainty from the following
CP-asymmetry in exclusive B-decays [59].

aCP :=
Γ(B → J/Ψ+KS)− Γ(B̄ → J/Ψ+KS)

Γ(B → J/Ψ+KS) + Γ(B̄ → J/Ψ+KS)
∝ sin 2β (47)

Because of its theoretical cleanness this decay mode is called thegold-
plated mode.

3.3 Flavour experiments

In order to be able to measure flavour quantities as preciselyas possible one needs
a huge number of B-mesons. So the obvious aim was to build accelerators that
create as many B-mesons as possible. Currently there are twoclasses of accelera-
tors that can fulfil this task:
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• So-calledB factories. This aree+ − e−-colliders, that seem to be in partic-
ular advantageous to perform precision measurements because of their low
background. This was done since 1999 in SLAC, Stanford, USA with the
PEP accelerator and the BaBar detector and in KEK, Japan withthe Belle
detector. Currently the machine and the detector in KEK are upgraded to a
Super B factory.
B-mesons will then be produced according to the following reaction

e+ − e− → Υ(= bb̄− resonances)→ B + B̄ . (48)

There are several excitations of theΥ-resonance, with different masses and
different production-cross-sections.

Now one has to check, whether the production of B-mesons is kinemati-
cally allowed. The lightest mesons have a mass of2mB±,0 ≈ 10559 MeV,
therefore our machine has to run on theΥ(4s)-resonance, to have the high-
est possible production cross section. The price to pay is, that we can not
produce anyBs, Bc or Λb in such a machine. To produce alsoBs mesons
one has to switch to theΥ(5s)-resonance, with the prize of a lower cross
section - this was only done at KEK.

Another problem we have is the short lifetime of the b-hadrons,τb ≈ 10−12

s. In order to be able to measure the tracks of the b-hadrons, it was de-
cided to build asymmetric accelerators, where the producedB-mesons have
a large boost and therefore due to time dilatation a lifetimelong enough to
be measured.
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• Hadron colliders like the TeVatron at Fermilab (p − p̄-collisions) and the
LHC at CERN (p−p-collisions) were not primarily built for flavour physics,
but they have hugeb− and charm production cross sections

σ(pp→ b̄b+X) = 284µb (7TeV) (49)

σ(pp→ c̄c+X) = 6100µb (7TeV) (50)

σ(e+e− → b̄b) ≈ 1nb (BaBar, Belle) (51)

This means that an integrated luminosity of 1fb−1 8 at LHC corresponds to
6 × 1012 cc̄ pairs, approximately 1/6 of them is detected by LHCb. Thus
the currently achieved 3 fb−1 correspond to about1011 detectedbb̄ pairs,
which has to be compared with about109 bb̄ pairs at Belle. Moreover in
addition toBd andB+ the heavier hadrons likeBs, Bc andΛb are accessible
in hadron machines. This led to the fact that recently the detector LHCb (for
certain decay modes also ATLAS and CMS) started to dominate the field of
experimental heavy flavour physics.

In the following table we give a brief list of some accelerators producing b-
hadrons. Besides the kind of accelerated particles and their energy theluminosity
L is one of the most important key numbers of an accelerator.

8The number of events of a certain kind is related to the cross section of this event and the
luminosity in the following way

# of events=
∫

Ldt · σ (52)

∫

Ldt is also called the integrated luminosity and it is measured in units of e.g. fb−1.
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machine location particles Exp. circum- luminosity
energy ference [cm−2s−1]

LEP CERN e+ + e− ALEPH, DELPHI 27 km 1032

’89 - ’01 Geneva, CH 105 GeV OPAL, ZEUS

TEVATRON FERMILAB p+ p̄ CDF 6.3 km 4 · 1032
’87 - 30.9.2011 Chicago, USA 1 TeV D 0 10fb−1

CESR CLEO e+ + e− 0.8 km 1.3 · 1033
’79 - Cornell, USA 6 GeV
PEP-II SLAC e+ + e− BaBar 2.2 km 1.2069 · 1034

Stanford e+ : 3.1GeV (Peak)
’99 - ’08 USA e− : 9 GeV 557/433(4s)fb−1

KEKB KEK e+ + e− Belle 0.8 km 2.1083 · 1034
e+ : 3.5 GeV (Peak)

’99 - ’10 Japan e− : 8 GeV 1040fb−1

LHC CERN p+ p LHCb 27 km 8 · 1033
’10 - ’13 p : 8 TeV (Peak)
’15 - ... Geneva, CH 3fb−1 (LHCb)
SuperKEKB KEK e+ + e− Belle 0.8 km 8 · 1035

e+ : 4 GeV (Peak)
’17/’18 - Japan e− : 7 GeV 50ab−1 in ’22/’23

3.4 Current status of flavour phenomenology

These experiments have achieved unprecedentedly high precision in flavour physics,
for a recent review see, e.g. [62] and references therein; some highlights are:

• Precise determination of the CKM matrix:

– Assuming the validity of the standard model, fits of the CKM matrix
give very precise values, see Eq.(36).

– In particular the previously quite unknown elementsVcb andVub are
now strongly constrained.

– One of the basic motivations of the B-factories was a direct determi-
nation of the angleβ in the unitarity triangle via investigation of the
decayBd → J/Ψ+Ks. A combination of the results from BaBar and
Belle gives

sin 2β = 0.679± 0.020 . (53)

This result is in very good agreement with the indirect determination
of β via fits of the CKM matrix.

– There is also a precise determination of the angleα as well as the first
direct measurement of the angleγ available. The size ofγ is directly
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proportional to the size of CP violation in the CKM matrix. The most
precise value for this value stems from LHCb

γ =
(

73+9
−10

)◦
. (54)

All these achievements were awarded in 2008 with the Nobel Prize for
Kobayashi and Maskawa.

• CP violation:

– Large CPV in B decays, in particularindirect CP-violation(= the
physical eigenstate is not a pure CP-eigenstate) was found in the decay
Bd → J/Ψ+Ks. This was the first discovery of CP-violation outside
the K-system.

– Direct CP-violation(= the decay itself violates CP) was discovered,
e.g. in the decays

Bd → π+π− , K+ + π− , (55)

B+ → DK+ , (56)

Bs → K−π+ . (57)

– There are hints for direct CPV in the charm sector at the several per
mille level.

– CPV effects in mixing of neutralB-mesons are searched for inten-
sively; these effects are tiny in the SM - so they present a nice nulltest.

• The lifetimes of the B-mesons and b-baryons were measured with a high
precision. Since the lifetime is one of the fundamental properties of a par-
ticle, it is very desirable to understand this quantities theoretically. More-
over, lifetimes are expected to be only marginally affectedby new physics
contributions, thus they present a very clean test of our theoretical tools to
describe heavy hadron decays, in particular the expansion in inverse powers
of the heavy quark mass. We will present below the state of theart in cal-
culating lifetimes of heavy hadrons, see [22] for a review.
Of particular interest was the measurement of the decay ratedifference in
the neutralBs system,∆Γs by the LHCb collaboration from 2012 on, as
well as newer results from ATLAS and CMS. This measurement provided
a strong confirmation of the validity of the Heavy Quark Expansion.

• Numerous rare decays likeBs → µ+µ−, B → Xsγ, Bd → K∗µ+µ−, . . .
were measured with branching fractions as low as3 · 10−9. These modes
are ideal for the search for new physics contributions, as well as the results
fromB-mixing.

40



• Numerous hadronic decays likeB → ππ,Kπ,KK, . . . were measured,
with branching fractions of the order of10−5 and below. These decay modes
are an interesting testing ground for attempts to describe the strong interac-
tion effects in hadronic decays, which is more complicated than lifetimes.

In the following figure the current status (January 2015) of the determination of
the unitarity triangle is shown.
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All measurements agree very well with the CKM mechanism, nevertheless there is
still some sizeable room for new physics effects and we have about 10 deviations
of experiment and standard model at the three sigma level.
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4 Weak decays I - Basics

4.1 The myon decay

The muon decayµ− → νµ e− ν̄e represents the most simple weak decay, be-
cause there are no QCD effects involved.9 This process is given by the following
Feynman diagram.

Hence the total decay rate of the muon reads (see, e.g., [63] for an early reference)

Γµ→νµ+e+ν̄e =
G2

Fm
5
µ

192π3
f

(

me

mµ

)

=
G2

Fm
5
µ

192π3
c3,µ . (58)

GF = g22/(4
√
2M2

W ) denotes the Fermi constant andf the phase space factor for
one massive particle in the final state. It is given by

f(x) = 1− 8x2 + 8x6 − x8 − 24x4 ln(x) . (59)

The coefficientc3,µ is introduced here to be consistent with our later notation.The
result in Eq.(58) is already very instructive, since we get now for the measurable
lifetime of the muon

τ =
1

Γ
=

192π3

G2
Fm

5
µf
(

me

mµ

) . (60)

Thus the lifetime of a weakly decaying particle is proportional to the inverse of
the fifth power of the mass of the decaying particle. Using themeasured values
[9] for GF = 1.1663787(6) · 10−5 GeV−2 , me = 0.510998928(11) MeV and
mµ = 0.1056583715(35) GeV we predict10 the lifetime of the muon to be

τTheo.
µ = 2.18776 · 10−6 s , (61)

9This statements holds to a high accuracy. QCD effects arise for the first time at the two loop
order.

10This is of course not really correct, because the measured muon lifetime was used to determine
the Fermi constant, but for pedagogical reasons we assume that the Fermi constant is known from
somewhere else.
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which is in excellent agreement with the measured value [9] of

τExp.
µ = 2.1969811(22) · 10−6 s . (62)

The remaining tiny difference (the prediction is about0.4% smaller than the exper-
imental value) is due to higher order electro-weak corrections. These corrections
are crucial for a high precision determination of the Fermi constant. The domi-
nant contribution is given by the 1-loop QED correction, calculated already in the
1950s [64, 65]:

c3,µ = f

(

me

mµ

)[

1 +
α

4π
2

(

25

4
− π2

)]

. (63)

Taking this effect into account (α = 1/137.035999074(44) [9]) we predict

τTheo.
µ = 2.19699 · 10−6 s , (64)

which is almost identical to the measured value given in Eq.(62). The complete 2-
loop QED corrections have been determined in [66], a review of loop-corrections
to the muon decay is given in [67] and two very recent higher order calculations
can be found in, e.g., [68, 69].
The phase space factor is almost negligible for the muon decay - it readsf(me/mµ) =
0.999813 = 1 − 0.000187051 - but it will turn out to be quite sizable for a decay
of a b-quark into a charm quark.

4.2 The tau decay

Moving to the tau lepton, we have now two leptonic decay channels as well as
decays into quarks:

τ → ντ +















e− + ν̄e
µ− + ν̄µ
d+ ū
s+ ū

.
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Heavier quarks, like charm- or bottom-quarks cannot be created, because the light-
est meson containing such quarks (D0 = cū;MD0 ≈ 1.86GeV) is heavier than
the tau lepton(mτ = 1.77682(16) GeV). Thus the total decay rate of the tau
lepton reads

Γτ =
G2

Fm
5
τ

192π3

[

f

(

me

mτ

)

+ f

(

mµ

mτ

)

+Nc |Vud|2 g
(

mu

mτ

,
md

mτ

)

+Nc |Vus|2 g
(

mu

mτ

,
ms

mτ

)]

=:
G2

Fm
5
τ

192π3
c3,τ . (65)

The factorNc = 3 is a colour factor andg denotes a new phase space function,
when there are two massive particles in the final state. If we neglect the phase
space factors (f(me/mτ ) = 1 − 7 · 10−7; f(mµ/mτ ) = 1 − 0.027; ...) and if we
useV 2

ud + V 2
us ≈ 1, then we getc3,τ = 5 and thus the simple approximate relation

ττ
τµ

=

(

mµ

mτ

)5
1

5
. (66)

Using the experimental values forτµ,mµ andmτ we predict

τTheo.
τ = 3.26707 · 10−13 s , (67)

which is quite close to the experimental value of

τExp.
τ = 2.906(1) · 10−13 s . (68)

Now the theory prediction is about12% larger than the measured value. This is
mostly due to sizable QCD corrections, when there are quarksin the final state -
which was not possible in the muon decay. These QCD corrections are currently
calculated up to five loop accuracy [70], a review of higher order corrections can
be found in [71].
Because of the pronounced and clean dependence on the strongcoupling, tau de-
cays can also be used for precision determinations ofαs, see, e.g., the review [72].
This example shows already, that a proper treatment of QCD effects is mandatory
for precision investigations of lifetimes. In the case of meson decays this will even
be more important.

4.3 Meson decays - Definitions

As a starting point of the discussion of weak decays of mesons, we introduce two
classes of decays -inclusiveandexclusivedecays.

• In exclusive modes every final state hadron is identified.
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This is in principle what experiments can do well, while theory has the
problem to describe the hadronic binding in the final states.For the quark-
level decaȳb→ c̄ c s̄ we have among many more the following options:

B0
d → D∗(2010)−D∗+

s ,

→ D−D∗+
s ,

→ D∗(2010)−D+
s ,

→ D−D+
s .

• In inclusive modes we only care about the quarks in the final states:

b̄→ c̄ c s̄ .

This is clearly theoretically easier, while experiments have the problem of
summing up all decays that belong to a certain inclusive decay mode.

To get a feeling for the arising branching fractions we list the theory value [20]
for b→ c c̄ s, with some measured [9] exclusive branching ratios.

Br(b→ cc̄s) = (23± 2)% , (69)

Br(D∗− D∗+
s ) = (1.77± 0.14)% , (70)

Br(D∗− D+
s ) = (8.0± 1.1) · 10−3 , (71)

Br(D− D∗+
s ) = (7.4± 1.6) · 10−3 , (72)

Br(D− D+
s ) = (7.2± 0.8) · 10−3 , (73)

Br(J/Ψ KS) = (8.73± 0.32) · 10−4 . (74)

Here one can already guess that quite some number of exclusive decay channels
has to be summed up in order to obtain the inclusive branchingratio.
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4.4 Charm-quark decay

Before trying to investigate the complicated meson decays,let us look at the decay
of free c- andb-quarks. Later on we will show that the free quark decay is the
leading term in a systematic expansion in the inverse of the heavy (decaying)
quark mass - the Heavy Quark Expansion (HQE).
A charm quark can decay weakly into a strange- or a down-quarkand aW+-
boson, which then further decays either into leptons (semi-leptonic decay) or into
quarks (non-leptonic decay).

Calculating the total inclusive decay rate of a charm-quarkwe get

Γc =
G2

Fm
5
c

192π3
|Vcs|2c3,c , (75)

with

c3,c = g

(

ms

mc

,
me

mc

)

+ g

(

ms

mc

,
mµ

mc

)

+Nc|Vud|2h
(

ms

mc

,
mu

mc

,
md

mc

)

+Nc|Vus|2h
(

ms

mc
,
mu

mc
,
ms

mc

)

+

∣

∣

∣

∣

Vcd
Vcs

∣

∣

∣

∣

2{

g

(

md

mc

,
me

mc

)

+ g

(

md

mc

,
mµ

mc

)

+Nc|Vud|2h
(

md

mc

,
mu

mc

,
md

mc

)

+Nc|Vus|2h
(

md

mc
,
mu

mc
,
ms

mc

)}

.(76)

h denotes a new phase space function, when there are three massive particles in the
final state. If we set all phase space factors to one (f(ms/mc) = f(0.0935/1.471) =
1 − 0.03, . . . with ms = 93.5(2.5) MeV [9]) and use|Vud|2 + |Vus|2 ≈ 1 ≈
|Vcd|2 + |Vcs|2, then we get|Vcs|2c3,c = 5, similar to theτ decay. In that case we
predict a charm lifetime of

τc =

{

0.84 ps
1.70 ps

for mc =

{

1.471 GeV (Pole-scheme)
1.277(26) GeV (MS − scheme)

.(77)
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These predictions lie roughly in the ball-bark of the experimental numbers for
D-meson lifetimes, but at this stage some comments are appropriate:

• Predictions of the lifetimes of free quarks have a huge parametric depen-
dence on the definition of the quark mass (∝ m5

q). This is the reason,
why typically only lifetime ratios (the dominantm5

q dependence as well
as CKM factors and some sub-leading non-perturbative corrections cancel)
are determined theoretically. We show in this introductionfor pedagogical
reasons the numerical results of the theory predictions of lifetimes and not
only ratios. In our case the value obtained with theMS − scheme for the
charm quark mass is about a factor of 2 larger than the one obtained with
the pole-scheme. In LO-QCD the definition of the quark mass iscompletely
arbitrary and we have these huge uncertainties. If we calculate everything
consistently in NLO-QCD, the treatment of the quark masses has to be de-
fined within the calculation, leading to a considerably weaker dependence
of the final result on the quark mass definition.
Bigi, Shifman, Uraltsev and Vainshtein have shown in 1994 [73] that the
pole mass scheme is always affected by infra-red renormalons, see also the
paper of Beneke and Braun [74] that appeared on the same day onthe arXiv
and the review in this issue [75]. Thus short-distance definitions of the
quark mass, like theMS-mass [10] seem to be better suited than the pole
mass. More recent suggestions for quark mass concepts are the kinetic mass
from Bigi, Shifman, Uraltsev and Vainshtein [76, 77] introduced in 1994,
the potential subtracted mass from Beneke [78] and theΥ(1s)-scheme from
Hoang, Ligeti and Manohar [79, 80], both introduced in 1998.In [20] we
compared the above quark mass schemes for inclusive non-leptonic decay
rates and found similar numerical results for the differentshort distance
masses. Thus we rely in this review - for simplicity - on predictions based
on theMS-mass scheme and we discard the pole mass, even if we give sev-
eral times predictions based on this mass scheme for comparison.
Concerning the concrete numerical values for the quark masses we also take
the same numbers as in [20]. In that work relations between different quark
mass schemes were strictly used at NLO-QCD accuracy (higherterms were
discarded), therefore the numbers differ slightly from thePDG [9]-values,
which would result in

τc =

{

0.44 ps
1.71 ps

for mc =

{

1.67(7) GeV (Pole-scheme)
1.275(25) GeV (MS − scheme)

.(78)

Since our final lifetime predictions are only known up to NLO accuracy and
we expand every expression consistently up to orderαs, we will stay with
the parameters used in [20].
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• Taking only the decay of thec-quark into account, one obtains the same
lifetimes for all charm-mesons, which is clearly a very bad approximation,
taking the large spread of lifetimes of differentD-mesons into account. Be-
low we will see that in the case of charmed mesons a very sizable contribu-
tion comes from non-spectator effects where also the valence quark of the
D-meson is involved in the decay.

• Perturbative QCD corrections will turn out to be very important, because
αs(mc) is quite large.

• In the above expressions we neglected, e.g., annihilation decays likeD+ →
l+ νl, which have very small branching ratios [9] (the corresponding Feyn-
man diagrams have the same topology as the decayB− → τ−ν̄τ , that was
mentioned earlier). In the case ofD+

s meson the branching ratio intoτ+ ντ
will, however, be sizable [9] and has to be taken into account.

Br(D+
s → τ+ ντ ) = (5.43± 0.31)% . (79)

In the framework of the HQE the non-spectator effects will turn out to be sup-
pressed by1/mc and sincemc is not very large, the suppression is also not ex-
pected to be very pronounced. This will change in the case ofB-mesons. Be-
cause of the larger value of theb-quark mass, one expects a better description of
the meson decay in terms of the simpleb-quark decay.

4.5 Bottom-quark decay

Calculating the total inclusive decay rate of ab-quark we get

Γb =
G2

Fm
5
b

192π3
|Vcb|2c3,b , (80)
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with
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{
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+Nc|Vcd|2h
(

mc

mb

,
mc

mb

,
md

mb

)

+Nc|Vcs|2h
(

mc

mb

,
mc

mb

,
ms

mb

)}

+

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

2{

g

(

mu

mb
,
me

mb

)

+ g

(

mu

mb
,
mµ

mb

)

+ g

(

mu

mb
,
mτ

mb

)

+Nc|Vud|2h
(

mu

mb

,
mu

mb

,
md

mb

)

+Nc|Vus|2h
(

mu

mb

,
mu

mb

,
ms

mb

)

+Nc|Vcd|2h
(

mu

mb
,
mc

mb
,
md

mb

)

+Nc|Vcs|2h
(

mu

mb
,
mc

mb
,
ms

mb

)}

.

(81)

In this formula penguin induced decays have been neglected,they will enhance
the decay rate by several per cent, see [20]. More important will, however, be the
QCD corrections. To proceed further we can neglect the masses of all final state
particles, except for the charm-quark and for the tau lepton. In addition we can
neglect the contributions proportional to|Vub|2 since|Vub/Vcb|2 ≈ 0.01. Using
further |Vud|2 + |Vus|2 ≈ 1 ≈ |Vcd|2 + |Vcs|2, we get the following simplified
formula

c3,b =

[

(Nc + 2)f

(

mc

mb

)

+ g

(

mc

mb

,
mτ

mb

)

+Ncg

(

mc

mb

,
mc

mb

)]

. (82)

If we have charm quarks in the final states, then the phase space functions show
a huge dependence on the numerical value of the charm quark mass (values taken
from [20])

f

(

mc

mb

)

=







0.484
0.518
0.666

for







mPole
c = 1.471 GeV, mPole

b = 4.650 GeV
m̄c(m̄c) = 1.277 GeV, m̄b(m̄b) = 4.248 GeV
m̄c(m̄b) = 0.997 GeV, m̄b(m̄b) = 4.248 GeV

.

(83)
The big spread in the values for the space functions clearly shows again that the
definition of the quark mass is a critical issue for a precise determination of life-
times. The value for the pole quark mass is only shown to visualise the strong
mass dependence. As discussed above short-distance masseslike theMS-mass
are theoretically better suited. Later on we will argue further for usingm̄c(m̄b)
andm̄b(m̄b) - so both masses at the scalemb -, which was suggested in [81], in
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order to sum up large logarithms of the formαn
s (mc/mb)

2 logn(mc/mb)
2 to all or-

ders. Thus only the result usinḡmc(m̄b) andm̄b(m̄b) should be considered as the
theory prediction, while the additional numbers are just given for completeness.
The phase space function for two identical particles in the final states reads [82,
83, 84, 85] (see [86] for the general case of three different masses)

g(x) =
√
1− 4x2

(

1− 14x2 − 2x4 − 12x6
)

+24x4
(

1− x4
)

log
1 +
√
1− 4x2

1−
√
1− 4x2

,

(84)
with x = mc/mb. Thus we get in total for all the phase space contributions

c3,b =















9
2.97
3.25
4.66

for















mc = 0,
mPole

c , mPole
b

m̄c(m̄c), m̄b(m̄b)
m̄c(m̄b), m̄b(m̄b)

. (85)

The phase space effects are now quite dramatic. For the totalb-quark lifetime we
predict (withVcb = 0.04151+0.00056

−0.00115 from [16], for similar results see [17].)

