Quark Hadron Duality
vs.
Heavy Quark Expansion

A phenomenological point of view at a rather formal workshop

Alexander Lenz
IPPP Durham

Bridging Perturbative and Non-perturbative Physics
Primosten, 8.10.2019
Messages from the machine room to the top deck

The Fun Deck: New Physics Models, Leptonquarks and all that.

Ship of Flavour Theory

The Machine Deck: QCD Loops, Hadronic Matrix Elements and all that.

Taken from Thomas Mannel
Outline

• Quark Hadron Duality

• The **Heavy Quark Expansion** and what could go wrong

• Old problems: **Lambda_b lifetime** and friends

• Theoretical approach: **try to solve QCD**

• Pragmatical approach: **Shut up and calculate**

• Conclusions

Probably due to Mermin and not Feynman https://physicstoday.scitation.org/doi/10.1063/1.1768652
Quark Hadron Duality

Muon decay:
Simple and unambiguous

\[\Gamma_{\mu \rightarrow \nu_\mu + e + \bar{\nu}_e} = \frac{G_F^2 m_\mu^5}{192\pi^3} f \left(\frac{m_e}{m_\mu} \right) = \frac{G_F^2 m_\mu^5}{192\pi^3} c_{3,\mu}. \]

\[c_{3,\mu} = f \left(\frac{m_e}{m_\mu} \right) \left[1 + \frac{\alpha}{4\pi} 2 \left(\frac{25}{4} - \pi^2 \right) \right]. \]

\[f(x) = 1 - 8x^2 + 8x^6 - x^8 - 24x^4 \ln(x) \]

Gives quite a good description of nature
for higher accuracy
include
higher order corrections

\[\tau_{\mu}^{\text{Theo.}} = 2.18776 \cdot 10^{-6} \text{ s} \]

\[\tau_{\mu}^{\text{Exp.}} = 2.1969811(22) \cdot 10^{-6} \text{ s} \]
Quark Hadron Duality

Experiment at Hadron Level - Calculation at Quark-Gluon level

Tau-decay:
- Leptonic part as simple aus muon decays
- Hadronic part: ?

naive, tree-level quark level calculation

\[
\Gamma_\tau = \frac{G_F^2 m_\tau^5}{192\pi^3} \left[f\left(\frac{m_e}{m_\tau}\right) + f\left(\frac{m_\mu}{m_\tau}\right) + N_C |V_{ud}|^2 \ g\left(\frac{m_u}{m_\tau}, \frac{m_d}{m_\tau}\right) + N_C |V_{us}|^2 \ g\left(\frac{m_u}{m_\tau}, \frac{m_s}{m_\tau}\right) \right]
\]

agrees quite well with experiment

\[
\tau_\tau^{Exp.} = 2.906(1) \cdot 10^{-13} \text{ s} \quad \text{vs.} \quad \tau_\tau^{Theo.} = 3.26707 \cdot 10^{-13} \text{ s}
\]

for higher accuracy include QCD corrections
Quark Hadron Duality

Experiment at Hadron Level - Calculation at Quark-Gluon level

What about hadron decays?

Is the quark level calculation any good approximation at all? What are the corrections to the quark level calculation?

Similar problems arise in many different fields and have a long History
Quark Hadron Duality

Working definition I: QHD states Hadron Level = Quark-Gluon level

- e^+p: Bloom, Gilman 1970/71
- e^+-e^- annihilation: Poggio, Quinn, Weinberg 1976
- Hadronic tau decays: e.g. Pich 1811.10067

$$\alpha_s^{(n_f=5)}(M_Z^2)_{\tau} - \alpha_s^{(n_f=5)}(M_Z^2)_{Z} = 0.0001 \pm 0.0015_{\tau} \pm 0.0030_{Z}$$

- Decays of heavy Hadrons
- Physics at the Z-peak
-

a) Total inclusive decay rates
b) Decay rate differences Gamma_12
c) Inclusive semileptonic decays
d) Exclusive decays
Quark Hadron Duality

Working definition I: QHD states Hadron Level = Quark-Gluon level

- $e^+e^-\,$ annihilation:
Poggio, Quinn, Weinberg 1976

$$R = \frac{\sigma_H}{\sigma_{\mu\mu}} = N_c \sum_q \left(\frac{e_q}{e} \right)^2 = 3 \cdot \left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9} + \frac{1}{9} \right) = \frac{11}{3}$$

$$\sigma^{\text{tot}} (e^+ + e^- \rightarrow \text{hadrons}) = \sigma^{\text{tot}} (e^+ + e^- \rightarrow \text{quarks})$$

What else should the quarks do except hadronising???