τb = 2.60 ps for m̄c(m̄b), m̄b(m̄b) . (86)

This number is about70% larger than the experimental number for theB-meson
lifetimes. There are in principle two sources for that discrepancy: first we ne-
glected several CKM-suppressed decays, which are however not phase space sup-
pressed as well as penguin decays. An inclusion of these decays will enhance the
total decay rate roughly by about10% and thus reduce the lifetime prediction by
about10%. Second, there are large QCD effects, that will be discussedin the next
subsection; including them will bring our theory prediction very close to the ex-
perimental number. For completeness we show also the lifetime predictions, for
different (theoretically less motivated) values of the quark masses.

τb =















0.90 ps
1.42 ps
2.59 ps
3.72 ps

for















mc = 0, mPole
b

mc = 0, m̄b(m̄b)
mPole

c , mPole
b

m̄c(m̄c), m̄b(m̄b)

. (87)

By accident a neglect of the charm quark mass can lead to predictions that are
very close to experiment. As argued above, only the value in Eq.(86) should
be considered as the theory prediction for theb-quark lifetime and not the ones
in Eq.(87). Next we introduce the missing, but necessary concepts for making
reliable predictions for the lifetimes of heavy hadrons.
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5 Weak decays II - The effective Hamiltonian

5.1 Motivation

Weak decays are dominantly triggered by the exchange of heavy W -bosons. The
decayb→ c+W− → c+ ū+ d is described by the following Feynman diagram.

b

c

d

u

In this problem two scales arises, the mass of the W-boson (≈ 80 GeV) and the
mass of the b-quark (≈ 5 GeV). If one includes now perturbative QCD corrections

W

g

Wg W g

one finds that in the calculation big logarithms arise. As a net result we do not get

a Taylor expansion inαs but an expansion inαs ln
(

m2
b

M2
W

)

≈ 6αs which clearly

spoils our perturbative approach.
Using the fact that the particles triggering the weak decay are much heavier than
the b-quark (mW ≫ mb) one can integrate them out by performing an operator
product expansion (OPE I), see, e.g., [87] for a nice introduction, as well as [88,
89, 90]. Schematically one contracts theW -propagator to a point
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W

b c

u d

b c

u d

ig2V
∗
cb

2
√
2

1

k2 −M2
W

ig2Vud

2
√
2
≈
(

g2

2
√
2

)2
1

M2
W

VCKM =:
GF√
2
VCKM (88)

One is then left with theFermi-theory of the weak interaction. Corrections are
of the order ofk2/M2

W ≈ m2
b/M

2
W ≈ 3.6 · 10−3. Including also QCD-effects we

will arrive at theeffective weak Hamiltonian.

Heff =
GF√
2

[

∑

q=u,c

V q
c (C1Q

q
1 + C2Q

q
2)− Vp

6
∑

j=3

CjQj

]

. (89)

Without QCD corrections only the operatorQ2 arises and theWilson coefficient
C2 = 1. The operatorQ2 has a current-current structure:

Q2 = (c̄αγµ(1− γ5)bα)×
(

d̄βγ
µ(1− γ5)uβ

)

,

=: (c̄αbα)V−A ×
(

d̄βuβ
)

V−A
, (90)

whereα andβ denote colour indices. TheV s describe different combinations of
CKM elements. With the inclusion of QCD one gets additional operators.Q1 has
the same quark structure asQ2, but it has a different colour structure,Q3, .., Q6

arise from penguin decays. Due to renormalisation all Wilson coefficients become
scale dependent functions. NumericallyC2 is of order one,C1 of order 20% and
the penguin coefficients are below5%, with the exception ofC8, the coefficient of
the chromomagnetic operator.
The effective Hamiltonian in Eq.(89) was already obtained in 1974 in LO-QCD
[91], a nice review of the NLO-results is given in [88]. Currently also NNLO
results are available [92]. For the LO Wilson coefficients 1-loop diagrams have to
be calculated, for NLO 2-loop diagrams and for NNLO 3-loop diagrams:
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L O N L O N N L O

Before introducing the concept of the effective Hamiltonian in detail, one
might ask: Why do we not simply calculate in the full standardmodel?
There are several reasons for that:

1. In the standard model large logarithms arise, when one includes virtual cor-
rections due to the strong interaction, which are not negligible. In the end
one will not have an expansion in the strong couplingαs (αs(mb) ≈ 0.2) but
an expansion inln(mb/MW )2αs ≈ 1. So the convergence of the expansion
is not ensured. The general structure of the perturbative expansion reads

1 − − −
αs ln αs − −
α2
s ln

2 α2
s ln α2

s −
α3
s ln

3 α3
s ln

2 α3
s ln α3

s

... ... ... ...

(91)

Calculating within the standard model corresponds to calculate line by line.
Calculating within the framework of the effective Hamiltonian corresponds
to calculate row by row and summing up the large logarithms toall orders.
An example for such a summation is given by the solution of therenormal-
isation group equations for the strong coupling, which is discussed in detail
in the appendix.

2. In the decay of a meson besides perturbatively calculableshort-distance
QCD effects (e.g. the scaleMW ) also long-distance strong interaction ef-
fect arise (e.g. the scaleΛQCD), these are of non-perturbative origin. The
effective Hamiltonian allows a well-defined separation of scales. The high
energy physics is described by the Wilson coefficients, theycan be calcu-
lated in perturbation theory. The low energy physics is described by the ma-
trix elements of the operatorsQ1, .., Q6. Here one needs non-perturbative
methods like lattice QCD or sum rules.
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3. Calculations within the framework of the effective Hamiltonian are techni-
cally simpler, because fewer propagators appear in the formulae.

5.2 The effective Hamiltonian in LO-QCD

In the following we describe the derivation of the LO effective Hamiltonian. We
closely follow the Les Houches Lectures of Andrzej Buras [87].

5.2.1 Basics - Feynman rules

We are using the following set of Feynman rules (corresponding to Buras and
Itzykson-Zuber; but different from e.g. Muta).

µ, a ν, b

g

−iδab gµν
p2

q

i j iδij 6p+m
p2−m2

g
q

q̄

µ, a

i

j

igγµ (T a)ij

γ → f f̄ −ieγµQf (92)
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Z → f f̄ i
g2

2 cos θW
γµ(vf − afγµ) (93)

W → td̄ i
g2

2
√
2
γµ(1− γ5)Vtd (94)

p denotes the momentum of the propagating particle, its direction is from the left
to the right. The indicesi, j denote colour (i, j = 1, 2, 3), the indicesa, b, c denote
the different gluons (a, b, c = 1, . . . , 8) andµ, ν andρ are the usual Dirac indices.
g is the strong coupling and theT as in the quark gluon vertex are the SU(3) ma-
trices.
Compared to QED we have some completely new contributions. Because of
SU(3) being a non-abelian group we get new contributions in the field strength
tensor when constructing a SU(3) gauge theory. This new contribution results in
a self-interaction of the gluon; we get the following new fundamental vertices:
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3-gluon-vertex

k →
q ւ

pտ

µ, a

ν, b

ρ, c

gfabc [gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ] (95)

4-gluon vertex

ρ, c

µ, a

σ, d

ν, b

−ig2
[

fabef cde (gµρgνσ − gµσgνρ) + facef bde (gµνgρσ − gµσgνρ) + fadef bce (gµνgρσ − gµρgνσ)
]

(96)
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with the antisymmetric SU(3) structure constantsfabc.
When trying to quantise a non-abelian gauge field theory the freedom of choosing
arbitrary gauges results in problems which can be circumvented by choosing a
particular gauge. Part of the term in the Lagrangian, which fixes the gauge can
be rewritten in a form that corresponds to virtual particles, the so-calledFaddeev-
Popov-ghosts[93]. These particles have no physical meaning, it is just a calcula-
tional trick to fix the gauge. Although being spin-0 particles, their properties are
governed by the Fermi-Dirac statistics. The following Feynman rules hold for the
ghost fields:

a b −iδab 1
p2

pր
µ, b

c

a

−gf abcpµ

Note that we used a convention where vertices have upper Dirac indices and the
gluon propagator has lower Dirac indices. Finally we have Feynman rules for
virtual particle loops.

for each loop :

∫

d4k

(2π)4
(97)

fermion loop : −1 and Dirac-trace (98)

ghost loop : −1 (99)

An additional rule for pure gauge loops is the symmetry factor 1/2.
Now we have all Feynman rules at hand which we need to perform perturbative
calculations.
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5.2.2 The initial conditions

In order to determine the Wilson coefficientsC1 andC2 at the scaleMW (initial
condition), we calculate the tree level decayb → cūd both in the SM and in the
effective theory, whereC1,2(MW ) appear as unknown parameter. Equating the
two results will give an expression for the Wilson coefficients.

• SM amplitude:
At 1 loop the following diagrams (and their symmetric counterparts). are
contributing

W

g

Wg W g

Calculating them (under the assumptionmi = 0; p2 < 0), we get the full
amplitude

A
(0)
full =

GF√
2
VcbV

∗
ud

[(

1 + 2Cf
αs

4π

(

1

ǫ
+ ln

µ2

−p2
))

〈Q2〉tree

+
3

N

αs

4π
ln
M2

W

−p2 〈Q2〉tree

−3αs

4π
ln
M2

W

−p2 〈Q1〉tree
]

. (100)

Remarks:

– (0) denotes the unrenormalised amplitude. The singularities could be
removed by quark field renormalisation; but they will cancelanyway
in the determination of the Wilson coefficients.

– µ is an unphysical renormalisaton scale, which had to be introduced
because of dimensional reasons when doing dimensional regularisa-
tion. In principle it can be chosen arbitrarily, in practiceit will be
chosen in such a way to not produce artificially large logarithms.
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– Now two operators appear

Q2 = (c̄αbα)V−A(d̄βuβ)V−A , (101)

Q1 = (c̄αbβ)V−A(d̄βuα)V−A . (102)

Without QCD only the operatorQ2 arises. Taking colour effects into
accounts and using in particular

T a
αβT

a
γδ = −

1

2N
δαβδγδ +

1

2
δαδδγβ , (103)

the second operatorQ1 arises. Finally we have the colour factorCf =
N2−1
2N

= 4
3
.

– Choosing all external momenta to be equal and all quark masses to be
zero, does not change the final result for the Wilson coefficients, but it
considerably simplifies the calculation.

– Constant terms ofO(αs) have been discarded, while logarithmic terms
have been kept; this corresponds to the leading log approximation.

– “Amplitude” in the above sense is an amputated Greens function (i.e.
multiplied by i). Gluonic self energy corrections are not included.

Exercise: CalculateAfull in LO-QCD

• Effective theory contribution:
In the effective theory we study the 1-loop corrections to the insertions of
the operatorsQ1 andQ2 in the following Feynman diagrams.

g

g g
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Calculating all these diagrams (and the symmetric ones) we get the QCD
corrections toQ1 andQ2 in the effective theory:

〈Q1〉(0) =
(

1 + 2Cf
αs

4π

(

1

ǫ
+ ln

µ2

−p2
))

〈Q1〉tree

+
3

N

αs

4π

(

1

ǫ
+ ln

µ2

−p2
)

〈Q1〉tree

−3αs

4π

(

1

ǫ
+ ln

µ2

−p2
)

〈Q2〉tree , (104)

〈Q2〉(0) =
(

1 + 2Cf
αs

4π

(

1

ǫ
+ ln

µ2

−p2
))

〈Q2〉tree

+
3

N

αs

4π

(

1

ǫ
+ ln

µ2

−p2
)

〈Q2〉tree

−3αs

4π

(

1

ǫ
+ ln

µ2

−p2
)

〈Q1〉tree . (105)

Remarks:

– Now we have additional divergencies; our effective theory is actually
non-renormalisable. Working to finite order in perturbation theory we
can, however, renormalise it with additional renormalisation constants,
which we are introducing now.
The first divergencies in the above expressions cancel in thematch-
ing; alternatively one could do a field renormalisation. Thenew di-
vergencies appearing in the second and third line require anadditional
renormalisation, the operator renormalisation:

Q
(0)
i = ẐijQj . (106)

Ẑij is a2× 2 matrix.
For the amputated Greens functions we get

〈Qi〉(0) = Z−2
q Ẑij〈Qj〉 . (107)

The quark field renormalisationZq removes the first divergence and
the operator renormalisation̂Zij removes the second divergencies. We
directly can read off the operator renormalisation matrix

Ẑ = 1 +
αs

4π

1

ǫ

(

3
N
−3

−3 3
N

)

. (108)
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Thus we get for the renormalised operators

〈Q1〉 =
(

1 + 2Cf
αs

4π
ln

µ2

−p2
)

〈Q1〉tree (109)

+
3

N

αs

4π
ln

µ2

−p2 〈Q1〉tree − 3
αs

4π
ln

µ2

−p2 〈Q2〉tree ,

〈Q2〉 =
(

1 + 2Cf
αs

4π
ln

µ2

−p2
)

〈Q2〉tree (110)

+
3

N

αs

4π
ln

µ2

−p2 〈Q2〉tree − 3
αs

4π
ln

µ2

−p2 〈Q1〉tree .

Exercise: CalculateAfull in LO-QCD

5.2.3 Matching:

Finally we do thematching of our calculations with the standard model and the
effective theory

Afull = Aeff =
GF√
2
VcbV

∗
ud [C1〈Q1〉+ C2〈Q2〉] . (111)

Comparing our results forAfull with the ones for〈Q1,2〉 - be aware to treat the
divergencies in the same manner in the full and the effectivetheory! - we obtain
the Wilson coefficients

C1 = 0− 3
αs

4π
ln
M2

W

µ2
, (112)

C2 = 1 +
3

N

αs

4π
ln
M2

W

µ2
. (113)

Remarks:

• Switching off QCD, i.e. setting the strong coupling to zero,we getC2 = 1
andC1 = 0, as expected.

• A different look to the renormalisation:
Renormalisation can also be done with the usual counter termmethod. We
start with the effective Hamiltonian and consider the Wilson coefficients to
be coupling constants. Fields and couplings are renormalised according to

q(0) = Z1/2
q q, C

(0)
i = Zc

ijCj . (114)
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Inserting this in the effective Hamiltonian we get

Heff =
GF√
2
VCKMC

(0)
i Qi[q

(0)]

=
GF√
2
VCKMZ

c
ijCjZ

2
qQi[q]

=
GF√
2
VCKM

{

CiQi[q] +
(

Zc
ijZ

2
q − δij

)

CjQi[q]
}

. (115)

In the first term of the last expression everything is expressed in terms of
renormalised couplings and renormalised quark fields, the second term is
the counter term.
Using this we get for the renormalised effective amplitude

Aeff =
GF√
2
VCKMZ

c
ijZ

2
qCj〈Qi[q]〉

=
GF√
2
VCKMZ

c
ijZ

2
qCj〈Qi〉(0) . (116)

On the other hand we can use also our operator renormalisation to get

Aeff =
GF√
2
VCKMCj〈Qj〉

=
GF√
2
VCKMCjZ

2
qZji

−1〈Qi〉(0) . (117)

Comparing the two expressions we get

Zc
ij = Z−1

ji . (118)

• Operator Mixing:
We have seen that the operatorsQ1 andQ2 mix under renormalisation, i.e.
Ẑ is a non-diagonal matrix. That means the renormalisation ofQ2 requires
a counter term proportional toQ2 and one proportional toQ1.
We can diagonalise theQ1 −Q2 system via

Q± =
Q2 ±Q1

2
, (119)

C± = C2 ± C1 . (120)

The we get for the renormalisation

Q
(0)
± = Z±Q± , (121)
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with

Z± = 1 +
αs

4π

1

ǫ

(

∓3N ∓ 1

N

)

. (122)

Now the amplitude reads

A =
Gf√
2
VcbV

∗
ud (C+(µ)〈Q+(µ)〉+ C−(µ)〈Q−(µ)〉) , (123)

with

〈Q±(µ)〉 =

(

1 + 2CF
αs

4π
ln

µ2

−p2
)

Q±,tree

+

(

3

N
∓ 3

)

αs

4π
ln

µ2

−p2Q±,tree , (124)

C±(µ) = 1 +

(

3

N
∓ 3

)

αs

4π
ln
M2

W

µ2
. (125)

Now both Wilson coefficients have the value 1 without QCD.

• Factorisation of SD and LD:
We just have seen one of the most important features of the OPE, the sepa-
ration of SD and LD contributions:
(

1 + αsG ln
M2

W

−p2
)

=

(

1 + αsG ln
M2

W

µ2

)(

1 + αsG ln
µ2

−p2
)

. (126)

The large logarithm at the l.h.s. arises in the full theory, the first term on
the r.h.s. corresponds to the Wilson coefficient and the second term to the
matrix element of the operator.
The splitting of the logarithm

ln
M2

W

−p2 = ln
M2

W

µ2
+ ln

µ2

−p2 (127)

corresponds to a splitting of the momentum integration in the following
form

M2
W
∫

−p2

dk2

k2
=

µ2
∫

−p2

dk2

k2
+

M2
W
∫

µ2

dk2

k2
. (128)

This means the matrix elements contains the low scale physics ([−p2, µ2])
and the Wilson coefficients contains the high scale physics ([µ2,M2

W ]). The
renormalisation scaleµ acts as a separation scale between SD and LD.

• IR divergencies cancel in the matching, if they are properlyrenormalised.
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5.2.4 The renormalisation group evolution

We just obtained the following result

C+(µ) = 1 +

(

3

N
+ 3

)

αs

4π
ln
M2

W

µ2
. (129)

At a scale ofµ = 4.8 this givesC+(4.8 GeV) = 1+0.36, which is already a very
sizable correction and at lower scales these corrections will exceed one and the
perturbative approach breaks down.
Within the framework of the renormalisation group we will beable to sum up
these logarithms to all orders.
Remember (or have a look in the appendix): For the running coupling we
obtained

αs(µ) =
αs(MZ)

1− β0 αs(MZ )
2π

ln
(

MZ

µ

) , (130)

with β0 = (11N − 2f)/3. Expanding the above formula we get

αs(µ) = αs(MZ)

[

1−
∞
∑

n=1

(

β0
αs(MZ)

2π
ln

(

MZ

µ

))n
]

, (131)

which shows that the renormalisation group sums up the largelogs automat-
ically to all orders.
Now we apply the same framework to the effective Hamiltonian. The starting
point is the fact that the unrenormalised quantities do not depend on the renormal-
isation scale and the relation between renormalised and unrenormalised quantities:

Q
(0)
± = Z±Q± ⇒ C± = Z±C

(0)
± . (132)

From that we get

dC±(µ)

d lnµ
=

dZ±(µ)

d lnµ
C

(0)
±

=
1

Z±

dZ±(µ)

d lnµ
Z±C

(0)
±

=: γ±C± , (133)

with the anomalous dimension

γ± =
1

Z±

dZ±(µ)

d lnµ

=
1

Z±

dZ±(µ)

dg

dg

d lnµ
. (134)
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dg/d lnµ is simply the running of the strong coupling. There the following for-
mula holds

dg

d lnµ
= −ǫg − β0

g3

(4π)2
+O(g5) , (135)

with β0 = (11N − 2f)/3. Using in addition

Z± = 1 +
αs

4π

1

ǫ

(

∓3N ∓ 1

N

)

= 1− 1

2

αs

4π

1

ǫ
γ
(0)
± , (136)

with

γ
(0)
± = ±6N ∓ 1

N
(137)

we get for the anomalous dimension

γ± =
1

Z±

dZ±(µ)

dg

dg

d lnµ
(138)

=

(

1 +
1

2

αs

4π

1

ǫ
γ
(0)
±

)

·
(

−1
2

2g

(4π)2
1

ǫ
γ
(0)
±

)

·
(

−ǫg − β0
g3

(4π)2

)

(139)

=
g2

(4π)2
γ
(0)
± =

αs

4π
γ
(0)
± . (140)

Now we can solve the differential equation for theµ-evolution of the Wilson co-
efficients

dC±(µ)

d lnµ
=: γ±(g)C±(µ) ,

dC±(µ)

dg

dg

d lnµ
=: γ±(g)C±(µ) ,

dC±(µ)

dg
β(g) =: γ±(g)C±(µ) ,

dC±(µ)

C±(µ)
=:

γ±(g)

β(g)
dg ,

µ
∫

µ0

dC±(µ)

C±(µ)
=:

g(µ)
∫

g(µ0)

γ±(g)

β(g)
dg ,

ln
C±(µ)

C±(µ0)
=:

g(µ)
∫

g(µ0)

γ±(g)

β(g)
dg ,

C±(µ) = C±(µ0)e

g(µ)∫

g(µ0)

γ±(g)

β(g)
dg

. (141)
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This is the formal solution of the renormalisation group evolution of the Wilson
coefficient. Now we insert our LO results forβ andγ and write down an analytical
formula the Wilson coefficients.

1. Step 1:
γ±(g)

β(g)
=

αs

4π
γ
(0)
±

−β0 g3

(4π)2

= −1

g

γ
(0)
±
β0

.

2. Step 2:

g(µ)
∫

g(µ0)

γ±(g)

β(g)
dg = −γ

(0)
±
β0

g(µ)
∫

g(µ0)

1

g
dg = −γ

(0)
±
β0

ln
g(µ)

g(µ0)
.

3. Step 3:

e

g(µ)∫

g(µ0)

γ±(g)

β(g)
dg

=

[

g(µ)

g(µ0)

]−
γ
(0)
±

β0

=

[

αs(µ)

αs(µ0)

]−
γ
(0)
±

2β0

.

So now we arrived at our final formula for scale dependence ofC1 andC2:

C±(µ) =

[

αs(µ)

αs(µ0)

]−
γ
(0)
±

2β0

C±(µ0)

=

[

αs(µ)

αs(µ0)

]−
γ
(0)
±

2β0

[

1 +

(

3

N
∓ 3

)

αs

4π
ln
M2

W

µ2
0

]

. (142)

This is the general result for the Wilson coefficientsC±.
Remarks:

• The first terms sums up potentially large logarithms due to the different
scalesµ andµ0; the second term gives the fixed order perturbation theory
calculation for the initial condition.

• Expanding in powers ofαs(µ0) one gets

C±(µ) = 1 +
αs(µ0)

4π

(

−2
4

)

ln
M2

W

µ2
. (143)

This almost looks like the initial condition alone, except that we now have
the strong coupling at the scaleµ0 instead ofµ.
By expanding explicitly in powers ofαs we ”destroy” the summing of the
logarithms.
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• To make full use of the RGE we takeµ0 = MW , then the have a small log-
arithm (here: exactly zero) in the initial condition and thelarge logarithms
lnM2

W/ µ
2 are summed up within the RGE:

C±(µ) =

[

αs(µ)

αs(MW )

]−
γ
(0)
±

2β0

· 1 . (144)

Forf = 5 we get finally at the scaleµb

C+(µb) =

[

αs(µb)

αs(MW )

]− 6
23

, C−(µb) =

[

αs(µb)

αs(MW )

]+ 12
23

(145)

or

C1 =
C+ − C−

2
=

1

2

(

[

αs(µb)

αs(MW )

]
6
23

−
[

αs(µb)

αs(MW )

]− 12
23

)

, (146)

C2 =
C+ + C−

2
=

1

2

(

[

αs(µb)

αs(MW )

]
6
23

+

[

αs(µb)

αs(MW )

]− 12
23

)

. (147)

Remarks:

• Programming the above formulae and usingαs = 0.1184 one obtains for
f = 5 the following numerical values:

αs(5) = 0.20395 , (148)

C+(5) = 0.871912 , (149)

C−(5) = 1.31539 , (150)

C1(5) = −0.22174 , (151)

C2(5) = 1.09365 . (152)

• Besides the current-current operatorsQ1 andQ2 also so-called Penguin op-
erators arise. The QCD-penguin operatorsQ3,...,6 stem from the following
diagrams:
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Electro-weak penguins (here the gluon is exchange with a photon or aZ-
boson) are denoted byQ7,...,10; penguins with only an on-shell photon are
denoted byQ7γ and penguins with an on-shell gluon are denoted byQ8g.

• Final theory remarks:

– The unphysical renormalisation dependence (µ) cancels up to the cal-
culated order in perturbation theory between the Wilson coefficients
and matrix elements of the 4-quark operators.

– The theoretical error due to missing higher order corrections is thus
estimated via a variation of the renormalisation scale; it became con-
vention to use the following range:

mb

2
< µ < 2mb .

– Threshold effects have to be taken into account, when we passwith the
renormalisation group evolution theb-quark orc-quark mass scale.

5.3 The effective Hamiltonian in NLO and NNLO-QCD

Why should we bother about calculating higher orders? (2-loops or even 3-loops)

• Renormalisation scale is often the dominant uncertainty - this can be re-
duced by including higher order corrections.

• For some decays, NLO-effect can be the dominant effect.
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6 Weak decays III - Inclusive B-decays

6.1 Inclusive B-decays at LO-QCD

Now we can calculate the free quark decay starting from the effective Hamiltonian
instead of the full standard model. If we again neglect penguins, we get in leading
logarithmic approximation the same structure as in Eq.(81)and the coefficientc3
reads now:

cLO−QCD
3,b = cceν̄e3,b + c

cµν̄µ
3,b + ccūd3,b + ccūs3,b + ccτ ν̄τ3,b + ccc̄s3,b + ccc̄d3,b . . .

=

[

(2 +Na(µ)) f

(

mc

mb

)

+ g

(

mc

mb

,
mτ

mb

)

+Na(µ)g

(

mc

mb

,
mc

mb

)]

.

(153)

Thus the inclusion of the effective Hamiltonian is equivalent with changing the
colour factorNc = 3 - stemming from QCD - into

Na(µ) = 3C2
1(µ) + 3C2

2(µ) + 2C1(µ)C2(µ) ≈ 3.3 (LO, µ = 4.248 GeV) .

(154)

The dependence ofNa(µ) on the renormalisation scaleµ is shown in the following
graph:

1.5 2.0 2.5 3.0 3.5 4.0

3.5

4.0

4.5

5.0

This effect enhances the total decay rate by about10% and thus brings down (if
also the sub-leading decays are included) the prediction for the lifetime of the
b-quark to about

τb ≈ 2.10 ps for m̄c(m̄b), m̄b(m̄b) . (155)

Exercise: B-decay in LO-QCD with the effective Hamiltonian
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6.2 Bsl and nc at NLO-QCD

Going to next-to-leading logarithmic accuracy we have to use the Wilson coeffi-
cients of the effective Hamiltonian to NLO accuracy and we have to determine
one-loop QCD corrections within the effective theory. These NLO-QCD cor-
rections turned out to be very important for the inclusiveb-quark decays. For
massless final state quarks the calculation was done in 1991 [94]:

c3,b = cLO−QCD
3,b +8

αs

4π

[(

25

4
− π2

)

+ 2
(

C2
1 + C2

2

)

(

31

4
− π2

)

− 4

3
C1C2

(

7

4
+ π2

)]

.

(156)
The first QCD corrections in Eq.(156) stems from semi-leptonic decays. It can
be guessed from the correction to the muon decay in Eq.(63) bydecomposing the
factor 8 in Eq.(156) as8 = 3 · CF · 2: 3 comes from the three leptonse−, µ−, τ−,
CF is a QCD colour factor and2 belongs to the correction in Eq.(63). The second
and the third term in Eq.(156) stem from non-leptonic decays.
It turned out, however, that effects of the charm quark mass are crucial, see, e.g.,
the estimate in [95]. NLO-QCD corrections with full mass dependence were de-
termined forb→ cl−ν̄ already in 1983 [96], forb→ cūd in 1994 [97], forb→ cc̄s
in 1995 [98], forb → no charm in 1997 [21] and forb → sg in 2000 [99, 100].
Since there were several misprints in [98]- leading to IR divergent expressions
-, the corresponding calculation was redone in [20] and the numerical result was
updated.11 With the results in [20] we predict (usinḡmc(m̄b) andm̄b(m̄b))

c3,b =







9 (mc = 0 = αs)
5.29± 0.35 (LO−QCD)
6.88± 0.74 (NLO−QCD)

. (157)

Comparing this result with Eq.(85) one finds a huge phase space suppression,
which reduces the value ofC3,b from 9 in the mass less case to about 4.7 when
including charm quark mass effect. Switching on in additionQCD effectsc3,b is
enhanced back to a value of about 6.9. The LOb→ c transitions contribute about
70% to this value, the full NLO-QCD corrections about24% and theb → u and
penguin contributions about6% [20].
For the total lifetime we predict thus

τb = (1.65± 0.24) ps , (158)

which is our final number for the lifetime of a freeb-quark. This number is now
very close to the experimental numbers in Eq.(2.1), unfortunately the uncertainty

11The authors of [98] left particle physics and it was not possible to obtain the correct analytic
expressions. The numerical results in [98] were, however, correct.
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is still quite large. To reduce this, a calculation at the NNLorder would be nec-
essary. Such an endeavour seems to be doable nowadays. The dominant Wilson
coefficientsC1 andC2 are known at NNLO accuracy [92] and the two loop cor-
rections in the effective theory have been determined e.g. in [101, 102, 103, 104,
105, 106] for semi-leptonic decays and partly in [107] for non-leptonic decays.
It is amusing to note, that a naive treatment with vanishing charm quark masses
and neglecting the sizable QCD-effects, see Eq.(86), yields by accident a similar
result as in Eq.(158). The same holds also for the semi leptonic branching ratio,
where a naive treatment (mc = 0 = αs) gives

Bsl =
Γ(b→ ce−ν̄e)

Γtot
=

1

9
= 11.1% , (159)

while the full treatment (following [20]) gives

Bsl = (11.6± 0.8)% . (160)

This number agrees well with recent measurements [9, 108]

Bsl(Bd) = (10.33± 0.28)% ,

Bsl(B
+) = (10.99± 0.28)% , (161)

Bsl(Bs) = (10.61± 0.89)% .
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7 The Heavy Quark Expansion

7.1 Calculation of inclusive decay rates

Now we are ready to derive the heavy quark expansion for inclusive decays. The
decay rate of the transition of a B-meson to an inclusive finalstateX can be
expressed as a phase space integral over the square of the matrix element of the
effective Hamiltonian sandwiched between the initialB-meson12 state and the
final stateX. Summing over all final statesX with the same quark quantum
numbers we obtain

Γ(B → X) =
1

2mB

∑

X

∫

PS

(2π)4δ(4)(pB − pX)|〈X|Heff |B〉|2 . (162)

If we consider, e.g., a decay into three particles, i.e.B → 1+2+3, then the phase
space integral reads

∫

PS

=
3
∏

i=1

[

d3pi
(2π)32Ei

]

(163)

andpX = p1 + p2 + p3. With the help of the optical theorem the total decay rate
in Eq.(162) can be rewritten as

Γ(B → X) =
1

2mB

〈B|T |B〉 , (164)

with the transition operator

T = Im i

∫

d4xT [Heff (x)Heff(0)] , (165)

consisting of a non-local double insertion of the effectiveHamiltonian.
This can be visualised via

vspace4cm

7.2 The expansion in inverse masses

A second operator-product-expansion, exploiting the large value of theb-quark
massmb, yields forT

T =
G2

Fm
5
b

192π3
|Vcb|2

[

c3,bb̄b+
c5,b
m2

b

b̄gsσµνG
µνb+ 2

c6,b
m3

b

(b̄q)Γ(q̄b)Γ + ...

]

(166)

12The replacements one has to do when considering aD-meson decay are either trivial or we
explicitly comment on them.
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and thus for the decay rate

Γ =
G2

Fm
5
b

192π3
|Vcb|2

[

c3,b
〈B|b̄b|B〉
2MB

+
c5,b
m2

b

〈B|b̄gsσµνGµνb|B〉
2MB

+
c6,b
m3

b

〈B|(b̄q)Γ(q̄b)Γ|B〉
MB

+ ...

]

.

(167)
The individual contributions in Eq.(167) will be discussedin detail now.

7.3 Leading term in the HQE

To get the first term of Eq.(167) we contracted all quark lines, except the beauty-
quark lines, in the product of the two effective Hamiltonians. This leads to the
following two-loop diagram on the l.h.s., where the circleswith the crosses denote
the∆B = 1-operators from the effective Hamiltonian.

q̄ q̄ q̄ q̄

b b b b

Performing the loop integrations in this diagram we get the Wilson coefficientc3,b
that contains all the loop functions and the dimension-three operator b̄b, which
is denoted by the black square in the diagram on the r.h.s. . This has been done
already in Eq.(153), Eq.(156) and Eq.(157).
A crucial finding for the HQE was the fact, that the matrix element of the dimension-
three operator̄bb can also be expanded in the inverse of theb-quark mass. Accord-
ing to the Heavy Quark Effective Theory (HQET) we get13

〈B|b̄b|B〉
2MB

= 1− µ2
π − µ2

G

2m2
b

+O
(

1

m3
b

)

, (168)

with the matrix element of the kinetic operatorµ2
π and the matrix element of the

13We use here the conventional relativistic normalisation〈B|B〉 = 2EV , whereE denotes
the energy of the meson andV the space volume. In the original literature sometimes different
normalisations have been used, which can lead to confusion.
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chromo-magnetic operatorµ2
G, defined in theB-rest frame as14

µ2
π =

〈B|b̄(i ~D)2b|B〉
2MB

+O
(

1

mb

)

, (169)

µ2
G =

〈B|b̄gs
2
σµνG

µνb|B〉
2MB

+O
(

1

mb

)

. (170)

With the above definitions for the non-perturbative matrix-elements the expression
for the total decay rate in Eq.(167) becomes

Γ =
G2

Fm
5
b

192π3
V 2
cb

{

c3,b

[

1− µ2
π − µ2

G

2m2
b

+O
(

1

m3
b

)]

+2c5,b

[

µ2
G

m2
b

+O
(

1

m3
b

)]

+
c6,b
m3

b

〈B|(b̄q)Γ(q̄b)Γ|B〉
MB

+ ...

}

.(171)

The leading term in Eq.(171) describes simply the decay of a free quark. Since
here the spectator-quark (red) is not involved in the decay process at all, this con-
tribution will be the same for all different b-hadrons, thuspredicting the same
lifetime for all b-hadrons.
The first corrections are already suppressed by two powers ofthe heavyb-quark
mass - we have no corrections of order1/mb! This non-trivial result explains, why
our description in terms of the free b-quark decay was so close to the experimental
values of the lifetimes ofB-mesons.
In the case ofD-mesons the expansion parameter1/mc is not small and the higher
order terms of the HQE will lead to sizable corrections. The leading termc3,c for
charm-quark decays gives at the scaleµ =MW for vanishing quark massc3,c = 5.
At the scaleµ = m̄c(m̄c) and realistic values of final states masses we get

c3,c =







5 (ms = 0 = αs)
6.29± 0.72 (LO−QCD)
11.61± 1.55 (NLO−QCD)

. (172)

Here we have a large QCD enhancement of more than a factor of two, while phase
space effects seem to be negligible.
The1/m2

b-corrections in Eq.(171) have two sources: first the expansion in Eq.(168)
and the second one - denoted by the term proportional toc5,b - will be discussed
below.
Concerning the different1/m3

b-corrections, indicated in Eq.(171), we will see that
the first two terms of the expansion in Eq.(167) are triggeredby a two-loop di-
agram, while the third term is given by a one-loop diagram. This will motivate,

14We use hereσµν = i
2
[γµ, γν ]. In the original literature sometimes the notationiσG :=

iγµγνG
µν was used, which differs by a factor ofi from our definition ofσ.
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why the1/m3
b-corrections proportional toc3,b andc5,b can be neglected in compar-

ison to the1/m3
b-corrections proportional toc6,b; the former ones will, however,

be important for precision determination of semi-leptonicdecay rates.

7.4 Second term of the HQE

To get the second term in Eq.(167) we couple in addition a gluon to the vac-
uum. This is denoted by the diagram below, where a gluon is emitted from one
of the internal quarks of the two-loop diagram. Doing so, we obtain the so-called
chromo-magnetic operator̄bgsσµνGµνb, which already appeared in the expansion
in Eq.(168).

q̄ q̄ q̄ q̄

b b b b

Since this operator is of dimension five, the corresponding contribution is - as
seen before - suppressed by two powers of the heavy quark mass, compared to the
leading term. The corresponding Wilson coefficientc5,b reads, e.g., for the semi-
leptonic decayb→ ce−ν̄e

15 and the non-leptonic decaysb→ cūd andb→ cc̄s

cceν̄e5,b = − (1− z)4
[

1 +
αs

4π
. . .
]

, (173)

ccūd5,b = − |Vud|2 (1− z)3
[

Na(µ) (1− z) + 8C1C2 +
αs

4π
. . .
]

, (174)

ccc̄s5,b = − |Vcs|2
{

Na(µ)

[√
1− 4z(1− 2z)(1− 4z − 6z2) + 24z4 log

(

1 +
√
1− 4z

1−
√
1− 4z

)]

+8C1C2

[√
1− 4z

(

1 +
z

2
+ 3z2

)

− 3z(1− 2z2) log

(

1 +
√
1− 4z

1−
√
1− 4z

)]

+
αs

4π
. . .

}

,

(175)

with the quark mass ratioz = (mc/mb)
2. For vanishing charm-quark masses and

Vud ≈ 1 we getccūd5,b = −3 at the scaleµ = MW , which reduces in LO-QCD to
about−1.2 at the scaleµ = mb.

15The result in Eq.(94) of the review [109] has an additional factor6 in cceν̄e5 .
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For the total decay rate we have to sum up all possible quark level-decays

c5,b = cceν̄e5,b + c
cµν̄µ
5,b + ccτ ν̄τ5,b + ccūd5,b + ccc̄s5,b + . . . . (176)

Neglecting penguin contributions we get numerically

c5,b =

{

≈ −9 (mc = 0 = αs)
−3.8± 0.3 (m̄c(m̄c) , αs(mb))

, (177)

For c5,b both QCD effects as well as phase space effects are quite pronounced.
The overall coefficient of the matrix element of the chromo-magnetic operatorµ2

G

normalised to2m2
b in Eq.(171) is given byc3,b+4c5,b, which is sometimes denoted

ascG,b. For semi-leptonic decays likeb→ ce−ν̄e, it reads16

cceν̄eG,b = cceν̄e3,b + 4cceν̄e5,b = (−3)
[

1− 8

3
z + 8z2 − 8z3 +

5

3
z4 + 4z2 ln(z)

]

.(178)

For the sum of all inclusive decays we get

cG,b =

{

−27 = −3c3 (mc = 0 = αs)
−7.9 ≈ −1.1c3 (m̄c(m̄c) , αs(mb))

, (179)

leading to the following form of the total decay rate

Γ =
G2

Fm
5
b

192π3
V 2
cb

[

c3,b − c3,b
µ2
π

2m2
b

+ cG,b
µ2
G

2m2
b

+
c6,b
m3

b

〈B|(b̄q)Γ(q̄b)Γ|B〉
MB

+ ...

]

.

(180)
Both 1/m2

b-corrections are reducing the decay rate and their overall coefficients
are of similar size asc3,b. To estimate more precisely the numerical effect of the
1/m2

b corrections, we still need the values ofµ2
π andµ2

G. Current values [111, 112]
of these parameters read for the case ofBd andB+-mesons

µ2
π(B) = (0.414± 0.078) GeV2 , (181)

µ2
G(B) ≈ 3

4

(

M2
B∗ −M2

B

)

≈ (0.35± 0.07) GeV2 . (182)

ForBs-mesons only small differences compared toBd andB+-mesons are pre-
dicted [113]

µ2
π(Bs)− µ2

π(Bd) ≈ (0.08 . . . 0.10) GeV2 , (183)
µ2
G(Bs)

µ2
G(Bd)

≈ 1.07± 0.03 , (184)

16We differ here slightly from Eq.(7) of [110], who have a different sign in the coefficients of
z2 andz3. We agree, however, with the corresponding result in [86].
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while sizable differences are expected [113] forΛb-baryons.

µ2
π(Λb)− µ2

π(Bd) ≈ (0.1± 0.1) GeV2 , (185)

µ2
G(Λb) = 0 . (186)

Inserting these values in Eq.(180) we find that the1/m2
b-corrections are decreasing

the decay rate slightly (mb = m̄b(m̄b) = 4.248 GeV):

Bd B+ Bs Λd

− µ2
π

2m2
b

−0.011 −0.011 −0.014 −0.014
cG,b

c3,b

µ2
π

2m2
b

−0.011 −0.011 −0.011 0.00

(187)

The kinetic and the chromo-magnetic operator each reduce the decay rate by about
1%, except for the case of theΛb-baryon, where the chromo-magnetic opera-
tor vanishes. The1/m2

b-corrections exhibit now also a small sensitivity to the
spectator-quark. Different values for the lifetimes ofb-hadrons can arise due to
different values of the non-perturbative parametersµ2

G andµ2
π, the corresponding

numerical effect will, however, be small.

X : B+ Bs Λd

µ2
π(X)−µ2

π(Bd)

2m2
b

0.000± 0.000 0.002± 0.000 0.003± 0.003
cG,b

c3,b

µ2
G
(X)−µ2

G
(Bd)

2m2
b

0.000± 0.000 0.000...0.001 −0.011± 0.003

(188)

Thus we find that the1/m2
b-corrections give no difference in the lifetimes ofB+-

andBd-mesons, they enhance theBs-lifetime by about3 per mille, compared to
theBd-lifetime and they reduce theΛb-lifetime by about1% compared to theBd-
lifetime.
To get an idea of the size of these corrections in the charm-system, we first inves-
tigate the Wilson coefficientc5.

c5,c =

{

≈ −5 (mc = 0 = αs)
−1.7 ± 0.3 (m̄c(m̄c) , αs(mb))

, (189)

At the scaleµ = mc the non-leptonic contribution toc5 is getting smaller than in
the bottom case and it even changes sign. For the coefficientcG we find

cG,c =

{

≈ −15 = −3 c3,c (mc = 0 = αs)
4.15± 1.48 = (0.37± 0.13) c3,c (m̄c(m̄c) , αs(mb))

. (190)

We see for that for the charm case the overall coefficient of the chromo-magnetic
operator has now a positive sign and the relative size is lessthan in the bottom
case. ForD0- andD+-mesons the value of the chromo-magnetic operator reads

µ2
G(D) ≈ 3

4

(

M2
D∗ −M2

D

)

≈ 0.41 GeV2 , (191)
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which is of similar size as in theB-system. Normalising this value to the charm
quark massmc = m̄c(m̄c) = 1.277 GeV, we get however a bigger contribution
compared to the bottom case and also a different sign.

cG,c
µ2
G(D)

2m2
c

≈ +0.05 c3,c . (192)

Now the second order corrections are non-negligible, with atypical size of about
+ 5% of the total decay rate. Concerning lifetime differences ofD-mesons, we
find no visible effect due to the chromo-magnetic operator [114]

µ2
G(D

+)

µ2
G(D

0)
≈ 0.993 , (193)

µ2
G(D

+
s )

µ2
G(D

0)
≈ 1.012± 0.003 . (194)

For the kinetic operator a sizable SU(3) flavour breaking wasfound by Bigi, Man-
nel and Uraltsev [113]

µ2
π(D

+
s )− µ2

π(D
0) ≈ 0.1 GeV2 , (195)

leading to an reduction of theD+
s -lifetime of the order of3% compared to the

D0-lifetime

µ2
π(D

+
s )− µ2

π(D
0)

2m2
c

≈ 0.03 . (196)

7.5 Third term of the HQE

The next term in Eq.(167) is obtained by only contracting twoquark lines in the
product of the two effective Hamiltonian in Eq.(165). Theb-quark and the specta-
tor quark of the considered hadron are not contracted. ForBd-mesons (q = d) and
Bs-mesons (q = s) we get the following so-calledweak annihilationdiagram.

q̄ q̄ q̄ q̄

b b b b
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Performing the loop integration on the diagram on the l.h.s.we get the Wilson co-
efficientc6 and dimension six four-quark operators(b̄q)Γ(q̄b)Γ, with Dirac struc-
turesΓ. The corresponding matrix elements of these∆B = 0 operators are typi-
cally written as

〈B|(b̄q)Γ(q̄b)Γ|B〉 = cΓf
2
BMBBΓ , (197)

with the bag parameterBΓ, the decay constantfB and a numerical factorcΓ that
contains some colour factors and sometimes also ratios of masses.
For the case of theB+-meson we get a similar diagram, with the only difference
that now the external spectator-quark lines are crossed, this is the so-calledPauli
interferencediagram.

There are two very interesting things to note. First this is now a one-loop
diagram. Although being suppressed by three powers of theb-quark mass it is
enhanced by a phase space factor of16π2 compared to the leading two-loop dia-
grams. Second, now we are really sensitive to the flavour of the spectator-quark,
because in principle, each different spectator quark givesa different contribu-
tion17. These observations are responsible for the fact that lifetime differences in
the system of heavy hadrons are almost entirely due to the contribution of weak
annihilation and Pauli interference diagrams.
In the case of theBd meson four different four-quark operators arise

Qq = b̄γµ(1− γ5)q × q̄γµ(1− γ5)b,
Qq

S = b̄(1− γ5)q × q̄(1− γ5)b,
T q = b̄γµ(1− γ5)T aq × q̄γµ(1− γ5)T ab,

T q
S = b̄(1− γ5)T aq × q̄(1− γ5)T ab, (198)

17This difference is, however, negligible, if one considers,e.g.,Bs vs.Bd.
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with q = d for the case ofBd-mesons.Q denotes colour singlet operators andT
colour octet operators. For historic reasons the matrix elements of these operator
are typically expressed as

〈Bd|Qd|Bd〉
MBd

= f 2
BB1MBd

,
〈Bd|Qd

S|Bd〉
MBd

= f 2
BB2MBd

, (199)

〈Bd|T d|Bd〉
MBd

= f 2
Bǫ1MBd

,
〈Bd|T d

S |Bd〉
MBd

= f 2
Bǫ2MBd

. (200)

The bag parametersB1,2 are expected to be of order one in vacuum insertion ap-
proximation, while theǫ1,2 vanish in that limit. We will discuss below several
estimates ofBi andǫi. Decay constants can be determined with lattice-QCD, see,
e.g., the reviews of FLAG [115] or with QCD sum rules, see, e.g., the recent de-
termination in [116]. Later on, we will see, however, that the Wilson coefficients
of B1 andB2 are affected by sizable numerical cancellations, enhancing hence
the relative contribution of the colour suppressedǫ1 andǫ2. The corresponding
Wilson coefficients of the four operators can be written as

cQ
d

6 = 16π2
[

|Vud|2 F u + |Vcd|2 F c
]

,

c
Qd

S

6 = 16π2
[

|Vud|2 F u
S + |Vcd|2 F c

S

]

,

cT
d

6 = 16π2
[

|Vud|2Gu + |Vcd|2Gc
]

,

c
T d
S

6 = 16π2
[

|Vud|2Gu
S + |Vcd|2Gc

S

]

. (201)

F q describes an internalcq̄ loop in the above weak annihilation diagram. The
functionsF andG are typically split up in contributions proportional toC2

2 ,C1C2

andC2
1 .