Smeared cross section agrees with calculation of the vacuum polarisation

$$\bar{\sigma}(s) = \frac{\Delta}{\pi} \int_0^\infty \frac{\sigma(s')ds'}{(s-s')^2 + \Delta^2} = \frac{1}{2i} \left[\Pi(s+i\Delta) - \Pi(s-i\Delta) \right]$$
Heavy Quark Expansion

Shifman, Voloshin, Khoze; Bigi, Uraltsev, Vainshtein; (1983 - ‘92)

Decays of heavy quarks are described by the effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{q=u,c} V_c^q (C_1 Q_1^q + C_2 Q_2^q) - V_p \sum_{j=3} C_j Q_j \right]$$

$$Q_2 = c_\alpha \gamma_\mu (1 - \gamma_5) \bar{b}_\alpha \times d_\beta \gamma^\mu (1 - \gamma_5) \bar{u}_\beta.$$

The total decay rate of a heavy hadron is given by

$$\Gamma(B \to X) = \frac{1}{2m_B} \sum_X (2\pi)^4 \delta^{(4)}(p_B - p_X) \langle X | \mathcal{H}_{\text{eff}} | B \rangle^2$$

According to the optical theorem this can written as a double insertion of the effective Hamiltonian

$$\Gamma(B \to X) = \frac{1}{2m_B} \langle B | \mathcal{T} | B \rangle, \quad \mathcal{T} = \text{Im} \int d^4x T [\mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0)]$$
Heavy Quark Expansion

Shifman, Voloshin, Khoze; Bigi, Uraltsev, Vainshtein; (1983 - '92)

\[\mathcal{T} = \text{Im} \ i \int d^4 x T \left[\mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) \right] , \]

Different Wick contraction give different topologies

Integrating out these diagrams gives the following Taylor expansion in local operators

\[\mathcal{T} = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \left[c_{3,b} \langle \bar{b}b \rangle + \frac{c_{5,b}}{m_b^2} \langle b g_s \sigma_{\mu \nu} G^{\mu \nu} b \rangle + 2 \frac{c_{6,b}}{m_b^3} \langle \bar{b}q \rangle \Gamma (\bar{q}b) \Gamma + \ldots \right] \]

\[\Gamma = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \left[c_{3,b} \frac{\langle B | \bar{b}b | B \rangle}{2 M_B} + \frac{c_{5,b}}{m_b^2} \frac{\langle B | b g_s \sigma_{\mu \nu} G^{\mu \nu} b | B \rangle}{2 M_B} + \frac{c_{6,b}}{m_b^3} \frac{\langle B | (\bar{b}q) \Gamma (\bar{q}b) \Gamma | B \rangle}{M_B} + \ldots \right] \]
In more detail we get

\[\Gamma = \Gamma_0 \langle O_{D=3} \rangle + \Gamma_2 \frac{\langle O_{D=5} \rangle}{m_Q^2} + \tilde{\Gamma}_3 \frac{\langle \tilde{O}_{D=6} \rangle}{m_Q^3} + \ldots \]

\[+ 16\pi^2 \left[\Gamma_3 \frac{\langle O_{D=6} \rangle}{m_Q^3} + \Gamma_4 \frac{\langle O_{D=7} \rangle}{m_Q^4} + \Gamma_5 \frac{\langle O_{D=8} \rangle}{m_Q^5} + \ldots \right] \]

Working definition II of QHDV = deviation from the above framework

- \(\Gamma_0 \): free quark decay
- Perturbative corrections in Gamma_i
- Non-perturbative corrections in matrix elements
- There are no 1/mQ corrections
- \(\Gamma_2 \): kinetic and chromomagnetic term
- \(\tilde{\Gamma}_3 \): Spin-orbit and Darwin term
- \(\Gamma_3 \): Spector effects, 1-loop instead of 2-loops
- \(\Gamma_4 \) \(\Gamma_5 \): 1/mQ corrections to \(\Gamma_3 \)
Old Problems

\[
\frac{\tau(B_s)}{\tau(B_d)}^{\text{HQE 1986}} \approx 1, \quad \frac{\tau(B^+)}{\tau(B_d)}^{\text{HQE 1986}} \approx 1.1, \quad \frac{\tau(\Lambda_b)}{\tau(B_d)}^{\text{HQE 1986}} \approx 0.96
\]

Hierarchy of Lifetimes of Charmed and Beautiful Hadrons
ITEP-86-83

Experimental numbers for \(\tau(\Lambda_b)\)