F u = C2
1F

u
11 + C1C2F

u
12 + C2

2F
u
22 , (202)

F u
S = . . . . (203)

Next, each of theF q
ij can be expanded in the strong coupling

F u
ij = F

u,(0)
ij +

αs

4π
F

u,(1)
ij + . . . , (204)

F u
S,ij = . . . . (205)

As an example we give the following LO results

F
u,(0)
11 = −3(1− z)2

(

1 +
z

2

)

, F
u,(0)
S,11 = 3(1− z)2 (1 + 2z) , (206)

F
u,(0)
12 = −2(1− z)2

(

1 +
z

2

)

, F
u,(0)
S,12 = 2(1− z)2 (1 + 2z) , (207)

F
u,(0)
22 = −1

3
(1− z)2

(

1 +
z

2

)

, F
u,(0)
S,22 =

1

3
(1− z)2 (1 + 2z) , (208)

G
u,(0)
22 = −2(1− z)2

(

1 +
z

2

)

, G
u,(0)
S,22 = 2(1− z)2 (1 + 2z) , (209)
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with z = m2
c/m

2
b .

Putting everything together we arrive at the following expression for the decay
rate of aBd-meson

ΓBd
=

G2
Fm

5
b

192π3
V 2
cb

[

c3 − c3
µ2
π

2m2
b

+ cG
µ2
G

2m2
b

+
16π2f 2

BMBd

m3
b

c̃Bd

6 +O
(

1

m3
b

,
16π2

m4
b

)]

≈ G2
Fm

5
b

192π3
V 2
cb

[

c3 − 0.01c3 − 0.01c3 +
16π2f 2

BMBd

m3
b

c̃Bd

6 +O
(

1

m3
b

,
16π2

m4
b

)]

,

(210)

with

c̃Bd

6 = |Vud|2 (F uB1 + F u
SB2 +Guǫ1 +Gu

Sǫ2)

+ |Vcd|2 (F cB1 + F c
SB2 +Gcǫ1 +Gc

Sǫ2) . (211)

The size of the third contribution in Eq.(210) is governed bysize of c̃6 and its
pre-factor. The pre-factor gives

16π2f 2
Bd
MBd

m3
b

≈ 0.395 ≈ 0.05 c3 , (212)

where we usedfBd
= (190.5 ± 4.2) MeV [115] for the decay constant. If̃c6

is of order1, we would expect corrections of the order of5% to the total decay
rate, which are larger than the formally leading1/m2

b-corrections. The LO-QCD
expression for̃cBd

6 can be written as

c̃Bd

6 = |Vud|2(1− z)2
{(

3C2
1 + 2C1C2 +

1

3
C2

2

)

[

(B2 − B1) +
z

2
(4B2 − B1)

]

+2C2
2

[

(ǫ2 − ǫ1) +
z

2
(4ǫ2 − ǫ1)

]}

. (213)

However, in Eq.(213) several cancellations are arising. Inthe first line there is a
strong cancellation among the bag parametersB1 andB2. In vacuum insertion
approximationB1−B2 is zero and the next term proportional to4B2−B1 is sup-
pressed byz ≈ 0.055. Using the latest lattice determination of these parameters
[117] - dating back already to 2001! -

B1 = 1.10± 0.20 , B2 = 0.79± 0.10 , ǫ1 = −0.02± 0.02 , ǫ2 = 0.03± 0.01

(214)

one findsB1−B2 ∈ [0.01, 0.61] and(4B2−B1)z/2 ∈ [0.07, 0.12], so the second
contribution is slightly suppressed compared to the first one. Moreover there is an
additional cancellation among the∆B = 1 Wilson coefficients. Without QCD the
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combination3C2
1 +2C1C2+

1
3
C2

2 is equal to1/3, in LO-QCD this combination is
reduced to about0.05± 0.05 at the scale ofmb (varying the renormalisation scale
betweenmb/2 and2mb). HenceB1 andB2 give a contribution between 0 and
0.07 toc̃Bd

6 , leading thus at most to a correction of about 4 per mille to the total
decay rate. This statement depends, however, crucially on the numerical values of
the bag parameters, where we are lacking a state-of-the-artdetermination.
There is no corresponding cancellation in the coefficients related to the colour-
suppressed bag parametersǫ1,2. According to [117]ǫ2− ǫ1 ∈ [0.02, 0.08], leading
to a correction of at most1.0% to the decay rate. Relying on the lattice deter-
mination in [117] we find that the colour-suppressed operators can be numerical
more important than the colour allowed operators and the total decay rate of the
Bd-meson can be enhanced by the weak annihilation at most by about 1.4%. The
status at NLO-QCD will be discussed below.
The Pauli interference contribution to theB+-decay rate gives

c̃B
+

6 = (1− z)2
[(

C2
1 + 6C1C2 + C2

2

)

B1 + 6
(

C2
1 + C2

2

)

ǫ1
]

. (215)

The contribution of the colour-allowed operator is slightly suppressed by the∆B =
1 Wilson coefficients. Without QCD the bag parameterB1 has a pre-factor of one,
which changes in LO-QCD to about -0.3. Taking again the lattice values for the
bag parameter from [117], we expect Pauli interference contributions proportional
toB1 to be of the order of about−1.8% of the total decay rate. In the coefficient
of ǫ1 no cancellation is arising and we expect (using again [117])this contribution
to be between0 and−1.5% of the total decay rate. All in all Pauli interference
seems to reduce the totalB+-decay rate by about1.8% to 3.3%. The status at
NLO-QCD will again be discussed below.
In the charm system the pre-factor of the coefficientc6 reads

16π2f 2
DMD

m3
c

≈
{

6.2 ≈ 0.6 c3 for D0, D+

9.2 ≈ 0.8 c3 for D+
s

, (216)

where we usedfD0 = (209.2 ± 3.3) MeV andfD+
s
= (248.3 ± 2.7) MeV [115]

for the decay constants. Depending on the strength of the cancellation among the
∆C = 1 Wilson coefficients and the bag parameters, large corrections seem to be
possible now: In the case of the weak annihilation the cancellation of the∆C = 1
Wilson coefficients seems to be even more pronounced than at the scalemb. Thus
a knowledge of the colour-suppressed operators is inalienable. In the case of
Pauli interference no cancellation occurs and we get valuesfor the coefficient of
B1, that are smaller than−1 and we get a sizable, but smaller contribution from
the colour-suppressed operators. Unfortunately there is no lattice determination
of the∆C = 0 matrix elements available, so we cannot make any final, profound
statements about the status in the charm system. Numerical results for the NLO-
QCD case will also be discussed below.

82



7.6 Fourth term of the HQE

If one takes in the calculation of the weak annihilation and Pauli interference
diagrams also small momenta and masses of the spectator quark into account,
one gets corrections that are suppressed by four powers ofmb compared to the
free-quark decay. These dimension seven terms are either given by four-quark
operators times the small mass of the spectator quark or by a four quark operator
with an additional derivative. Examples are the following∆B = 0 operators

P1 =
md,s

mb
b̄i(1− γ5)di × d̄j(1− γ5)bj , (217)

P2 =
md,s

mb
b̄i(1 + γ5)di × d̄j(1 + γ5)bj , (218)

P3 =
1

m2
b

b̄i
←−
D ργµ(1− γ5)Dρdi × d̄jγµ(1− γ5)bj , (219)

P4 =
1

m2
b

b̄i
←−
D ρ(1− γ5)Dρdi × d̄j(1 + γ5)bj . (220)

These operators have currently only been estimated within vacuum insertion ap-
proximation. However, for the corresponding operators appearing in the decay
rate difference of neutralB-meson first studies with QCD sum rules have been
performed [118, 119].
Putting everything together we arrive at theHeavy-Quark Expansionof decay
rates of heavy hadrons

Γ = Γ0 +
Λ2

m2
b

Γ2 +
Λ3

m3
b

Γ3 +
Λ4

m4
b

Γ4 + . . . , (221)

where the expansion parameter is denoted byΛ/mb. From the above explanations
it is clear thatΛ is not simply given byΛQCD - the pole of the strong coupling
constant - as stated often in the literature. Very naively one expectsΛ to be of the
order ofΛQCD, because both denote non-perturbative effects. The actualvalue
of Λ, has, however, to be determined by an explicit calculation for each order of
the expansion separately. At order1/m2

b one finds thatΛ is of the order ofµπ or
µG, so roughly below 1 GeV. For the third orderΛ3 is given by16π2f 2

BMB times
a numerical suppression factor, leading to values ofΛ larger than 1 GeV. More-
over, each of the coefficientsΓj, which is a product of a perturbatively calculable
Wilson coefficient and a non-perturbative matrix element, can be expanded in the
strong coupling

Γj = Γ
(0)
j +

αs(µ)

4π
Γ
(1)
j +

α2
s(µ)

(4π)2
Γ
(2)
j + . . . . (222)

Before we apply this framework to experimental observables, we would like to
make some comments of caution.
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7.7 Violation of quark-hadron duality

A possible drawback of this approach might be that the expansion in the inverse
heavy quark mass does not converge well enough — advocated under the labelling
violation of quark hadron duality. There is a considerable amount of literature
about theoretical attempts to prove or to disprove duality,but all of these attempts
have to rely on strong model assumptions.
Uraltsev published some general investigations of quark hadron duality violation
in [120, 121] and some investigations within the two dimensional ’t Hooft model
[122, 123], that indicated the validity of quark hadron duality. Other investigations
in that direction were e.g. performed by Grinstein and Lebedin 1997 [124] and
1998 [125] and by Grinstein in 2001 [126, 127]. In our opinionthe best way of
tackling this question is to confront precise HQE-based predictions with precise
experimental data. An especially well suited candidate forthis problem is the
decayb→ cc̄s, which is CKM dominant, but phase space suppressed. The actual
expansion parameter of the HQE is in this case not1/mb but1/(mb

√
1− 4z); so

violations of duality should be more pronounced. Thus a perfect observable for
testing the HQE is the decay rate difference∆Γs of the neutralBs mesons, which
is governed by theb → cc̄s transition. The first measurement of this quantity in
2012 and several follow-up measurements are in perfect agreement with the HQE
prediction and exclude thus huge violations of quark hadronduality, see [128] and
the discussion below.

7.8 Status of lifetime predictions

In this final section we update several of the lifetime predictions and compare
them with the most recent data, obtained many times at the LHCexperiments.

7.8.1 B-meson lifetimes

The most recent theory expressions forτ(B+)/τ(Bs) andτ(Bs)/τ(Bd) are given
in [175] (based on the calculations in [81, 129, 130, 117]). For the chargedB-
meson we get the updated relation (includingαs-corrections and1/mb-corrections)

τ(B+)

τ(Bd)

HQE2014

= 1 + 0.03

(

fBd

190.5MeV

)2

[(1.0± 0.2)B1 + (0.1± 0.1)B2

−(17.8± 0.9)ǫ1 + (3.9± 0.2)ǫ2 − 0.26]

= 1.04+0.05
−0.01 ± 0.02± 0.01 . (223)

Here we have used the lattice values for the bag parameters from [117]. Using all
the available values for the bag parameters in the literature, see [22], the central

84



value of our prediction forτ(B+)/τ(Bd) varies between 1.03 and 1.09. This is
indicated by the first asymmetric error and clearly shows theurgent need for more
profound calculations of these non-perturbative parameters. The second error in
Eq.(223) stems from varying the matrix elements of [117] in their allowed range
and the third error comes from the renormalisation scale dependence as well as
the dependence onmb.
Next we update also the prediction for theBs-lifetime given in [175], by including
also1/m2

b-corrections discussed in Eq.(188).

τ(Bs)

τ(Bd)

HQE2014

= 1.003 + 0.001

(

fBs

231MeV

)2

[(0.77± 0.10)B1 + (1.0± 0.13)B2

+(36± 5)ǫ1 + (51± 7)ǫ2]

= 1.001± 0.002 . (224)

The values in Eq.(223) and Eq.(224) differ slightly from theones in [175], because
we have used updated lattice values for the decay constants18 and we included the
SU(3)-breaking of the1/m2

b-correction - see Eq.(188) - for theBs-lifetime, which
was previously neglected. Comparing these predictions with the measurements
given in Eq.(2.1), we find a perfect agreement for theBs-lifetime, leaving thus
only a little space for, e.g., hidden newBs-decay channels, following, e.g., [131,
132]. There is a slight tension inτ(B+)/τ(Bd), which, however, could solely
be due to the unknown values of the hadronic matrix elements.A value of, e.g.,
ǫ1 = −0.092 - and leaving everything else at the values given in Eq.(214)- would
perfectly match the current experimental average from Eq.(2.1).
The most recent experimental numbers for these lifetime ratios have been updated
by the LHCb Collaboration in 2014 [133].

7.8.2 b-baryon lifetimes

There was a long standing puzzle related to the lifetime ofΛb-baryon. Old mea-
surements hinted towards a value that was considerably smaller than theBd life-
time. Recent measurements, in particular from the experiments at Tevatron and
the LHC, haven proven, however, that theΛb-lifetime is comparable to the one
of theBd-meson. The current HFAG average given in Eq.(2.1) clearly rules out
now the old small values of theΛb-lifetime. Updating the NLO-calculation from
the Rome group [134] and including1/mb-corrections from [130] we get for the
current HQE prediction

τ(Λb)

τ(Bd)

HQE2014

= 1− (0.8± 0.5)% 1

m2
b

− (4.2± 3.3)%Λb
1

m3
b

− (0.0± 0.5)%Bd
1

m3
b

− (1.6± 1.2)% 1

m4
b

= 0.935± 0.054 , (225)
18We have usedfBs

= 227.7 MeV [115].
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where we have split up the corrections coming from the1/m2
b-corrections dis-

cussed in Eq.(188), the1/m3
b-corrections coming from theΛb-matrix elements,

the 1/m3
b-corrections coming from theBd-matrix elements and finally1/m4

b-
corrections studied in [130]. The origin of these numericalvalues is discussed
in detail in [22]. All in all, now the new measurements of theΛb-lifetime are in
nice agreement with the HQE result. This is now a very strong confirmation of
the validity of the HQE and this makes also the motivation of many of the studies
trying to explain theΛb-lifetime puzzle, e.g., [135, 136, 137], invalid.
In [81] it was shown that the lifetime ratio of theΞb-baryons can be in principle
be determined quite precisely, because here the above mentioned problems with
penguin contractions do not arise. Unfortunately there exists no non-perturbative
determination of the matrix elements forΞb-baryons. So, we are left with the pos-
sibility of assuming that the matrix elements forΞb are equal to the ones ofΛb. In
that case we can give a rough estimate for the expected lifetime ratio. In order to
get rid of unwanteds→ u-transitions we define (following [81])

1

τ̄ (Ξb)
= Γ̄(Ξb) = Γ(Ξb)− Γ(Ξb → Λb +X) . (226)

For a numerical estimate we again scan over all the results for theΛb-matrix ele-
ments. Using also recent values for the remaining input parameters we obtain

τ̄ (Ξ0
b)

τ̄ (Ξ+
b )

HQE2014

= 0.95± 0.04± 0.01±??? , (227)

where the first error comes from the range of the values used for r, the second
denotes the remaining parametric uncertainty and??? stands for some unknown
systematic errors, which comes from the approximation of theΞb-matrix elements
by theΛb-matrix elements. We expect the size of these unknown systematic un-
certainties not to exceed the error stemming fromr, thus leading to an estimated
overall error of about±0.06. As soon asΞb-matrix elements are available the ratio
in Eq.(227) can be determine more precisely thanτ(Λb)/τ(Bd).
If we further approximatēτ(Ξ0

b) = τ(Λb) - here similar cancellations are expected
to arise as inτBs

/τBd
- , then we arrive at the following prediction

τ(Λb)

τ̄(Ξ+
b )

HQE2014

= 0.95± 0.06 . (228)

From the new measurements of the LHCb Collaboration [138, 139] (see also the
CDF update [140]), we deduce

τ(Ξ0
b)

τ(Ξ+
b )

LHCb2014

= 0.92± 0.03 , (229)
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τ(Ξ0
b)

τ(Λb)

LHCb2014

= 1.006± 0.021 , (230)

τ(Λb)

τ(Ξ+
b )

LHCb2014

= 0.918± 0.028 , (231)

which is in perfect agreement with the predictions above in Eq.(227) and Eq.(228),
within the current uncertainties.

7.8.3 D-meson lifetimes

In [114] the NLO-QCD corrections for theD-meson lifetimes were completed.
Including1/mc-corrections as well as some assumptions about the hadronicma-
trix elements one obtains

τ(D+)

τ(D0)

HQE2013

= 2.2± 0.4(hadronic)
+0.03(scale)

−0.07 , (232)

τ(D+
s )

τ(D0)

HQE2013

= 1.19± 0.12(hadronic)
+0.04(scale)

−0.04 , (233)

being very close to the experimental values shown in the beginning of this lec-
ture. Therefore this result seems to indicate that one mightapply the HQE also
to lifetimes ofD-mesons, but definite conclusions cannot not be drawn without a
reliable non-perturbative determination of the hadronic matrix elements, which is
currently missing.
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8 Mixing in Particle Physics

8.1 Overview

Mixing occurs at several stages within the standard model ofparticle physics. One
example we discussed already in the derivation of the CKM matrix. Mixing sim-
ply describes the fact that states of particles, which have fixed quantum numbers
are in general not the mass eigenstates. Some examples for mixing are:

1. Quarks:
Creating quark masses with the Yukawa interaction one observes the possi-
bility that in general the mass matrices might not be diagonal, i.e. the flavour
eigenstates - defined by their interactions - differ from themass eigenstates.
Diagonalising the mass matrix one finds the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [13, 14] in the weak charged interaction. If in the begin-
ning the mass eigenstates are not identical to the flavour eigenstates, then
the CKM matrix might have non-diagonal entries. This possibility has
now been firmly established by experiment and Kobayashi and Maskawa
received 2008 for their findings the Nobel Prize of physics.

2. Leptons:
In analogy to the quark sector one can introduce a lepton mixing matrix, the
so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [141], which
connects the flavour and mass eigenstates.

3. Elektroweak gauge bosons:
Starting with the eigenstatesW1,W2,W3 andB of theSU(2)L × U(1)Y
gauge symmetry one finds that these states differ from the corresponding
mass eigenstatesW+,W−, Z0 andA [24]. Glashow, Salam and Weinberg
received 1979 the Nobel Prize of physics for the construction of the standard
model.

4. Neutrino oscillations:
Since neutrinos exists as free particles - in contrast to quarks - their oscil-
lations can be observed as a kind of macroscopic quantum effect. The first
hint for oscillations was found in solar neutrinos:
For many years considerably less neutrinos were observed [142] from the
sun than expected [143]. As one solution it was suggested that the weak
eigenstates of the neutrinos, which are produced in the sun differ from the
mass eigenstates that propagate on their way to the earth (Neutrino oscil-
lations were suggested by Bruno Pontecorvo [144, 145, 146]). Davis and
Koshiba received 2002 the Nobel Prize of physics for the verification of
neutrino oscillations.
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5. Neutral Mesons:
Mixing was observed as a macroscopic quantum effect in the study of neu-
tral mesons, in particular

1955 K0-system: Mixing in the neutralK-system was theoretically devel-
oped in 1955 by Gell-Mann and Pais [147]. Based on that framework
the phenomenon ofregenerationwas predicted in the same year by
Pais and Piccioni [148]. Experimentally regeneration was confirmed
in 1960 [149]. A huge lifetime difference between the two neutral
K-mesons was established already in 1956 [150].

1986 Bd-system: Mixing in theBd-system was found 1986 by UA1 at CERN
[151] (UA1 attributed the result however toBs mixing) and 1987 by
ARGUS at DESY[152]. The large result for the mass difference∆Md

can be seen as the first clear hint for an (at that time) unexpected large
value of the top quark mass[153]19. For the decay rate difference cur-
rently only upper bounds are available, see [11] for the mostrecent
and most precise bound.

2006/12Bs-system: The large mass difference in theBs-system was estab-
lished by the CDF collaboration at TeVatron [155]. In 2012 the LHCb
Collaboration presented at Moriond for the first time a non-vanishing
value of the decay rate difference in theBs-system [156]. In the
meantime this quantity is quite precisely known from measurements
of LHCb, ATLAS, CMS, D0 and CDF.

2007/12D0-system: Here we had several experimental evidences (BaBar, Belle,
Cleo, CDF, E791, E831) for values of∆Γ/Γ and∆M/Γ at the per cent
level, but the first single measurement with a statistical significance of
more than five standard deviations was done only in 2012 by theLHCb
Collaboration [157].

Here we do not consider the neutral pion, which is its own antiparticle and
we also do not consider excited states of these mesons, because they decay
too fast (due to the strong interaction) for mixing to occur.
The mesons denoted byK0, D0, B0

d andB0
s are defined by their quark

content, therefore they are called flavour eigenstates. Dueto the weak in-
teraction transitions between the flavour eigenstates of the neutral mesons
and their antiparticles are possible. Now again the mass eigenstates differ

19To avoid a very large value of the top quark mass, also different new physics scenarios were
investigated, in particular a scenario with a heavy fourth generation of fermions and a top quark
mass of the order of 50 GeV, see e.g. [154].

89



from the flavour eigenstates. Mixing leads to mass differences of the neu-
tral mesons with macroscopic oscillations lengths, so we have here a real
macroscopic quantum effect.

Below we discuss the latter three examples a little more in detail.

8.2 Weak gauge bosons

The relation between the interaction eigenstatesW1,W2,W3 - from SU(2)L andB
from U(1)Y and the mass eigenstatesW+,W−, Z0 (intermediate vector bosons)
andA (photon) is given by

(

W+

W−

)

=

(

1√
2

i√
2

1√
2
− i√

2

)

(

W 1

W 2

)

, (234)

(

Aµ

Zµ

)

=

(

cos θw sin θw
− sin θw cos θw

)(

Bµ

W 3 µ

)

, (235)

with the Weinberg angleθW , which was introduced by Glashow in 1961 (w =
weak). The numerical value of the Weinberg angle is an important observable of
the standard model. It can be measured very precisely and also be calculated very
precisely, thus providing a stringent consistency check ofthe model. The actual
value of the weinberg angle depends on the concrete renormalisation procedure
used. In theMS scheme one finds [9]:

sin2(θW ) = 0.2312± 0.0001⇒ sin(θW ) ≈ 0.48⇒ θW ≈ 0.50 ≈ 28.7◦ (236)

8.3 Neutrino oscillations

We explain the concept of neutrino oscillations with the example of solar neutri-
nos:

Production in the sun:

Neutrinos are produced in the sun by the weak interaction.

4p→4 He+ 2e+ + 2νe (237)

In more detail the production mechanism looks like
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Thus the fundamental production process is an inverseβ-decay:p→ n+ e+ + νe
or on quark levelu→ d+ e+ + νe. The corresponding Feynman diagram reads

Feynman diagram

The produced neutrino, we denote it byνe is defined by its coupling (together with
the positron) to the force carrier of the weak interaction, theW+ boson. Hence we
call νe the weak (interaction) eigenstate. Naively we would expectthatνe has also
a definite mass, but quantum mechanics allows that the basis of weak eigenstates
(νe, νµ, ντ ) differs from the basis of mass eigenstates, which we we denote by
ν1, ν2 andν3. Such a difference results in an interesting effect, that wewill derive
below.
Propagation:
For simplicity we explain only the mixing of two neutrino flavours. The gen-
eral relation (quantum mechanical basis transformation) between weak and mass
eigenstates reads

(

νe
νµ

)

=

(

cos θ sin θ
− sin θ cos θ

)(

ν1
ν2

)

. (238)
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The electron neutrino which was produced as a weak eigenstate is a linear combi-
nation of the mass eigenstatesν1 andν2.

νe = cos θ · ν1 + sin θ · ν2 . (239)

In the vacuum these two eigenstates will propagate with the corresponding masses
m1 andm2.

ν1(t) = ν1(0) · eim1t , (240)

ν2(t) = ν2(0) · eim2t . (241)

Due to their different wavelength the relative compositionof the original electron
neutrino in terms ofν1 andν2 will change over time.

νe(t) = cos θ · ν1(t) + sin θ · ν2(t) (242)

= cos θ · ν1(0) · eiE(m1)t + sin θ · ν2(0) · eiE(m2)t . (243)

This can again be expressed in terms ofνe andνµ.

(

ν1
ν2

)

=

(

cos θ − sin θ
sin θ cos θ

)(

νe
νµ

)

(244)

and one obtains

νe(t) = cos θ (cos θ · νe(0)− sin θ · νµ(0)) eiE(m1)t

+ sin θ (sin θ · νe(0) + cos θ · νµ(0)) eiE(m2)t (245)

=
(

cos2 θ · eiE(m1)t + sin2 θ · eiE(m2)t
)

νe(0)

+ cos θ sin θ
(

eiE(m2)t − eiE(m1)t
)

νµ(0) . (246)

From this formula one can read off, that the electron neutrino can oscillate in a
muon neutrino,if m1 6= m2 and θ 6= 0.
The probability for the change of a flavoura to a flavourb is given by

P (νa → νb) = |〈νa(t)|νb(0)〉|2

=
∣

∣cos θ sin θ
(

eiE(m2)t − eiE(m1)t
)∣

∣

2

=
1

2
sin2 2θ {1− cos [E(m1)−E(m2)] t}

= ...

= sin2(2θ) · sin2

(

m2
2 −m2

1

4

L

E

)

. (247)

The energy E of the neutrinos depends on the creation process.
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L corresponds to the distance between creation and detection, which is more
or less the distance of the sun and the earth. The remaining two parameters of the
mixing formulae are

• Mixing angle θ
In the lepton sector we have an analogue of the CKM matrix - thePontecorvo-
Maki-Nakagawa-Sakata matrix (PMNS). Its entries are determined by the
results of different neutrino oscillation experiments.

• Difference of squared massesm2
2 −m2

1

The neutrino mass is a fundamental parameter of nature, it also can have
cosmological consequences.

Detection on the earth:
The detection of the neutrino also proceeds via the weak interaction, i.e. the de-
tection is only sensitive to the weak eigenstate. Any charges reaction that involves
a electron can only detect a solar electron neutrino, but nota muon neutrino (com-
pare tagging). Such experiments were e.g.

Cl37 + νe → Ar37 + e− Davies, Homestoke

n+ νe → p+ e−
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Ga71 + νe → Ge71 + e− Gallex, Sage, GNO

n+ νe → p+ e−

The result was that always too few electron neutrinos were found. This was the
so-called solar neutrino problem.
The SNO experiment had different detection channels: one channel that was also
only sensitive to electron neutrino - here they found too fewevent, but also chan-
nels that were sensitive to all three neutrino flavours (neutral current) - here they
found the expected number of neutrinos.
Proof of neutrino oscillations!
Current data
Our current (PDG 2014) knowledge about neutrino mixing can be summarised as
[9]

∆m2
sun ≈ 7.54± 0.24 · 10−5eV2 (248)

∆m2
atm ≈ 2.43± 0.06 · 10−3eV2 (249)

sin2 θ12 ≈ 0.308± 0.017⇒ θ12 = 33.7◦ (250)

sin2 θ23 ≈ 0.455± 0.035⇒ θ23 = 42.4◦ (251)

sin2 θ13 ≈ 0.0234± 0.0020⇒ θ13 = 8.8◦ (252)

9 Mixing of neutral mesons

9.1 General Introduction

Neutral mesons likeB0
d and their anti particles̄B0

d form a two state system, which
can be described with a Schrödinger like equation

ih−
∂

∂t

(

B0
d

B̄0
d

)

= Ĥ

(

B0
d

B̄0
d

)

=

(

M11 − i
2
Γ11 0

0 M22 − i
2
Γ22

)(

B0
d

B̄0
d

)

(253)

This is equivalent to the following time evolution of B mesons:

⇒ Bi(t) = e
1
ih−
(Mii− i

2
Γii)t = e

1
i h−

Miite−
1

2 h−
Γiit (254)

• M11,22 is the mass of the particle

• Γ11,22 is the decay rate of the particle

• CPT invariance impliesM11 =M22 andΓ11 = Γ22
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Due to the weak interaction, however, transitions of aB0
d-meson to aB̄0

d are pos-
sible via the so-calledbox diagrams.

b

d

t,c,u

t,c,u

W
-

b

db

d
t,c,u t,c,uW

-
b

d

The box diagrams lead to off-diagonal terms in the Hamiltonian

Ĥ =

(

M11 − i
2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)

Γ12 corresponds to intermediate on-shell states, like(cc̄), whileM12 corresponds
to virtual intermediate, i.e. off-Shell states. Thereforethe top quark as well as
other hypothetical new physics particles contribute only toM12. Thus we are are
left with non-diagonal mass matrices and decay rate matrices. A non-diagonal
mass matrix means simply that the flavour eigenstates of the mesons are not mass
eigenstates.
CPT invariance impliesM11 = M22 andΓ11 = Γ22 and hermiticity givesM21 =
M∗

12 andΓ21 = Γ∗
12.

In order to obtain meson states we simply have to diagonaliseH, we get then new
eigenstates, which we denote by the index H=Heavy and L=Light.

BH = pB0
d − qB̄0

d (255)

BL = pB0
d + qB̄0

d

with p = p(M12,Γ12) andq = q(M12,Γ12). The new eigenstatesBH andBL have
now definite massesMH ,ML and definite decay ratesΓH andΓL. By diagonali-
sation one gets the following observables

∆Γ = ΓL − ΓH = ∆Γ(M12,Γ12)

∆M = MH −ML = ∆M(M12,Γ12) , (256)

where the following relations hold

(∆M)2 − 1

4
(∆Γ)2 = 4 |M12|2 − |Γ12|2 , (257)

∆M ·∆Γ = −4Re(M12Γ
∗
12) , (258)

p

q
= −∆M + i

2
∆Γ

2M12 − iΓ12

. (259)
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Later on we will discuss the solutions of these euqations fordifferent systems.
Now we can derive in the same way as we did for the neutrino the time evolution
of theB mesons. For the mass eigenstates the time evolution is trivial

|BH,L(t)〉 = e−(iMH,L+ΓH,L/2)t|BH,L(0)〉 . (260)

For the flavour eigenstates it reads

|B0(t)〉 = g+(t)|B0〉+ q

p
g−(t)|B̄0〉 , (261)

|B̄0(t)〉 =
p

q
g−(t)|B0〉+ g+(t)|B̄0〉 , (262)

with the coefficients

g+(t) = e−imte−Γ/2t

[

cosh
∆Γt

4
cos

∆Mt

2
− i sinh ∆Γt

4
sin

∆Mt

2

]

, (263)

g−(t) = e−imte−Γ/2t

[

− sinh
∆Γt

4
cos

∆Mt

2
+ i cosh

∆Γt

4
sin

∆Mt

2

]

.(264)

Here we used the averaged massesm and decay ratesΓ:

m =
MH +ML

2
, Γ =

ΓH + ΓL

2
. (265)

g+(t) andg−(t) give directly the probability for mixing and non-mixing:

∣

∣〈B0|B0(t)〉
∣

∣

2
= |g+(t)|2 =

∣

∣〈B̄0|B̄0(t)〉
∣

∣

2
, (266)

∣

∣〈B̄0|B0(t)〉
∣

∣

2
=

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

|g−(t)|2 . (267)

The arguments of the trigonometric and hyperbolic functions can be rewritten as

∆Mt

2
=

1

2
x
t

τ
with x :=

∆M

Γ
(268)

∆Γt

4
=

1

2
y
t

τ
with y :=

∆Γ

2Γ
, (269)

where the lifetimeτ is related to the total decay rateΓ via τ = 1/Γ. The oscilla-
tion length of the trigonometric functions can be determined via

∆Mt

2
= π ⇒ t =

2π

∆M
(270)

⇒ x = vt′ = βγct = βγ
2πc

∆M
. (271)
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9.2 Experimental results for the different mixing systems:

After huge experiemental efforts, that are stil going on, the following values for
the mixing parameters were obtained

K0 D0 Bd Bs

∆M in ps−1 5.293± 0.009 · 10−3b 0.00999756c 0.510± 0.003a 17.757± 0.021a

∆M in eV 3.484± 0.006 · 10−6b 6.58051 · 10−6c 3.35688 · 10−4c 0.0116879c

x = ∆M
Γ

0.946c 0.0041+0.0014
−0.0015

a
0.7752c 26.7953c

2πc
∆M

in mm 356cβγ 188.411cβγ 3.69343cβγ 0.106079cβγ

∆Γ in ps−1 0.0111c 0.0307242c 0.000657895± 0.00657895c 0.081± 0.006a
∆Γ
Γ

1.99c 0.0126c 0.002± 0.020a 0.122229c

y = ∆Γ
2Γ

1.00c 0.0063± 0.0007a 0.001± 0.0010c 0.0611145c
2πc
∆Γ

in mm 169cβγ 61.3084cβγ > 260.286βγ 23.255cβγ

∆Γ/∆M 2.1063c 3.07317c 0.00128999± 0.0128999c 0.00456158c

a: HFAG: March 2015;b: PDG: June 2013;c: derived by myself, no error esti-
mate.
Exercise:
Update the above table with the following new inputs from HFAG 2014

∆Md = 0.510± 0.003ps−1 (272)

∆Ms = 17.757± 0.021ps−1 (273)

xD = 0.41+0.14
−0.15 (274)

yD = 0.63± 0.07 (275)

At this stage some comments are in order:

1. The kaon system is special, because kaons can decay hadronically only into
2 pions or 3 pions and there is a huge phase space difference for these final
states. The physical kaon states are almost CP eigenstates and the 2 pion
and the the 3 pion final state differs in the CP quantum number.Therefore
KL has only a very small phase space - and therefore lives much longer -
compared toKS.

2. For all other neutral mesons there is plenty of phase spacefor final states
with different CP quantum numbers. Nevertheless we have e.g. in x a large
range a values. Where does the ratioxBo

s
/xD0 ≈ 26.63/0.0063 ≈ 42 · 102

come from?

3. Having this numerical values at hand, we can now compare time evolution
for the different neutral mesons by ploting|g+(t)|2, |g−(t)|2 and|g+(t)g−(t)|2
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4. Comparison of the absolute values of the mass differences

∆M in ps−1 ∆M in eV 2πc/∆M in mmβγ

Bs 17.7 0.01 0.1
Bd 0.5 0.0003 3.7
D0 0.02 0.00001 123
K0 0.005 0.000003 356

This clearly shows that mixing is a macroscopic quantum effect, the oscil-
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lation lengths vary between 0.1 and 356 mmβγ.
Where do the large differences in the size of the mixing parameters - a factor
of more than 3500 - come from?

5. Comparison of the absolute values of the decay rate differences

∆Γin ps−1 2πc/∆Γin mmβγ

Bs 0.089 21
D0 0.037 52
K0 0.011 169
Bd < 0.010 > 190

This again shows that mixing is a macroscopic quantum effect, the oscilla-
tion lengths vary between 21 and more than 190 mmβγ.
The differences in the absolute values are now less pronounced, a factor of
more than 8.9.

6. Comparison of the relative values of the mass differences

∆M/Γ

Bs 26.6
K0 0.95
Bd 0.77
D0 0.0063

Where do the large differences in the size of the mixing parameters - a factor
of more than 4200 - come from?

7. Comparison of the relative values of the decay rate differences

∆Γ/Γ

K0 2
Bs 0.13
D0 0.015
Bd < 0.015

Where do the large differences in the size of the mixing parameters - a factor
of more than 100 - come from?
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8. Comparison of decay rate difference vs. mass difference

∆Γ/∆M

D0 2.4
K0 2.1
Bd < 0.02
Bs 0.0050

Exercise:
Produce nice plots for the different systems

9.3 Standard model predictions for mixing of neutral mesons

9.3.1 Observables

In theB0
q -systemΓq

12 ≪ M q
12 holds, therefore one can simplify the expressions

for ∆Γq and∆Mq. We get

∆Mq = 2|M q
12|
(

1− 1

8

|Γq
12|2

|M q
12|2

sin2 φq + ...

)

(276)

≈ 2|M q
12| , (277)

∆Γq = 2|Γq
12| cosφq

(

1 +
1

8

|Γq
12|2

|M q
12|2

sin2 φq + ...

)

(278)

≈ 2|Γq
12| cosφq , (279)

with the weak mixing phaseφq = arg(−M q
12/Γ

q
12). There was actually a lot of

confusion related to the definition of this phase, see [158].The weak mixing phase
appears also in the flavour-specific or semi leptonic CP asymmetries. A flavour
specific decayB0

q → f is defined by

• B̄0
q → f andB0

q → f̄ are forbidden.

• No direct CP violation arises, i.e.|〈f |B0
q〉| = |〈f̄ |B̄0

q 〉|
Example for flavour-specific decays are e.g.B0

s → D−
s π

+ orB0
q → Xlν - there-

fore the second name. The asymmetry reads

asl ≡ afs =
Γ(Bq(t)→ f)− Γ(Bq(t)→ f)

Γ(Bq(t)→ f) + Γ(Bq(t)→ f)
= −2

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

− 1

)

=

∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

sin φ

(

= Im
Γ12

M12
=

∆Γ

∆M
tanφ

)

(280)

Reminder: the mixing stems from the box diagrams:
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b

d

t,c,u

t,c,u

W
-

b

db

d
t,c,u t,c,uW

-
b

d

M12 is the dispersive part (sensitive to heavy internal particles) andΓ12 is the
absorptive part (sensitive to light internal particles) ofthese box diagrams.
Below we discuss the calculation ofM12 andΓ12

Exercise:
Plot of Box diagrams forΓ12 andM12 for all four systems = 12 diagrams
Search for all the different conventions forφq

9.3.2 First estimates

In the following we will explain our theoretical tools to calculateΓq
12 andM q

12.
One big goal of flavor physics is the search for new physics. Wehave currently
some hints for deviations of measurements from the SM predictions. Therefore
we really have to make sure that we control the SM predictions, in particular the
hadronic effects.
First we look at all the diagrams contributing toMd

12. For each topology we get
nine contributions

Md
12 = λ2uF (u, u) + λuλcF (u, c) + λuλtF (u, t) +

λcλuF (c, u) + λ2cF (c, c) + λcλtF (c, t) +

λtλuF (t, u) + λtλcF (t, c) + λ2tF (t, t) (281)

with the CKM structuresλq = VqdV
∗
qb.

Next we can use unitarity of the CKM matrix (λu + λc + λt = 0) to eliminateλu.

Md
12 = λ2c (F (c, c)− 2F (u, c) + F (u, u))

+2λcλt (F (c, t)− F (u, t)− F (u, c) + F (u, u))

+λ2t (F (t, t)− 2F (u, t) + F (u, u)) (282)

Doing the loop calculation one finds

F (p, q) = f0 + f(mq, mp) , (283)

with a large constant valuef0 and a mass dependent termf(mq, mp) that grows
with the mass. Thus one finds thatf0 cancels inM12 due to GIM cancellation. If
all internal masses would be equal (or zero),M12 would vanish. Looking at the
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CKM hierarchy we find

λ2c ∝ λ6 , (284)

λcλt ∝ λ6 , (285)

λ2t ∝ λ6 , (286)

so all three contribution have a similar size of the CKM factors, but the first two
terms are strongly GIM suppressed [159]. To a good approximation we can write

Md
12 = λ2t (F (t, t)− 2F (u, t) + F (u, u)) = λ2tS(mt) , (287)

with the Inami-Lim functionS(mt) [160].
In theBs-system we have

λ2c ∝ λ4 , (288)

λcλt ∝ λ4 , (289)

λ2t ∝ λ4 , (290)

and we can thus again approximate

Ms
12 = λ2t (F (t, t)− 2F (u, t) + F (u, u)) = λ2tS(mt) , (291)

Hence we expects
∆Ms

∆Md
=

1

λ2
= 25 (292)

which fits already quite well with the experimental findings.

9.3.3 The SM predictions for mixing quantities

In practice, the calculation of the mixing quantities is still a little more involved.
When calculating QCD corrections we will find large logarithms that can be
summed up to all orders if we integrate out all heavy particles, i.e. the top-quark
and the W boson.
For an illustration we compare now the determination of the total lifetime τs =
1/Γs,Ms

12 andΓs
12. These quantities are given by the following diagrams

b c, u

W c̄, ū

s, d

Γ =
∫
∑

X

2
b t s

s̄ t̄ b̄

W, M12 = W

b c, u s

s̄ c̄, ū b̄

W, Γ12 = W

Integrating out the heavy particles we find
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b
c, u

c̄, ū

s, d
Γ =

∫
∑

X

2

b s

s̄ b̄

, M12 =

b
c, u

s

s̄
c̄, ū

b̄

, Γ12 =

The vertices in the diagrams forΓ andΓ12 are effective four-quark operators with
∆B = 1, like

Q2 = c̄γµ(1− γ5)b× s̄γµ(1− γ5)c (293)

=: (c̄b)V−A(s̄c)V−A , (294)

while the vertex in the diagram forM12 is an effective four-quark operator with
∆B = 2

Q = (s̄b)V−A(s̄b)V−A . (295)

ForM12 we have now already the final local operator, whose matrix element has
to be determined with some non-perturbative QCD-method.
Calculating the box diagram with internal top quarks one obtains

M12,q =
G2

F

12π2
(V ∗

tqVtb)
2M2

WS0(xt)BBq
f 2
Bq
MBq

η̂B . (296)

The Inami-Lim functionS0(xt = m̄2
t/M

2
W ) was discussed above. It results from

the box diagram without any gluon corrections. The NLO QCD correction is
parameterised bŷηB ≈ 0.84 [161]. The non-perturbative matrix element is pa-
rameterised by the bag parameterB and the decay constantfB

〈B̄q|Q|Bq〉 =
8

3
f 2
Bq
B2

Bq
MBq

. (297)

As a next step we rewrite the expression forΓ in a form that is almost identical to
the one ofΓ12. With the help of the optical theoremΓ can be rewritten (diagra-
matically: a mirror reflection on the right end of the decay diagram followed by
all possible Wick contractions of the quark lines) in
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Γ0

b
c, u

b

s, d
Γ =

c̄, ū

s̄

Γ3

b
c, u

b

s̄
c̄, ū

s̄

+ ...+ + ...

The first term (=: Γ0) corresponds to the decay of a freeb-quark. This term gives
the same contribution to allb-hadrons. The lifetime differences we are interested
in will only appear in subleading terms of this expansion like the second diagram
(=: Γ3), which looks very similar to the diagram forΓ12. Counting the mass
dimensions of the external lines one can write formally an expansion of the total
decay rate in inverse powers of the heavy quark massmb:

Γ = Γ0 +
Λ

mb

Γ1 +
Λ2

m2
b

Γ2 +
Λ3

m3
b

Γ3 + ... . (298)

The parameterΛ is expected to be of the order ofΛQCD, its actual size can how-
ever only be determined by explicit calculation. The expressions forΓi andΓ12

are however still non-local, so we perform a second OPE (OPE II) using the fact
that theb-quark mass is heavier than the QCD scale (mb ≫ ΛQCD). The OPE
II is called the heavy quark expansion (HQE) and was discussed in Section The
resulting diagrams forΓ3 andΓ12 look like the final diagram forM12:

b b

s̄ s̄

Γ3 =

b s

s̄ b̄

, Γ12 =

Now we are left with local four-quark operators (∆B = 0 for τ and∆B = 2
for Γ12). The non-perturbative matrix elements of these operatorsare expressed
in terms of decay constantsfB and bag parametersB. In the standard model one
gets one operator forM12 (Q) and three operators forΓ12 - including Q

Q = s̄αγµ(1− γ5)bα × s̄βγµ(1− γ5)bβ , (299)

QS = s̄α(1 + γ5)b
α × s̄β(1 + γ5)b

β , (300)

Q̃S = s̄α(1 + γ5)b
β × s̄β(1 + γ5)b

α , (301)
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and e.g. four operators forτ(B+)/τ(Bd)
20 - in extensions of the standard model

more operators can arise. It turns out thatQ, QS andQ̃S are not independent, so
one of them can be eliminated. HistoricallỹQS was eliminated; later on it turned
out that this was a bad choice.
Before discussing the full standard model result let us havea short look at the
differences betweenΓs

12 andΓd
12. Both quantities have three different CKM con-

tributions

Γs
12 = −

[

(λsc)
2 Γcc,s

12 + 2λscλ
s
uΓ

uc,s
12 + (λsu)

2 Γuu,s
12

]

(302)

Γd
12 = −

[

(

λdc
)2

Γcc,d
12 + 2λdcλ

d
uΓ

uc,d
12 +

(

λdu
)2

Γuu,d
12

]

(303)

One sees that inΓs
12 there is the CKM leading contributionλsc ∝ λ2 and thus the

expression is dominated by the first term - this will, however, not hold for the
imaginary part. On the other handΓd

12 is CKM subleading (λdc ∝ λ3) and all three
contributions seem to be of similar size.
Another way of looking at the mixing systems is the investigation of the ratio
Γq
12/M

q
12. In this ratio many of the leading uncertainties cancel, e.g. the factor

(fBq
MBq

)2, thus one expects - up to different CKM structures - similar results for
theBd andBs mesons. The three physical mixing observables∆Mq, ∆Γq andaqsl
can be expressed in terms of this clean ratio:

aqsl = Im

(

Γq
12

M q
12

)

, (304)

∆Γq

∆Mq
= −Re

(

Γq
12

M q
12

)

. (305)

Moreover, the ratioΓq
12/M

q
12 can be simplified considerably if the unitarity of the

CKM matrix is used, i.e.λu + λc + λt = 0

− Γq
12

M q
12

=
λ2cΓ

cc,q
12 + 2λcλuΓ

uc,q
12 + λ2uΓ

uu,q
12

λ2tM̃12,q

(306)

=
Γcc,q
12

M̃12,q

+ 2
λu
λt

Γcc,q
12 − Γuc,q

12

M̃12,q

+

(

λu
λt

)2
Γcc,q
12 − 2Γuc,q

12 + Γuu,q
12

M̃12,q

(307)

≈ 10−4

[

(51± 10)− λu
λt

(10± 2)−
(

λu
λt

)2

(0.16± 0.03)

]

(308)

The three numerical coefficients in (308) are almost identical for theBd andBs

system. The CKM factor readsλu/λt = −0.008 + 0.021 i in theBs system and
λu/λt = −0.033− 0.439 i in theBd system. Hence the real part ofΓq

12/M
q
12 and

20This statements hold only at order1/m3
b .
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thus∆Γq/∆Mq is dominated by the first coefficient. It is interesting to note, that
a knowledge ofΓcc,d

12 is sufficient to get a precise SM value of∆Γd via the relation

∆Γd = −Re

(

Γd
12

Md
12

)

∆MExp.
d , (309)

while one needs all three diagramsΓcc,d
12 , Γuu,d

12 andΓuc,d
12 , if one determines∆Γd

via the relation
∆Γd = 2

∣

∣Γd
12

∣

∣ cos(φd) . (310)

Moreover, an imaginary part can only appear in (308) in the second and third
contribution, which therefore describes the semi-leptonic CP asymmetries, whose
final sizes are given by the values of the CKM elements. In theBs system the
CKM factor has a small imaginary value andassl gets therefore a small numerical
value. The third term in (308) is negligible in theBs system. In theBd system the
CKM ratio is larger and it has a sizable imaginary part – it is about a factor of 20
larger than in theBs-system – giving rise to a semi-leptonic CP asymmetry in the
Bd sector that is also about 20 times larger than the one in theBs system.
The full expression forΓ12 can be expanded as

Γ12 =
Λ3

m3
b

(

Γ
(0)
3 +

αs

4π
Γ
(1)
3 + ...