<table>
<thead>
<tr>
<th>Year</th>
<th>Collaboration</th>
<th>(\Lambda_c) (l)</th>
<th>Average</th>
<th>(\tau(\Lambda_b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>HFAG</td>
<td>average</td>
<td>1.212 ± 0.052</td>
<td>0.798 ± 0.034</td>
</tr>
<tr>
<td>1998</td>
<td>OPAL</td>
<td>(\Lambda_c) (l)</td>
<td>1.29 ± 0.25</td>
<td>0.85 ± 0.16*</td>
</tr>
<tr>
<td>1998</td>
<td>ALEPH</td>
<td>(\Lambda_c) (l)</td>
<td>1.21 ± 0.11</td>
<td>0.80 ± 0.07*</td>
</tr>
<tr>
<td>1995</td>
<td>ALEPH</td>
<td>(\Lambda_c) (l)</td>
<td>1.02 ± 0.24</td>
<td>0.67 ± 0.16*</td>
</tr>
<tr>
<td>1992</td>
<td>ALEPH</td>
<td>(\Lambda_c) (l)</td>
<td>1.12 ± 0.37</td>
<td>0.74 ± 0.24*</td>
</tr>
</tbody>
</table>
Old Problems

Many theory paper appeared

Some claiming HQE fails

Nature (or experimentalists) might be nasty

Experiment in 1996 shows

\[\Gamma_{NL}^{\rm NL} = \frac{G_F^2 m_{\text{Meson}}^5}{192\pi^3} \quad \text{vs.} \quad \Gamma_{NL}^{\rm NL} = \frac{G_F^2 m_{D}^5}{192\pi^3} \]

Works

Works

Not

We argue that there is strong experimental evidence in the data of \(b \)- and \(c \)-decays that the pattern of power suppressed corrections predicted by the short distance expansion, the heavy quark effective theory and the assumption of local duality is not correct for the non-leptonic inclusive widths. The data indicate instead the presence of \(1/m \) corrections that should be absent in the above theoretical framework. These corrections can be simply described by replacing the heavy quark mass by the mass of the decaying hadron in the \(m^5 \) factor in front of all the non-leptonic widths.
Old Problems

Many theory paper appeared

Some claiming to be able to predict experiment within the HQE while some just see a discrepancy with experiment

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>$\tau(\Lambda_b)/\tau(B_d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Tarantino</td>
<td>0.88 ± 0.05</td>
</tr>
<tr>
<td>2004</td>
<td>Petrov et al.</td>
<td>0.86 ± 0.05</td>
</tr>
<tr>
<td>2003</td>
<td>Tarantino</td>
<td>0.88 ± 0.05</td>
</tr>
<tr>
<td>2002</td>
<td>Rome</td>
<td>0.90 ± 0.05</td>
</tr>
<tr>
<td>2000</td>
<td>Körner,Melic</td>
<td>0.81...0.92</td>
</tr>
<tr>
<td>1999</td>
<td>Guberina,Melic,Stefanic</td>
<td>0.90</td>
</tr>
<tr>
<td>1999</td>
<td>diPierro, Sachrajda, Michael</td>
<td>0.92 ± 0.02</td>
</tr>
<tr>
<td>1999</td>
<td>Huang, Liu, Zhu</td>
<td>0.83 ± 0.04</td>
</tr>
<tr>
<td>1996</td>
<td>Colangelo, deFazio</td>
<td>> 0.94</td>
</tr>
<tr>
<td>1996</td>
<td>Neubert,Sachrajda</td>
<td>” > 0.90”</td>
</tr>
<tr>
<td>1992</td>
<td>Bigi, Blok, Shifman, Uraltsev, Vainshtein</td>
<td>> 0.85...0.90</td>
</tr>
<tr>
<td>x</td>
<td>only1/m_b^2</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Colour coding:

- Wilson coefficient
- Matrix element of dimension 6 operator
- Numerical update
Old Problems

As soon as hadronic final states could be investigated, the experimental values changed dramatically.