)

+
Λ4

m4
b

(

Γ
(0)
4 + ...

)

+ ... . (311)

Each of theΓ(0)
i is a product of perturbative Wilson coefficients and non-perturbative

matrix elements. InΓ3 these matrix elements arise from dimension 6 four-quark
operators, inΓ4 from dimesion 7 operators and so on.
The leading termΓ(0)

3 was calculated already quite long ago [19, 162, 163, 164,
165, 166] The1/mb-corrections (Γ(0)

4 ) were determined in [167] and they turned
out to be quite sizeable. NLO QCD-corrections were done for the first time in
[168], they also were quite large. Five years later the QCD-corrections were
confirmed and also subleading CKM structures were included [169, 134]. Un-
fortunately it turned out that∆Γ is not well-behaved [170]. All corrections are
unexpectedly large and they go in the same direction. This problem could be
solved by usingQ andQ̃S as the two independent operators instead ofQ andQS,
so just a change of the operator basis [171]. As an illustration of the improvement
we show the expressions forΓ12/M12 in the old and the new basis:

∆Γs

∆Ms

Old
= 10−4 ·

[

0.9 + 40.9
B′

S

B
− 25.0

BR

B

]

, (312)

∆Γs

∆Ms

New
= 10−4 ·

[

46.2 + 10.6
B̃′

S

B
− 11.9

BR

B

]

, (313)
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whereB′
S is the bag parameter ofQS, B̃′

S is the bag parameter of̃QS andBR de-
notes the bag parameters of the dimension 7 operators. Now the term that is com-
pletely free of any non-perturbative uncertainties is numerical dominant. More-
over the1/mb-corrections became smaller and undesired cancellations are less
pronounced. For more details we refer the reader to [171]. Currently also1/mb-
corrections for the subleading CKM structures inΓ12 [172] and1/m2

b-corrections
for ∆Γs [173] are available - they are relatively small.

9.3.4 Numerical Results

Mixing:
The mixing quantities have been re-investigated recently [175] (update of [171]).
Numerically we obtain for the mass differences

∆MSM
d = 0.54± 0.09 ps−1 , ∆MSM

s = 17.3± 2.6 ps−1 . (314)

The mass differences have been measured with great precision at LEP, TeVatron
and the B factories[?, ?, ?, ?]

∆Md = 0.507± 0.005 ps−1 , ∆Ms = 17.77± 0.10± 0.07 ps−1 . (315)

The numbers agree well, but the theory error is still more than an order of magni-
tude larger than the experimental error.
For the decay rate differences we obtain the following predictions

∆ΓSM
d = (2.89± 0.72) · 10−3 ps−1 , ∆ΓSM

s = 0.087± 0.021 ps−1 , (316)
(

∆Γd

Γd

)SM

= (4.11± 0.78) · 10−3 ,

(

∆Γs

Γs

)SM

= 0.137± 0.027 , (317)

(

∆Γd

∆Md

)SM

= (53.2± 10.1) · 10−4 ,

(

∆Γs

∆Ms

)SM

= (50.4± 10.1) · 10−4 .

(318)

The predictions for∆Γs/Γs and∆Γd/Γd are obtained under the assumption that
there are no new physics contributions in∆Md and∆Ms. The decay rate differ-
ences have not been measured yet, but we have already interesting bounds

(

∆Γd

Γd

)

= (10± 37) · 10−3 ,

(

∆Γs

Γs

)

= 0.092+0.052
−0.054 . (319)

Here we are eagerly waiting for more precise results from TeVatron and from
LHC!
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Finally we present the numerical updates for the mixing phases and the flavor-
specific asymmetries

φSM
d = −0.085± 0.025 , φSM

s = (4.2± 1.3) · 10−3 , (320)

ad,SMfs = (−4.5 ± 0.8) · 10−4 , as,SMfs = (2.11± 0.36) · 10−5 . (321)

From this list one sees the strong suppression ofφ andasl in the standard model.
In addition we give also the updated prediction for the dimuon asymmetry and the
difference between the two semileptonic CP-asymmetries that will be measured
at LHCb

ASM
SL = − (0.22± 0.04) · 10−3 , (322)

as,SMfs − ad,SMfs = (0.47± 0.08) · 10−3 . (323)

We will compare these numbers with experimental data in the new physics section.
At that stage it is instructive to look also at the detailed list of the different sources
of the theoretical error for observables in theBs mixing system. We compare
this numbers with the corresponding ones from Reference [171] (the table and
numerical values are from [175]). For the mass difference wehave

∆Ms This work hep-ph/0612167

Central Value 17.3 ps−1 19.3 ps−1

δ(fBs
) 13.2% 33.4%

δ(Vcb) 3.4% 4.9%
δ(B) 2.9% 7.1%
δ(mt) 1.1% 1.8%
δ(αs) 0.4% 2.0%
δ(γ) 0.3% 1.0%

δ(Vub/Vcb) 0.2% 0.5%
δ(mb) 0.1% −−−
∑

δ 14.0% 34.6%

For the mass difference we observe a considerable reductionof the overall error
from 34.6% in 2006 to14%. This is mainly driven by the progress in the lattice
determination of the decay constant and the bag parameterB. To further improve
the accuracy we need more precise values of the decay constant.
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For the decay rate difference we get

∆Γs This work hep-ph/0612167

Central Value 0.087 ps−1 0.096 ps−1

δ(BR2) 17.2% 15.7%
δ(fBs

) 13.2% 33.4%
δ(µ) 7.8% 13.7%
δ(B3) 4.8% 3.1%
δ(BR0) 3.4% 3.0%
δ(Vcb) 3.4% 4.9%
δ(B) 2.7% 6.6%
δ(BR̃1

) 1.9% −−−
δ(z̄) 1.5% 1.9%
δ(ms) 1.0% 1.0%
δ(BR1) 0.8% −−−
δ(BR̃3

) 0.5% −−−−
δ(αs) 0.4% 0.1%
δ(γ) 0.3% 1.0%
δ(BR3) 0.2% −−−

δ(Vub/Vcb) 0.2% 0.5%
δ(mb) 0.1% 1.0%
∑

δ 24.5% 40.5%

For the decay rate difference we also find a strong reduction of the overall error
from 40.5% in 2006 to24.5%. This is again due to our more precise knowledge
about the decay constant and the bag parameterB, but also from our change to the
MS-scheme for the quark masses, which leads to a sizeable reduction of the renor-
malisation scale dependence. In [171] we were using in addition the pole scheme,
and our numbers and errors were averages of these two quark mass schemes. It is
very interesting to note, that now the dominant uncertaintystems from the value
of the matrix element of the power suppressed operatorR̃2.
To further improve the accuracy a non-perturbative determination ofBR̃2

andB2

as well as a more precise value offBs
is mandatory. In addition the calculation of

theαs/mb and theα2
s-corrections will reduce theµ-dependence.
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For the ratio of∆Γ ∆M the decay constant cancels.

∆Γs/∆M This work hep-ph/0612167

Central Value 50.4 · 10−4 49.7 · 10−4

δ(BR2) 17.2% 15.7%
δ(µ) 7.8% 9.1%
δ(B3) 4.8% 3.1%
δ(BR0) 3.4% 3.0%
δ(BR̃1

) 1.9% −−−
δ(z̄) 1.5% 1.9%
δ(mb) 1.4% 1.0%
δ(mt) 1.1% 1.8%
δ(ms) 1.0% 0.1%
δ(αs) 0.8% 0.1%
δ(BR1) 0.8% −−−
δ(BR̃3

) 0.5% −−−−
δ(BR3) 0.2% −−−
δ(B) 0.1% 0.5%
δ(γ) 0.0% 0.1%

δ(Vub/Vcb) 0.0% 0.1%
δ(Vcb) 0.0% 0.0%
∑

δ 20.1% 18.9%

For the ratio of∆Γ/∆M we do not have any improvement. The decay con-
stant cancels out in that ratio and therefore we did not profitfrom the progress
in lattice simulations. Also the CKM dependence cancels to alarge extent. The
improvement in the renormalisation scale dependence is less pronounced than in
∆Γ alone.
To improve the precision, we have to improve the precision on∆Γ as described
above (except for the decay constant).
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For the semileptonic CP-asymmetries we get

asfs This work hep-ph/0612167

Central Value 2.11 · 10−5 2.06 · 10−5

δ(Vub/Vcb) 11.6% 19.5%
δ(µ) 8.9% 12.7%
δ(z̄) 7.9% 9.3%
δ(γ) 3.1% 11.3%
δ(BR̃3

) 2.8% 2.5%
δ(ms) 2.0% 3.7%
δ(αs) 1.8% 0.7%
δ(BR3) 1.2% 1.1%
δ(mt) 1.1% 1.8%
δ(B3) 0.6% 0.4%
δ(BR0) 0.3% −−−
δ(BR̃1

) 0.2% −−−
δ(B) 0.2% 0.6%
δ(ms) 0.1% 0.1%
δ(BR2) 0.1% −−−
δ(BR1) 0.0% −−−
δ(Vcb) 0.0% 0.0%
∑

δ 17.3% 27.9%

Finally we also have a large improvement for the flavor specific asymmetries.
The overall error went down from27.9% to 17.3%. In afs also the decay constant
cancels, but in contrast to∆Γ/∆M we now have a strong dependence on the
CKM elements. Here we benefited from more precise values of the CKM values
and also from a more sizeable reduction of the renormalisation scale dependence.
Here a further improvement in the CKM values ofVub and the charm quark mass
will help, as well as the reduction of theµ-dependence via the calculation of
higher order terms.

Lifetimes:
While the theoretical framework for the determination of the mass differences is
very solid, the applicability of the HQE forΓ12 was questioned sometimes in the
literature. We will test the HQE with the lifetime ratio of mesons, which are prac-
tically free of hadronic uncertainties.
The theoretically best investigated lifetime ratio isτBs

/τBd
. Here large cancella-

tions occur so the ratio is expected to be very close to one [175]

τ(Bs)

τ(Bd)
= 1.000−0.004 . (324)
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The theoretically next best lifetime ratio isτB+/τBd
. One obtains [175]

τ(B+)

τ(Bd)
= 1.044± 0.024 . (325)

NLO-QCD corrections turned out to be important, subleading1/mb-corrections
are small. Care has to be taken with the arising matrix elements of the four-
quark operators: it turned out that the Wilson coefficients of the colour-suppressed
operators are numerically enhanced, see [?]. But the matrix elements of these
operators are only known with large relative errors. Currently two determinations
on the lattice are available [?, ?].
Experimentally we have

τ(Bs)

τ(Bd)
= 1− 0.027± 0.015 , (326)

τ(B+)

τ(Bd)
= 1.081± 0.006 . (327)

we find that the HQE gives numbers that are close to experiment, but to perform
a precise comparison of experiment and theory an updated of the bag parameters
is mandatory. The state of the art is here already 10 years old! For theBs life we
are waiting for much more precise experimental values.
In Fig. (1) we visualise the theory predictions for these lifetimes ratios. Predictions
for theΛb have to be taken with more care. In that case the NLO-QCD corrections
are not complete and only preliminary lattice values [?] are available. A typical
value quoted in the literature [?] is

τ(Λb)

τ(Bd)
= 0.88± 0.05 . (328)

The lifetime of the doubly heavy mesonBc has been investigated e.g. in [?], but
only in LO QCD.

τ(Bc)LO = 0.52+0.18
−0.12 ps.

In addition to the b-quark now also the c-quark can decay, giving rise to the biggest
contribution to the total decay rate.
An interesting quantity is the lifetime ratio of theΞb-baryons, which was investi-
gated in NLO-QCD in [?]. This quantity can in principle be determined as precise
asτB+/τBd

(±3%). However, up to now the matrix elements for theΞb baryons
are not available. Assuming that the matrix elements forΞb are equal to the ones
of Λb we can give a rough estimate for the expected lifetime ratio.In order to get
rid of unwanteds→ u-transitions we define (following [?])

1

τ̄ (Ξb)
= Γ̄(Ξb) = Γ(Ξb)− Γ(Ξb → Λb +X) . (329)
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Figure 1: Allowed range forτBs
/τBd

and τB+/τBd
. The prediction forτB+/τBd

derived with the decade-old hadronic parameters of Ref. [?] barely overlaps with
the experimental 3σ region. This shows the importance of a modern lattice calcu-
lation of these parameters.

Using the preliminary lattice values [?] for the matrix elements ofΛb we obtain

τ̄ (Ξ0
b)

τ̄ (Ξ+
b )

= 1− 0.12± 0.02±??? , (330)

where??? stands for some unknown systematic errors. As a further approximation
we equatēτ(Ξ0

b) to τ(Λb) - here similar cancellations arise as inτBs
/τBd

- , so we
arrive at the following prediction

τ(Λb)

τ̄(Ξ+
b )

= 0.88± 0.02±??? . (331)

The PDG quotes [?] the following numbers

τ(Λb)

τ(Bd)
= 0.99± 0.10 , τ(Bc) = 0.453± 0.041 ps. (332)

The situation for theΛb-baryon is not settled yet. First several theoretical improve-
ments have to be included, second there are two different experimental numbers
on the market [?, ?]. ForBc the number lies in the right ball park, but here also
a full NLO-QCD calculation would be desirable to make the comparison more
quantitative. Finally we are waiting for a first result for the lifetimes of theΞb-
baryons.
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9.4 Mixing of D mesons

9.4.1 What is so different compared to theB system?

Let us start with a very naive estimate of contributions to the Box-diagrams (λ ≈
0.2; xq =

m2
q

M2
W

)

K0 :







(VusV
∗
ud)

2 ∝ λ2 xu ≈ 1.5 · 10−9 VCKMS(xq) ≈ 7 · 10−11

(VcsV
∗
cd)

2 ∝ λ2 xc ≈ 0.00035 VCKMS(xq) ≈ 2 · 10−5

(VtsV
∗
td)

2 ∝ λ10 xt ≈ 4.8 VCKMS(xq) ≈ 7 · 10−7

B0
d :







(VubV
∗
ud)

2 ∝ λ6 xu ≈ 1.5 · 10−9 VCKMS(xq) ≈ 2 · 10−13

(VcbV
∗
cd)

2 ∝ λ6 xc ≈ 0.00035 VCKMS(xq) ≈ 4 · 10−8

(VtbV
∗
td)

2 ∝ λ6 xt ≈ 4.8 VCKMS(xq) ≈ 3 · 10−4

B0
s :







(VubV
∗
us)

2 ∝ λ8 xu ≈ 1.5 · 10−9 VCKMS(xq) ≈ 8 · 10−15

(VcbV
∗
cs)

2 ∝ λ4 xc ≈ 0.00035 VCKMS(xq) ≈ 8 · 10−7

(VtbV
∗
ts)

2 ∝ λ4 xt ≈ 4.8 VCKMS(xq) ≈ 6 · 10−3

D0 :







(VcdV
∗
ud)

2 ∝ λ2 xd ≈ 6 · 10−9 VCKMS(xq) ≈ 3 · 10−10

(VcsV
∗
us)

2 ∝ λ2 xs ≈ 1 · 10−6 VCKMS(xq) ≈ 4 · 10−8

(VcbV
∗
ub)

2 ∝ λ10 xb ≈ 0.003 VCKMS(xq) ≈ 8 · 10−10

All contributions are small and of similar size in D-mixing,but It comes worse!!!
Why naive?
In the derivation of the Inami-Lim functions already the unitarity of the CKM-
matrix has been used

M12 ∝ λdλdf(d, d) + λdλsf(d, s) + λdλbf(d, b)

+ λsλdf(s, d) + λsλsf(s, s) + λsλbf(s, b)

+ λbλdf(b, d) + λbλsf(b, s) + λbλbf(b, b) (333)

= λ2s [f(s, s)− 2f(s, d) + f(d, d)]

+ 2λsλb [f(b, s)− f(b, d)− f(s, d) + f(d, d)]

+ λ2b [f(b, b)− 2f(b, d) + f(d, d)] (334)

=: λ2sS(xs) + 2λsλbS(xs, xb) + λ2bS(xb) (335)

What problems do arise in the charm system?

1. Exact treatment ofVCKM

⇒ Huge GIM cancellation between the 3 contributions

2. αs(mc) ≈ O(50%)
⇒ convergence of QCD perturbative Expansion?
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3. Λ/mc not so small
⇒ convergence of Heavy Quark Expansions?

4. Exp.Γ12 ≈M12

Use exact formulae for diagonalisation

How to solve these problems

1. Because of huge cancellations: be very careful with approximation that
might seem justified on first sight.

2. Simply try by explicit calculation!

3. Test with charm lifetimes and simply try by explicit calculation.

4. The most easy part: the exact relations read

(∆M)2 − 1

4
(∆Γ)2 = 4|M12|2 − |Γ12|2, (336)

∆M∆Γ = 4|M12||Γ12| cos(φ) .

If |Γ12/M12| ≪ 1, as in the case of theBs system (≈ 5 · 10−3) or if φ≪ 1,
one gets the famous approximate formulae

∆M = 2|M12| , ∆Γ = 2|Γ12| cosφ .

In the D-system|Γ12/M12| ≈ 1 possible — Solve Eigenvalue equation ex-
actly
A numerical estimate shows:∆Γ ≤ 2|Γ12|

9.4.2 SM predictions

Theoretical Tools:
There are two approaches to describe the SM contribution to D-mixing. They are
state of the art, but they are more an estimate than a calculation

• Exclusive Approach
Falk, Grossman, Ligeti, Petrov PRD65 (2002)
Falk, Grossman, Ligeti, Nir, Petrov PRD69 (2004)

• Inclusive Approach
Georgi, PLB 297 (1992), Ohl, Ricciardi, Simmons, NPB 403 (1993)
Bigi, Uraltsev, NPB 592 (2001)

⇒ x, y up to1% not excluded
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⇒ Essential no CPV in mixing — unambiguous signal for NP!!!

Comments on the exclusive approach:
y due to final states common toD andD

y =
1

Γ

∑

n

ρn〈D0|H∆C=1
W |n〉〈n|H∆C=1

W |D0〉

This is much too complicated to calculate exclusive decay rates exactly!

• Estimate only SU(3) violating phase space effects (mild assumptions about
~p-dependence of matrix elements) = calculable source of SU(3) breaking

• Assume hadronic matrix elements are SU(3) invariant

• Assume CP invariance of D decays

• Assume no cancellations with other sources of SU(3) breaking

• Assume no cancellations between different SU(3) multipletts

⇒ individual effects of1% possible:yExp ≈ 1% 6⇒ NP

• ”our analysis does not amount to a SM calculation of y”

We try to push the inclusive approach to its limit.
Charm lifetimes:

The following is just a naive estimate - a quantitative analysis has to be done!
Experimentally we get relatively large differences in the lifetimes ofDmesons:

Exp.:
τ(D+)

τ(D0)
=

1040 fs
410 fs

≈ 2.5
τ(D+

s )

τ(D0)
=

500 fs
410 fs

≈ 1.2

We assume now that the HQE can also be applied to charm system and we inves-
tigate how large the HQE would have to be in order to reproducethe experimental
findings.

• Applying the HQE for D-system we get the following diagramatic contri-
butions

– D0: weak annihilation (=WA)

– D+,D+
s : Pauli interference (=PI); PI (D+

s ) = (Vus/Vud)
2 PI (D+)

• This can be compared with the HQE contributions for the B-system
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– Bd, Bs: WA, similar CKM structure, differences due to phase space

– B+: PI (larger than WA)

According to the HQE the total decay rate can be written as a leading term that
describes the decay of a free charm quark and some corrections that depend also
on the flavor of the spectator quark.

Γ(Dx) = Γ(c) + δΓ(Dx)

With our above assumptions we easily see that the experimental constraints are
full-filled for

δΓ(D+)

Γ(c)
≈ −53% ,

δΓ(D0)

Γ(c)
≈ +19%

First of all, the size of the correction is in the expected range, since(mb/mc)
3 ≈

20...30. Next the expected corrections are large, but not so large that an application
of the HQE is a priori meaningless.
Here it would be very valuable to have a real HQE calculation of the lifetime ratios
of charm mesons.

9.4.3 HQE for decay rate difference

The problem:

Γ12 = −(λ2sΓss + 2λsλdΓsd + λ2dΓdd)

λd = VcdV
∗
ud = −c12c23c13s12−c212c13s23s13eiδ13 = O

(

λ1 + iλ5
)

,

λs = VcsV
∗
us = +c12c23c13s12−s212c13s23s13eiδ13 = O

(

λ1 + iλ7
)

,

λb = VcbV
∗
ub = c13s23s13e

iδ13 = O
(

λ5 + iλ5
)

,
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Forms = md we have an exact cancellation! Approximations are dangerous:
Common folkloreλb ≈ 0 (looks reasonable!)

Unitarity: λd + λs = 0 ⇒ Γ12 = −λ2s (Γss − 2Γsd + Γdd)

• Γ12 vanishes in the SU(3)F limit
Use the results forBs-mixing from Beneke, Buchalla, (Greub), A.L., Nierste 1998;

2003; Ciuchini, Franco, Lubicz, Mescia, Tarantino 2003, A.L., Nierste 2006

Γss − 2Γsd + Γdd ≈ 1.2
m4

s

m4
c

− 59
m6

s

m6
c

Golowich, Petrov 2005, Bobrowski, A.L., Riedl, Rohrwild 2009

• Γ12 is real to a very high accuracy

λ2s = O
(

λ2 + iλ8
)

⇒ Arg
(

λ2s
)

≈ 1

λ6
≈ 10−4 ⇒ 10−3 = NP

• Overall result much too small

y ≈ O(10−6)

Huge cancellations⇒ be careful with approximations !!!
D= 6,7 without folklore!!!! Bobrowski, A.L., Riedl, Rohrwild 2009, 2010

Unitarity: λd + λs + λb = 0

Γ12 = −λ2s (Γss − 2Γsd + Γdd) + 2λsλb (Γsd − Γdd)− λ2bΓdd

ΓD=6,7
sd = 1.8696− 2.7616

m2
s

m2
c

− 7.4906
m4

s

m4
c

+ ... .

ΓD=6,7
dd = 1.8696

Γ12 ∝ λ2s
m6

s

m6
c

+ 2λsλb
m2

s

m2
c

− λ2b 1

107ΓD=6,7
12 = −14.6 + 0.0009i(1st term)−6.7− 16i(2nd term) + 0.3− 0.3i(3rd term)

= −21.1− 16.0i = (11...39) e−i(0.5...2.6) .

• not zero in SU(3)F limit
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• large phase (O(1)) possible!!!

• yD ∈ [0.5, 1.9] · 10−6 ⇒ still much smaller than experiment (8 · 10−3)

What does this mean?

1. Standard argument for “argΓ12 is negligible” is wrong

2. Can there be a sizeable phase in D-mixing?

• Phase ofΓ12 is unphysical

• Phase ofM12/Γ12 is physical⇒ determine alsoM12

3. ΓD=6,7
12 has a large phase, butyD=6,7 ≪ yExp.

• Georgi 1992; Ohl, Ricciardi, Simmons 1993; Bigi, Uraltsev 2001
Higher orders in the HQE might be dominant:yD≥9 = yExp. not ex-
cluded

• Bobrowski, A.L., Riedl, Rohrwild 2009, 2010
If estimate of Bigi/Uraltsev is correct + our findings for D=6:
yTheory = yExp. and 5 per mille CP-violation not excluded

• Bobrowski, A.L. 2010; Bobrowski, Braun, A.L., Nierste, Prill in progress
Do the real calculation forD ≥ 9

Try by explicit calculation if HQE works:
Idea: higher orders in HQE might be dominant if GIM is less pronounced
Georgi; Ohl, Ricciardi, Simmons; Bigi, Uraltsev

naive expectation for a single diagram:

yD no GIM with GIM

D = 6, 7 2 · 10−2 1 · 10−6 Calculation
D = 9 2 · 10−2...5 · 10−4 ??? Dimensional Estimate
D = 12 2 · 10−2...1 · 10−5 ??? Dimensional Estimate

? Can one obtainyExp.
D ? ?How big canφ be?

Our dimensional estimates
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• DetermineΓ12: Imaginary part of 1-loop

• Estimate D = 9:

– Quark condensate:〈s̄s〉/m3
c

– 4παs relative to LO diagram

– GIM : (ms/mc)
3 andms/mc

Suppressed by about2 · 10−5, 3 · 10−3 compared to D=6 diagram
D=6 GIM suppressed by about5 · 10−5 ⇒ ! IMPORTANT !

Dimensional estimate in Bigi, Uraltsev 2001

• DetermineM12: 0-loop

• Estimate D = 9: Quark condensate:µ3
hadron./m

3
c soft GIM :ms/µhadr.

• EstimateΓ12 via dispersion integral overM12

Difference: 〈s̄s〉ms

m4
c

vs. msµ2
hadron.

m3
c

or better〈q̄q〉 ≈ (0.24GeV)3 vs. µhadr. ≈ 1
GeV

⇒ BU/BBLNP≈ 80⇒ Calculation has to decide!

Our Research Program

1. Redo D=6 without any approximations
Bobrowski, A.L, Riedl, Rohrwild, JHEP 2010

2. Calculate D≥9
Bobrowski, A.L. 2010; Bobrowski, Braun, A.L., Nierste, Prill unpublished

3. Calculate D≥12

4. CalculateM12

5. Calculate lifetimes of D mesons

6. Give a much more relieable range for the SM values of the possible size of
CP violation in D mixing

Determination of D= 9,10,... in factorisation approximation
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• Factorisation approximation, expected to hold up to1/Nc

• Enhancement ofO(15) compared to leading term
Large effect, but not as large as estimated by Bigi, Uraltsev

• GIM cancellation reduced to:∝ m3
s

Γ12 ∝ λ2s ·
m6

s

m6
c

+ 2λsλb ·
m2

s

m2
c

+ λ2b · 1

→ Γ12 ∝ λ2s ·
m3

s

m3
c

+ 2λsλb ·
m2

s

m2
c

+ λ2b · 1

yD no GIM with GIM CP violation

D = 6, 7 2 · 10−2 1 · 10−6 O(1) Calculation
D = 9 2 · 10−2...(3.5 · 10−3)...5 · 10−4 1.5 · 10−5 O(5%) Calculation
D = 12 2 · 10−2...1 · 10−5 ??? Dim. Estimate

next Dim 12!

9.5 Search for new physics

9.5.1 Model independent analyses in B-mixing

In [171] a model independent way to determine new physics effects in the mixing
sector was presented. We assume that new physics does not alterΓ12 - at least not
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Figure 2:Allowed regions for∆d and∆s [?].

more than the intrinsic QCD uncertainties, but it might havea considerable effect
onM12. Therefore we write

Γq
12 = Γq,SM

12 M q
12 =M q,SM

12 ·∆q (337)

By comparing experiment and theory for the different mixingobservables we get
bounds in the complex∆-plane, see [171]. In [?] we performed a fit of the com-
plex parameters∆d and∆s. The result is shown in Fig. 2 We found that the SM
is excluded by 3.6 standard deviations.

9.5.2 Search for new physics in D mixing

Contrary to expectation:Γ12 is sensitive to new physics!!!

Γ12 = −λ2s (Γss − 2Γsd + Γdd) + 2λsλb (Γsd − Γdd)− λ2bΓdd

Γ12 is small, because

1. Γss − 2Γsd + Γdd is small

2. λb is small

⇒ 2 possibilities for enhancements
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1. EnhanceΓss − 2Γsd + Γdd

e.g. Golowich et al.: small corrections to the individual decay rates that do
not cancel via GIM

2. “Enhanceλb”
The resurrection of the SM 4

Γ12 = −λ2s (Γss − 2Γsd + Γdd)+2λs(λb + λb′) (Γsd − Γdd)−(λb + λb′)
2Γdd

λb ∝ λ5...6 - still possibleλb′ ∝ λ3 (arXiv:0902.4883) see also Melic et al,
Kou et al., Soni et. al, Hou et al. ...
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9.6 Open Questions

• How large is the SM contribution toD-mixing?

xB0
s

xD0

∣

∣

∣

∣

Exp

= 42 · 102 (338)

Continue the full calculation ofD-mixing within the HQE approach and
look for other ideas.

• How large is weak mixing phase in theBs-system

ΦSM
s = 42 · 10−4 (339)

LHCb will show!

• Is the Dimuon result from D0 real or only a statistical fluctuation?

AD0
SL

ASM
SL

= 42 (340)

More results from TeVatron and LHC...

9.7 Comments

Exercise: CalculateM12

Exercise: Calculate∆Γs

Lecture: Discuss NLO-QCD and lattice
The final success:∆Γs vs. Quark-hadron duality
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10 Exclusive B-decays

10.1 Decay topologies and QCD factorisation

(following Chapter 3 of the lecture notes from Thorsten Feldmann)
As an example for different decay topologies we consider several B → DK
decays:

a) B̄d → D+K−: The branching ratio of this decay is measured [9] to be

Br
(

B̄d → D+K−) = (1.97± 0.21) · 10−4 , (341)

the decay proceeds via the following tree-level diagrams (in the SM and in
the effective theory)

B
d

D+

K−

d d

u

s

b c
B

d
D+

K−

d d

u

s

b c

This topology is calledtree-level topology (class I). Naive colour counting
gives two colour loops and thus a numerical factorN2

c .

b) B̄d → D0K̄0: The branching ratio of this decay is measured [9] to be

Br
(

B̄d → D0K̄0
)

= (5.2± 0.7) · 10−5 , (342)

the decay proceeds now via a different tree-level topology,

B
d

b

d

c

u

s

d

D0

K0

B
d

b

d

c

u

s

d

D0

K0

which is calledtree-level topology (class II). Naive colour counting gives
only one colour loop and thus a numerical factorNc.
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c) B− → D0K−: The branching ratio of this decay is measured [9] to be

Br
(

B− → D0K−) = (3.70± 0.17) · 10−4 . (343)

Here we have both class I topology

B− D0

K−

u u

s

u

b c
B− D0

K−

u u

s

u

b c

and class II topology

B−

b

u

c

u

s

u

D0

K−

B−

b

u

c

u

s

u

D0

K−

numerically class I is dominant.

d) B̄s → D+
s K

−: The branching ratio of this decay is measured [9] to be

Br
(

B̄s → D+
s K

−) = (2.03± 0.28) · 10−4 (344)

This decay proceeds via class I tree-level topology (in the SM and in the
effective theory)

B
s

D
s
+

K−

s s

s

u

b c
B

s
D

s
+

K−

s s

s

u

b c

Besides the class I topology we have a new one that is calledannihilation
topology.
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B
s

b c
D0

K−

b

s u

s

s B
s

b c
D0

K−

b

s u

s

s

Naive colour counting gives for the annihilation one colourloop and thus a
numerical factorNc.

Now we would like to investigate the above decays a little more quantitatively. In
the above naive colour estimates we implicitly assumed the insertion of the colour
singlett operatorQ2, now we will do the general case of the effective Hamiltonian.

a) Tree-level topology (Class I):
The amplitude for thēBd → D+K− decay reads

〈D+K−|Heff |B̄d〉 =
GF√
2
VcbV

∗
us

2
∑

i=1

Ci(µ)〈D+K−|Qi|B̄d〉 (345)

In principle we have to determine the matrix elements of the operatorsQ1

andQ2 non-perturbatively; in practice we cannot do this yet. Thuswe have
to rely on some additional assumptions.
The naive factorisation approximation states

〈D+K−|Q2|B̄d〉 ≈ 〈D+|j(b→c)|B̄d〉〈K−sj(u→c)|B̄d〉 (346)

= FB→D(q2 =M2
K) · fK (347)

The first object is called a form factor and the second one is a decay con-
stant. In order to get the contribution of the operatorQ1 we have to express
this operator in terms of colour singlett operator and colour octett operator.
Using 1̃ = 1

3
· 1 + octett (see appendix) and keeping in mind that only the

colour singlett part contributes, we find thus thatC1 appears with an ad-
ditions factor1/3. Hence we get for the amplitude in naive factorisation
approximation:

〈D+K−|Heff |B̄d〉 =
GF√
2
VcbV

∗
us

[

1

3
C1(µ) + C2(µ)

]

FB→D(q2 =M2
K) · fK

(348)

The numerical value of the combination of the Wilson coefficients reads

C2[5] +
1

3
C1[5] = 1.01974 . (349)
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Since the scale dependence of the Wilson coefficients cannotbe compen-
sated by the form factors and the decay constants (the have noscale depen-
dence) it is clear that naive factorisation is just a naive approximation and
theoretically not consistent.
This problem is solved by the QCD (improved) factorisation approach [178,
179, 180, 181], which gives an expression of the following form,

2
∑

i=1

Ci(µ)〈D+K−|Qi|B̄d〉 = FB→D(q2 =M2
K) · fK

1
∫

0

du

[

1

3
C1(µ) + C2(µ) +

αs(µ)

4π
t(u, µ)φk(u, µ)

]

+O
(

Λ

mb

)

,(350)

wheret is a function that can be calculated in perturbation theory andφK is
the so-called distribution amplitude of the kaon.

b) Tree-level topology (Class II)

C1[5] +
1

3
C2[5] = 0.142811 (351)

Experimentally we get for

Br
(

B̄d → D+K−)

Br
(

B̄d → D0K̄0
) = 3.788 (352)

Naive factorisation predicts a ratio of

C2[5] +
1
3
C1[5]

C1[5] +
1
3
C2[5]

= 50.9865. (353)

Thus the theory is off by a factor of13.4584 = (3.66857)2. Naive colour
counting would work here better: QCD factorisation predicts ....

c) Annihilation topology

10.2 Heavy Quark Effective Theory

a method to calculate form factors
Chapter 5 of Thorsten Lecture Notes

10.3 Different Methods

LCSR
BBNS
ExampleΛb → pνl?
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11 Search for new physics

11.1 Model independent analyses

This was done above for B-mixing, similar results have been obtains for other
observables....

11.2 SM4

11.3 2HDM

- project of Matthew

11.4 Vector-like quarks

Heiko

11.5 MSSM
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13 Appendix A: Basic QCD calculations

13.1 One-Loop Corrections

In this section we derive in detail the one-loop correctionsto all elementary objects
in QCD: the quark propagator, the gluon propagator and the quark gluon vertex.
In section 13.1.4 we have collected a list of useful formulaewhich we are using
extensively in the following.

13.1.1 Quark Self Energy

The one-loop correction for the quark self energy is given bythe following Feyn-
man diagram, denoted byiΣ( 6p,m):

p p + k

k

p→ −→

←

→
µ
a

ν
b

i j l

p andk denote the momenta,i, j andl denote the colour of the quark,µ andν are
the usual Dirac indices anda andb denote different gluons. The Feynman rules
give the following expression:

Σ( 6p,m) =

∫

d4k

(2π)4
1

i

(

igγν(T
b)jl
)

(

−iδab g
µν

k2

)(

i
6p+ 6k +m

(p+ k)2 −m2

)

(igγµ(T
a)ij)

= −g2(T aT a)il

∫

d4k

(2π)4i

γµ ( 6p+ 6k +m) γµ
[(p+ k)2 −m2] k2

. (354)

We use dimensional regularisation (D = 4−2ǫ, g → gµǫ) to evaluate this integral.
With (T aT a)il = CF δil, CF = 4/3 one gets

Σ( 6p,m) = −g2CF δilµ
2ǫ

∫

dDk

(2π)Di

(2−D) (6p+ 6k) +Dm

[(p+ k)2 −m2] k2
. (355)

According to the so-called Feynman-trick (see section 13.1.4) the two propagators
can be rewritten in the following way

1

[(p+ k)2 −m2] k2
=

1
∫

0

dx
[

k̃2 −M2
]2 , (356)

with k̃ = k + px,M2 = x
(

m2 − p2(1− x)
)

.
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Performing the shiftk → k̃ and using the fact, that terms which are linear in the
momentumk vanish after integration we get

Σ( 6p,m) = −g2CF δilµ
2ǫ

1
∫

0

dx [(2−D) 6p(1− x) +Dm]

·
∫

dDk

(2π)Di

1

[k2 −M2]2
. (357)

The momentum integral is already in standard form, so we can apply our formulae
from section 13.1.4. With

∫

dDk

(2π)Di

1

[k2 −M2]2
=

1

(4π)
D
2

Γ
(

2− D
2

)

(M2)2−
D
2

, (358)

we get for the quark self energy

Σ( 6p,m) = −g
2CF δil
(4π)2

µ2ǫΓ(ǫ)(4π)ǫ
1
∫

0

dx
(2−D) 6p(1− x) +Dm

(M2)ǫ
.(359)

For massless quarks we immediately get the final result

Σ( 6p, 0) = −αs

4π
CF δil 6p

µ2ǫ(4π)ǫΓ(ǫ)

(−p2)ǫ (2−D)

1
∫

0

dx(1− x)1−ǫx−ǫ

=
αs

2π
CF δil 6p

(

4πµ2

−p2
)ǫ

Γ(ǫ)Γ2(2− ǫ)
Γ(3− 2ǫ)

≈ αs

3π
δil 6p

[

1

ǫ
− γE + ln 4π + ln

µ2

−p2 + 1 +O(ǫ)
]

, (360)

where we have performed a Taylor expansion aroundǫ = 0 in the last step.
For the case of non-vanishing quark masses it seems to be easier to perform the
Taylor expansion aroundǫ = 0 in Eq. (359) before thex-integration.

Σ( 6p,m) = 2
αs

3π
δil

1
∫

0

dxΓ(ǫ)

(

µ24π

x (m2 − p2(1− x))

)ǫ

[(1− ǫ) 6p(1− x)− (2− ǫ)m]

=: mΣ1(p
2, m)+ 6pΣ2(p

2, m) . (361)

Performing the Taylor expansion and the subsequentx-integration we obtain the
final result forΣ1 andΣ2:

Σ1(p
2, m) ≈ −4αs

3π
δil

1
∫

0

dx

[

1

ǫ
− γe + ln

(

µ24π
)

− ln x− ln
(

m2 − p2(1− x)
)

− 1

2

]
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= −4αs

3π
δil

[

1

ǫ
− γe + ln (4π) +

3

2
− ln

m2 − p2
µ2

+
m2

p2
ln
m2 − p2
m2

]

.

Σ2(p
2, m) ≈ 2

αs

3π
δil

1
∫

0

dx(1− x)
[

1

ǫ
− γe + ln

(

µ24π
)

− ln x− ln
(

m2 − p2(1− x)
)

− 1

]

=
αs

3π
δil

[

1

ǫ
− γe + ln (4π) + 1 +

m2

p2
− ln

m2 − p2
µ2

+
m4

p4
ln
m2 − p2
m2

]

.

(362)

For the determination of the so-calledpole massof the quark we need the self
energy evaluated atp2 = m2.

Σ1(m
2, m) ≈ −4αs

3π
δil

1
∫

0

dx

[

1

ǫ
− γe + ln (4π)− 1

2
+ ln

µ2

m2
− 2 lnx

]

= −4αs

3π
δil

[

1

ǫ
− γe + ln (4π) +

3

2
+ ln

µ2

m2

]

.

Σ2(m
2, m) ≈ 2

αs

3π
δil

1
∫

0

dx(1− x)
[

1

ǫ
− γe + ln (4π)− 1 + ln

µ2

m2
− 2 ln x

]

=
αs

3π
δil

[

1

ǫ
− γe + ln (4π) + 2 + ln

µ2

m2

]

.

Σ( 6p = m,m) = −3αs

3π
δilm

[

1

ǫ
− γe + ln (4π) +

4

3
+ ln

µ2

m2

]

.

(363)

The same diagram can be easily calculated with the use of an cut-off instead of
dimensional regularisation. Therefore we start with the form given in Eq. (357)

Σ( 6p,m) = 2g2CF δil

1
∫

0

dx [6p(1− x)− 2m]

∫

d4k

(2π)4i

1

[k2 −M2]2
.

(364)

Applying theWick rotationwe can write

∫

d4k

(2π)4i
f(k2) =

1

(4π)2

∞
∫

0

dk2Ek
2
Ef(−k2E) . (365)
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Inserting this in the quark self energy we get

Σ( 6p,m) = 2
g2

(4π)2
CF δil

1
∫

0

dx [6p(1− x)− 2m]

∞
∫

0

dk2k2
1

[k2 +M2]2
.

(366)

The momentum integral is solved by introducing a cut-offΛ.

Λ
∫

0

dk2k2
1

[k2 +M2]2
= ln

(

1 +
Λ

M2

)

+
M2

M2 + Λ
− 1

≈ ln
Λ

M2
− 1 . (367)

Finally we get the following result, that can be compared with the result obtained
by dimensional regularisation.

ΣΛ( 6p,m) =
αs

2π
CF δil

1
∫

0

dx
{

[6p(1− x)− 2m]

(

ln
Λ

M̃2
− ln

x(m2 − p2(1− x))
M̃2

− 1

)}

. (368)

Σǫ( 6p,m) =
αs

2π
CF δil

1
∫

0

dx
{

[6p(1− x)− 2m] (369)

(

1

ǫ
− γe + ln 4π − ln

x(m2 − p2(1− x))
µ2

− 1

)

−m
}

.

Comparing this two very similar looking expressions, we findthe following cor-
respondence.

1

ǫ
− γe + ln 4π ⇔ ln

Λ

M̃
. (370)

µ ⇔ M̃ . (371)

The remaining difference is the finite term−m in the dimensional regularisation.

13.1.2 Gluon Self Energy

There are several one-loop corrections for the gluon self energy. We start our
calculation with the contribution of virtual quarks which is given by the following
Feynman diagram, denoted byiΠq,ab

µν (p,m).
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p

p + k

k

p→
−→

←

→
µ
a

ν
b

i

j

p andk denote the momenta,i andj denote the colour of the quark,µ andν are
the usual Dirac indices anda andb denote different gluons. The Feynman rules
give the following expression.

Πq,ab
µν (p,m) = (−1)

∫

dDk

(2π)Di
Tr

[

(

igµǫγν(T
b)ji
)

(

i
6p+ 6k +m

(p+ k)2 −m2

)

(igµǫγµ(T
a)ij)

(

i
6k +m

k2 −m2

)]

= −g2µ2ǫ(T aT b)ii

∫

dDk

(2π)Di

Tr [γν (6p+ 6k +m) γµ ( 6k +m)]

[(p+ k)2 −m2] [k2 −m2]
. (372)

Using the fact that the trace of threeγ-matrices vanishes,(T aT b)ii = δab/2 and
the Feynman-trick

1

[(p+ k)2 −m2] [k2 −m2]
=

1
∫

0

dx
[

k̃2 −M2
]2 , (373)

with k̃ = k + px,M2 = m2 − p2x(1− x)

we obtain after a shiftk → k̃ the following expression (linear terms ink vanish)

Πq,ab
µν (p,m) = −g

2µ2ǫ

2
δab

1
∫

0

dx

∫

dDk

(2π)Di

Tr [γν 6kγµ 6k − x(1− x)γν 6pγµ 6p+m2γνγµ]

[k2 −M2]2
.

(374)

In that problem two kinds ofk-integrals appear which can be solved using the
formulae in section 13.1.4.

B =

∫

dDk

(2π)Di

1

[k2 −M2]2
=

1

(4π)2
(4π)ǫΓ(ǫ)

(M2)ǫ
. (375)
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Bµν =

∫

dDk

(2π)Di

kµkν

[k2 −M2]2
=

1

(4π)2
(4π)ǫΓ(ǫ)

(M2)ǫ
gµν

2

M2

1− ǫ . (376)

Therefore we get for the gluon self energy

Πq,ab
µν (p,m) = − g2

(4π)2
δab

2
(4πµ2)ǫΓ(ǫ)

1
∫

0

dx
1

(M2)ǫ

Tr

[

γνγαγµγ
α

2(1− ǫ) M
2 − x(1 − x)γν 6pγµ 6p+m2γνγµ

]

= −αs

4π

δab

2
(4πµ2)ǫΓ(ǫ)

1
∫

0

dx
x(1 − x)

(m2 − p2x(1 − x))ǫTr
[

γνγµp
2 − γν 6pγµ 6p

]

= −αs

π
δab
(

p2gµν − pµpν
)

(4πµ2)ǫΓ(ǫ)

1
∫

0

dx
x(1− x)

(m2 − p2x(1− x))ǫ . (377)

Performing a Taylor expansion we get

Πq,ab
µν (p,m) = −αs

6π
δab
(

p2gµν − pµpν
)





1

ǫ
− γE + ln(4π) + 6

1
∫

0

dxx(1− x) ln m
2 − p2x(1 − x)

µ2



 .

(378)

The last integral can of course be solved analytically, but we think it is more
elegant to express the result in the given form.

The next one-loop correction we are considering is due to virtual gluons:

p

p + k

k

p→

−→

←

→
µ
a

ν
b

d, ρ

c, σ
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p andk denote the momenta,µ, ρ, σ andν are usual Dirac indices anda, b, c and
d denote different gluons. The Feynman rules give the following expression.

Π3g,ab
µν (p,m) =

∫

dDk

(2π)Di

(

−i 1

(p + k)2

)(

−i 1
k2

)

Xab
µν . (379)

InXab
µν we have encoded the Feynman rules for the three gluon vertex and the met-

ric tensors from the gluon propagators. The denominators ofthe two propagators
can be combined in the same way as in the previous example, with a simpler form
of M2.

M2 = −p2x(1− x) . (380)

ForXab
µν we get

Xab
µν = gµǫfacd [gµσ(2p+ k)ρ − gσρ(2k + p)µ + gρµ(k − p)σ] gρρ′gσσ′

gµǫf dcb
[

−gρ′σ′

(2k + p)ν + gσ
′ν(2p+ k)ρ

′

+ gνρ
′

(k − p)σ′
]

= −g2µ2ǫfacdf bcd
[

gµν(5p2 + 2pk + 2k2) + (D − 1)(2k + p)µ(2k + p)ν

−(2p+ k)µ(2p+ k)ν − (p− k)µ(p− k)ν ] . (381)

When performing the momentum integration we make a shift in the integration
variablek, in practice this means that we exchangek by k − xp.

Xab
µν = −3g2µ2ǫδab

[

gµν
(

p2(5− 2x+ 2x2) + 2k2
)

+(4D − 6)kµkν

+
(

D(1− 2x)2 − 6(1− x+ x2)
)

pµpν
]

. (382)

Now we can insert everything in Eq. (379).

Π3g,ab
µν (p,m) = 3g2µ2ǫδab

1
∫

0

dx

∫

dDk

(2π)Di

1

[k2 −M2]2
[

gµν
(

p2(5− 2x+ 2x2) + 2kαkβgαβ
)

+(4D − 6)kµkν

+
(

D(1− 2x)2 − 6(1− x+ x2)
)

pµpν
]

. (383)

Performing all the momentum integrals we get

Π3g,ab
µν (p,m) = 3

g2

(4π)2
δab

1
∫

0

dx
(4πµ2)ǫΓ(ǫ)

[−p2x(1− x)]ǫ
[

gµνp2(5− 2x+ 2x2)

+Dgµν
−p2x(1− x)

1− ǫ + (2D − 3)gµν
−p2x(1− x)

1− ǫ
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+
(

D(1− 2x)2 − 6(1− x+ x2)
)

pµpν
]

= 3
g2

(4π)2
δab

(4πµ2)ǫΓ(ǫ)

[−p2]ǫ

1
∫

0

dx

[x(1 − x)]ǫ
[

−3(3− 2ǫ)gµνp2
x(1− x)
1− ǫ

+gµνp2(5− 2x+ 2x2)− pµpν
(

2 + 2ǫ+ (10− 8ǫ)x− (10− 8ǫ)x2
)]

.

(384)

Before we perform allx-integrations — onlyβ-functions appear — we will use
a simple trick to simplify our expressions. In the above integral we can exchange
the integration variablex with 1 − x. The denominator is symmetric inx and
1 − x and in the denominator we have constants, linear and quadratic terms inx.
We can split upx in 1/2x + 1/2x and exchange in one termx with 1 − x, i.e
x → 1/2x + 1/2(1 − x) = 1/2, this means we can replace every linear term in
the numerator with 1/2.

Π3g,ab
µν (p,m) = 3

g2

(4π)2
δab

(4πµ2)ǫΓ(ǫ)

[−p2]ǫ

1
∫

0

dxx−ǫ(1− x)−ǫ

[

gµνp2

1− ǫ

(

(11− 8ǫ)x2 − (
1

2
+ ǫ)

)

+pµpν
(

2(5− 4ǫ)x2 − (7− 2ǫ)
)]

.

(385)

Now we perform thex-integration. With

1
∫

0

dxx−ǫ(1− x)−ǫ = β(1− ǫ, 1− ǫ) = β(2− ǫ, 2− ǫ)
1− ǫ 2(3− 2ǫ)

(386)
1
∫

0

dxx2−ǫ(1− x)−ǫ = β(3− ǫ, 1− ǫ) = β(2− ǫ, 2− ǫ)
1− ǫ (2− ǫ) (387)

one gets

Π3g,ab
µν (p,m) = 3

αs

4π
δab

(4πµ2)ǫΓ(ǫ)

[−p2]ǫ
β(2− ǫ, 2− ǫ)

1− ǫ
[

gµνp2 (19− 12ǫ)− 2pµpν (11− 7ǫ))
]

.

(388)

We will perform the Taylor expansion only after all gauge contributions have been
summed up.

Next we consider the contribution of virtual Faddeev-Popov-ghosts:
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p

p + k

k

p→
−→

←

→
µ
a

ν
b

d

c

p andk denote the momenta,i andj denote the colour of the quark,µ andν are
the usual Dirac indices anda andb denote different gluons. The Feynman rules
give the following expression.

ΠFP,ab
µν (p,m) = (−1)

∫

dDk

(2π)Di

(

−i 1

(p + k)2

)(

−i 1
k2

)

(

−gµǫf cad(p+ k)µ
) (

−gµǫf dbckv
)

= −3g2µ2ǫδab
∫

dDk

(2π)Di

(p+ k)µkv

(p + k)2k2

= −3g2µ2ǫδab
1
∫

0

dx

∫

dDk

(2π)Di

kµkv − x(1− x)pµpv
[k2 − p2x(1− x)]2

= −3 g2

(4π)2
δab

1
∫

0

dx
(4πµ2)ǫΓ(ǫ)

[−p2x(1− x)]ǫ
gµν

2

−p2x(1− x)
1− ǫ − x(1− x)pµpv

= 3
αs

4π
δab

(4πµ2)ǫΓ(ǫ)

[−p2]ǫ

1
∫

0

dxx1−ǫ(1− x)1−ǫ

[

gµν

2

p2

1− ǫ + pµpν
]

= 3
αs

4π
δab

(4πµ2)ǫΓ(ǫ)

[−p2]ǫ
Γ2(2− ǫ)
Γ(4− 2ǫ)

[

gµν

2

p2

1− ǫ + pµpν
]

. (389)

Summing up the final results for the virtual gluon (includingthe symmetry factor
1/2) and the virtual ghost we get

Πg,ab
µν (p,m) = 3

αs

2π
δab

(4πµ2)ǫΓ(ǫ)

[−p2]ǫ
Γ2(2− ǫ)
Γ(4− 2ǫ)

5− 3ǫ

1− ǫ
[

gµνp2 − pµpν
]

.

(390)

Performing a Taylor expansion inǫ we arrive at

Πg,ab
µν (p,m) = 5

αs

4π
δab
[

gµνp2 − pµpν
]

(

1

ǫ
− γE + ln 4π +

31

15
− ln

−p2
µ2

)

.
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(391)

13.1.3 Vertex Correction

Now we come to the last class of corrections, to virtual vertex corrections, which
are given by the following diagram.

p→

k ↓µ
a

b, ν

c, ρ
տ q

ր p + q

տ q + k

ր p+ q + k

i

j

l

m

p, q andk denote the momenta,i,j, l andm denote the colour of the quark,µ,
ν andσ are the usual Dirac indices anda, b andc denote different gluons. The
Feynman rules give the following expression.

Γµ(p, q,m) =

∫

dDk

(2π)D
(

igγν(T
b)jm

)

(

i
6p+ 6q+ 6k +m

(p+ q + k)2 −m2

)

(igγµ(T
a)ij)

(

i
6q+ 6k +m

(q + k)2 −m2

)

(igγρ(T
c)li)

(

−iδbc g
ρν

k2

)

= g3(T bT aT b)lm

∫

dDk

(2π)D
γν ( 6p+ 6q+ 6k +m) γµ ( 6q+ 6k +m) γν

[(p+ q + k)2 −m2] [(q + k)2 −m2] k2

= −g
3

6
T a
lm

∫

dDk

(2π)D
γν ( 6k+ 6p+m) γµ (6k +m) γν

[(p+ k)2 −m2] [k2 −m2] (k − q)2 ,

(392)

where we made a shift in the integration momentumk. The loop integral is only
logarithmically divergent, therefore we can extract the ultra-violet divergence sim-
ply by settingp, q andm equal to zero.

Γµ(0, 0, 0) = −g
3

6
T a
lm

∫

dDk

(2π)D
γν 6kγµ 6kγν

(k2)3
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= −(2 −D)
g3

6
T a
lm

∫

dDk

(2π)D
6kγµ 6k
(k2)3

. (393)

From symmetry reasons we can replacekαkβ with k2gαβ/D.

Γµ(0, 0, 0) = −(2−D)2

6D
g3γµT

a
lm

∫

dDk

(2π)D
1

(k2)2
. (394)

The appearing integral can be treated as follows.

∫

dDk

(2π)D
1

(k2)2
= limM→0

∫

dDk

(2π)D
1

(k2 −M2)2

= limM→0
i

(4π)2
(4π)ǫΓ(ǫ)

(M2)ǫ

= limM→0
i

(4π)2

[

1

ǫ
+ . . .

]

. (395)

We get for the divergent part of the vertex correction

Γµ
UV (0, 0, 0) = −1

6
igγµT

a
lm

αs

4π

1

ǫ
. (396)

In order to compute the finite parts of this integral we have tokeep the external
momenta and the masses in the calculation.
There is another diagram which contributes to the vertex correction.

p→

j, k ↓µ
a

b, ν

c, ρ
տ q

ր p + q

տ q + k

ր p+ q + k

i

l

p, q andk denote the momenta,i,j andl denote the colour of the quark,µ, ν and
σ are the usual Dirac indices anda, b andc denote different gluons. The Feynman
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rules give the following expression.

Γµ(p, q,m) =

∫

dDk

(2π)D
(

igγν(T
b)jl
)

(

i
− 6k +m

k2 −m2

)

(igγρ(T
c)ij)

(

−i 1

(q + k)2 −m2

)(

−i 1

(p + q + k)2 −m2

)

(

gfacb [gµρ(p− q − k)ν + gνρ(p+ 2q + 2k)µ − gνµ(2p+ q + k)ρ]
)

= ig3facb(T cT b)il

∫

dDk

(2π)D
( 6p− 6q− 6k) (m− 6k) γµ + (p+ 2q + 2k)µγν (m− 6k) γν

[(p+ q + k)2 −m2] [(q + k)2 −m2] k2

− γµ (m− 6k) (2 6p+ 6q+ 6k)
[(p+ q + k)2 −m2] [(q + k)2 −m2] k2

. (397)

Setting the external momenta and the masses to zero, we get

Γµ(p, q,m) =
3

2
g3T a

il

∫

dDk

(2π)D
6k 6kγµ − 2(2−D)kµ 6k + γµ 6k 6k

[k2]3
.

= 6g3T a
ilγµ

D − 1

D

∫

dDk

(2π)D
1

[k2]2
(398)

The UV-divergent part reads

Γµ
UV (0, 0, 0) =

9

2
igT a

ilγ
µαs

4π

1

ǫ
. (399)

Now we have determined the divergencies of all basic ingredients of QCD - the
fermion propagator, the gluon propagator and the quark-gluon vertex. Before
we proceed to renormalise our theory we list up a useful formulae for performing
perturbative calculations. Part of these formulae have been copied from a previous
QCD-course of Prof. Vladimir Braun.

13.1.4 Useful Formulae

SU(3)-Algebra

The SU(N)-algebra is defined by the following commutation relation for thegen-
eratorsT a with a = 1, ..., N2 − 1

[

T a, T b
]

= ifabcT c . (400)

The generators can berepresentedas matrices. Commonly used representations
are thefundamental representationin N dimensions and theadjoint representa-
tion in N2 − 1 dimensions. For the fundamental representation we demand the
following normalisation

Tr
[

T aT b
]

=
1

2
δab . (401)
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Then the following relations hold.

Tr [T a] = 0 (402)

T a
ijT

a
kl =

1

2

(

δilδjk −
1

N
δijδkl

)

. (403)

(T aT a)ij =
N2 − 1

2N
δij (404)

(

T aT bT a
)

ij
= − 1

2N
T b
ij (405)

ifabcT bT c =
N

2
T a (406)

facdf bcd = Nδab (407)

Dirac-Algebra in 4 Dimensions

Traces with even number ofγ-matrices:

Tr{1} = 4 (408)

Tr{γµγν} = 4gµν (409)

Tr{γµγνγαγβ} = 4[gµνgαβ + gµβgνα − gµαgνβ] (410)

Traces with odd number ofγ-matrices:

Tr{γµ1 . . . γµ2k+1
} = 0 , k = 0, 1, 2, . . . (411)

Traces including aγ5-matrix:

Tr{γ5} = 0 (412)

Tr{γµγνγ5} = 0 (413)

Tr{γµγνγαγβγ5} = 4iǫµναβ (414)

Tr{γµ1 . . . γµ2k+1
γ5} = 0 , k = 0, 1, 2, . . . (415)

Useful identities for products ofγ-matrices:

γµγ
µ = 4 (416)

γµγαγ
µ = −2γα (417)

γµγαγβγ
µ = 4gαβ (418)

γµγαγβγργ
µ = −2γργβγα (419)

γµγαγν = gαµγν + gανγµ − gµνγα + iǫµανβγ5γβ (420)
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Useful identities for products ofǫ-tensors:

ǫαβµνǫ
αβµν = −24 (421)

ǫαβµνǫ
ρβµν = −6gρα (422)

ǫαβµνǫ
ρσµν = −2[gραgσβ − gσαgρβ] (423)

ǫα1α2α3α4ǫ
β1β2β3β4 = −det

(

gβk
αi

)

(424)

1

2
ǫαβµνσ

µν = iσαβγ5 (425)

We use definitions from Bjorken and Drell:

γ5 = iγ0γ1γ2γ3 , ǫ0123 = +1 (426)

Some other (equally famous) books use different definitions:

γ5 = iγ0γ1γ2γ3 , ǫ0123 = −ǫ0123 = +1 Itzykson, Zuber (427)

γ5 = iγ0γ1γ2γ3 = −iγ0γ1γ2γ3 , ǫ0123 = −ǫ0123 = +1 Okun (428)

This ambiguity is a standard source of sign errors!

Integration in the 4 Dimensional Euclidian Space

Definitions:

ko → ik4 (429)

d4k = dkod
3~k = id4kE (430)

k2 = k20 − ~k2 = −(k21 + k22 + k23 + k24) = −k2E (431)

Integration:

∫

dDkEf(k
2
E) =

∫

dΩD

∞
∫

0

dkEk
D−1
E f(k2E) (432)

=
π

D
2

Γ
(

D
2

)

∞
∫

0

dk2E
(

k2E
)

D
2
−1
f(k2E) (433)

Dimensional Regularisation (D = 4− 2ǫ)

Definitions:
∫

d4k →
∫

dDk (434)

e0 → e0µ
2−D

2 (435)
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Dirac-Algebra in D Dimensions

Since there are some subtleties in defining theǫ-tensor andγ5 in D dimensions,
we will leave out here the corresponding formulae.

γµγ
µ = D (436)

γµγαγ
µ = (2−D)γα (437)

γµγαγβγ
µ = 4gαβ + (D − 4)γαγβ (438)

γµγαγβγργ
µ = −2γργβγα + (4−D)γαγβγρ (439)

Feynman-Trick
Feynman parameter integrals for products of propagators:

1

A · B =

1
∫

0

dx
1

[xA + (1− x)B]2
(440)

Γ(a)Γ(b)

Aa ·Bb
=

1
∫

0

dxxa−1(1− x)b−1 Γ(a+ b)

[xA + (1− x)B]a+b
(441)

1

A1A2 . . . An

=

1
∫

0

dx1 . . . dxn
δ (
∑

xi − 1) (n− 1)!

[x1A1 + . . .+ xnAn]
n (442)

1

Am1
1 . . . Amn

n

=

1
∫

0

dx1 . . . dxn
δ (
∑

xi − 1)Πxmi−1
i

[x1A1 + . . .+ xnAn]
∑

mi

Γ(m1 + . . .+mn)

Γ(m1) · . . . · Γ(mn)

(443)

Loop Integrals in D Dimensions

∫

dDk
Γ(a)

[−k2 −A− iǫ]a = iπ
D
2
Γ
(

a− D
2

)

[−A]a−D
2

(444)

∫

dDk
Γ(a)

[−k2 − A− iǫ]a kµkν = iπ
D
2

(

−gµν
2

) Γ
(

a− 1− D
2

)

[−A]a−1−D
2

(445)

Taylor Expansion in ǫ

144



Γ(x+ 1) = xΓ(x) (446)

Γ(ǫ) ≈ 1

ǫ
− γE (447)

xǫ = exp (ln x) ≈ 1 + ǫx+ . . . (448)

with the Euler constantγE = 0.57721....

Feynman Parameter Integrals

β(p, q) :=
Γ(p)Γ(q)

Γ(p+ q)
,

β(p, q) =

∞
∫

0

tp−1

(1 + t)p+q
dt ,

β(p, q) =

1
∫

0

xp−1(1− x)q−1dx .

13.2 Renormalisation

We summarise here the results for the divergent parts of the quark self energy, the
gluon self energy and the vertex correction.

iΣUV ( 6p,m) =
1

ǫ
· αs

4π
· 4
3
· iδil ( 6p− 4m) (449)

iΠq,ab
µν (p,m) =

1

ǫ
· αs

4π
· −2
3
· iδab

(

gµνp2 − pµpν
)

(450)

iΠg,ab
µν (p,m) =

1

ǫ
· αs

4π
· 5 · iδab

(

gµνp2 − pµpν
)

(451)

Γµ(p, q,m) =
1

ǫ
· αs

4π
· 13
3
· igγµT a (452)

The renormalisation process starts with a redefinition of the fields, the masses and
the couplings.

Ψ0 = Z
1
2
2 ΨR (453)

Aµ,0 = Z
1
2
3 A

µ
R (454)

m0 = ZmmR (455)

g0 = ZggR (456)

Z1 describes the renormalisation of the vertex.
Inserting this relations in the Lagrangian of QCD expressedin terms of the naked
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quantities, we can split up the QCD Lagrangian in a part that contains only renor-
malised quantities and in a part that contains renormalisedquantities and the
renormalisation constants. The latter part is called thecounterterm Lagrangian.
For the counterterms we obtain the following Feynman rules.

gluon propagator : i
(

gµνp2 − pµpν
)

(Z3 − 1) (457)

quark propagator : −i ( 6p(Z2 − 1)−m(Z2ZM − 1)) (458)

vertex : −igγµT a(Z1 − 1) (459)

Summing up our results for the one-loop diagrams with the counterterms and
demanding that theǫ-pole cancels, we obtain

Zm = 1 +
1

ǫ
· αs

4π
· 4, (460)

Z1 = 1 +
1

ǫ
· αs

4π
· 13
3
, (461)

Z2 = 1 +
1

ǫ
· αs

4π
· 4
3
, (462)

Z3 = 1− 1

ǫ
· αs

4π
·
(

5− 2

3
nf

)

. (463)

The renormalisation constant of the coupling can be obtained fromZ1, Z2 andZ3

Zg = Z−1
1 Z2Z

1
2
3 (464)

= 1− 1

ǫ
· αs

4π
· 1
2

(

11− 2

3
nf

)

. (465)

13.3 The Running Coupling

Between the nakedg0 and the renormalised couplinggR the following relation
holds

g0 = Zggµ
ǫ. (466)

The naked coupling clearly does not depend on the renormalisation scale, there-
fore we obtain

0 =
d

dµ
g0 =

dZg

dµ
gµǫ + Zg

dg

dµ
µǫ + ǫZggµ

ǫ−1 (467)

⇒ dg

dµ
=

dg

d lnµ

d lnµ

dµ
= −ǫgµ−1 − dZg

dµ

g

Zg
(468)

⇒ dg

d lnµ
= −ǫg − dZg

d lnµ

g

Zg
. (469)
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The renormalisation constantZg can be expanded in the following form

Zg =: 1 +
g2

(4π)2
zg +O(g4), (470)

with

zg = −
1

ǫ

1

2

(

11− 2

3
nF

)

. (471)

Now we can insert again in Eq.(469).

β(g, ǫ) :=
dg

d lnµ
= −ǫg − 2

g2

(4π)2
zg

dg

d lnµ

1

Zg

(472)

≈ −ǫg + ǫ2
g3

(4π)2
zg (473)

= −ǫg − g3

(4π)2

(

11− 2

3
nF

)

. (474)

zg contains a pole inǫ. In the limit ǫ→ 0 only the second term survives:

β(g) = −β0
g3

(4π)2
+O(g5), (475)

with β0 = −2ǫzg. (476)

With the results from the previous section we have

zg = −
1

ǫ

1

2

(

11− 2

3
nF

)

(477)

and therefore

β0 =

(

11− 2

3
nF

)

. (478)

Now we can easily derive a solution forα(µ):

dg

d lnµ
= −β0

g3

(4π)2
(479)

⇒ dg

g3
= − β0

(4π)2
d lnµ (480)

g1
∫

g0

dg

g3
= − β0

(4π)2

µ1
∫

µ0

d lnµ (481)
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⇒
[

1

−2g2
]g1

g0

= − β0
(4π)2

[lnµ1 − lnµ0] (482)

1

g21
− 1

g20
=

2β0
(4π)2

ln
µ1

µ0

(483)

1

g21
=

1

g20
+

2β0
(4π)2

ln
µ1

µ0
(484)

g21 =
1

1
g20

+ 2β0

(4π)2
ln µ1

µ0

(485)

g21
4π

=
g20
4π

1 + 2β0

4π

g20
4π

ln µ1

µ0

(486)

⇒ α(µ1) =
α(µ0)

1 + 2β0

4π

g20
4π

ln µ1

µ0

(487)
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