\[\frac{\tau(B_s)^{\text{HQE 1986}}}{\tau(B_d)} \approx 1, \quad \frac{\tau(B^+)^{\text{HQE 1986}}}{\tau(B_d)} \approx 1.1, \quad \frac{\tau(\Lambda_b)^{\text{HQE 1986}}}{\tau(B_d)} \approx 0.96 \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Exp</th>
<th>Decay</th>
<th>(\tau(\Lambda_b)) [ps]</th>
<th>(\tau(\Lambda_b)/\tau(B_d))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>HFAG</td>
<td>average</td>
<td>1.425 ± 0.032</td>
<td>0.938 ± 0.022</td>
</tr>
<tr>
<td>2010</td>
<td>CDF</td>
<td>(J/\psi\Lambda)</td>
<td>1.537 ± 0.047</td>
<td>1.020 ± 0.031</td>
</tr>
<tr>
<td>2009</td>
<td>CDF</td>
<td>(\Lambda_c + \pi^-)</td>
<td>1.401 ± 0.058</td>
<td>0.922 ± 0.038</td>
</tr>
<tr>
<td>2007</td>
<td>D0</td>
<td>(\Lambda_c\mu\nu X)</td>
<td>1.290 ± 0.150</td>
<td>0.849 ± 0.099*</td>
</tr>
<tr>
<td>2007</td>
<td>D0</td>
<td>(J/\psi\Lambda)</td>
<td>1.218 ± 0.137</td>
<td>0.802 ± 0.090*</td>
</tr>
<tr>
<td>2006</td>
<td>CDF</td>
<td>(J/\psi\Lambda)</td>
<td>1.593 ± 0.089</td>
<td>1.049 ± 0.059</td>
</tr>
<tr>
<td>2004</td>
<td>D0</td>
<td>(J/\psi\Lambda)</td>
<td>1.22 ± 0.22</td>
<td>0.87 ± 0.17</td>
</tr>
<tr>
<td>2003</td>
<td>HFAG</td>
<td>average</td>
<td>1.212 ± 0.052</td>
<td>0.798 ± 0.034</td>
</tr>
<tr>
<td>1998</td>
<td>OPAL</td>
<td>(\Lambda_c l)</td>
<td>1.29 ± 0.25</td>
<td>0.85 ± 0.16*</td>
</tr>
<tr>
<td>1998</td>
<td>ALEPH</td>
<td>(\Lambda_c l)</td>
<td>1.21 ± 0.11</td>
<td>0.80 ± 0.07*</td>
</tr>
<tr>
<td>1995</td>
<td>ALEPH</td>
<td>(\Lambda_c l)</td>
<td>1.02 ± 0.24</td>
<td>0.67 ± 0.16*</td>
</tr>
<tr>
<td>1992</td>
<td>ALEPH</td>
<td>(\Lambda_c l)</td>
<td>1.12 ± 0.37</td>
<td>0.74 ± 0.24*</td>
</tr>
</tbody>
</table>

1.425 ps is 4.1\(\sigma (4.1 \times 0.052)\) above 1.212 ps
Old Problems have vanished

Status in 2019

\[\frac{\tau(\Lambda_b)}{\tau(B_d)}^{\text{HQE 2014}} = 0.935 \pm 0.054 \]

| \(\Lambda_b \) | 1.471 ± 0.009 ps | \(\Lambda_b/B^0 \) = 0.969 ± 0.006 |

4.9 sigma above 2003 average!!!

keep this in mind when discussing experimental anomalies

In the 90ies there were also other problems - all have disappeared

- Baffling Semileptonic Branching Ratio
- Missing Charm Puzzle

Open questions

- What happens if we are not summing over all states, e.g. Delta Gamma_s
What could go wrong?

OPE is valid in the Euclidean region = large complex energies
 Physics = real energies
 => Analytic continuation necessary

Problem: Series is truncated in α_s and $1/M_Q$
 Non-perturbative $1/M_Q$ and exponential terms might exist
 $\exp[-m_b/\Lambda]$
 that are not contained in a Taylor Expansion
 => $1/M_Q$ terms and oscillatory terms after analytic continuation

Global quark hadron duality: e.g. semi-leptonic decays, tau decays
 phase space integration over lepton momentum = smearing

Local quark hadron duality: non-leptonic decays

Violations of QHD:
 A. $1/m_Q$ terms arise
 B. Oscillatory terms arise
Theoretical approaches to tackle QHD

Theoretical solution of whether QHD is violated or not requires a full solution of QCD and a subsequent comparison to predictions of the HQE.... clearly impossible

=> Study simplified models of nature

1. SV limit \(N_c \to \infty \ m_b, m_c \ll m_b - m_c \ll \Lambda_{QCD} \)

1995 Boyd, Grinstein, Manohar: Duality holds for semi-leptonic decays
Explicit Quark–Hadron Duality Violations in B–Meson Decays

Benjamin Grinstein, Michael Savrov

(Submitted on 22 Apr 2003 (this version), latest version 29 Apr 2003 (v2))

We consider the weak decay of heavy mesons in QCD. We compute the inclusive hadronic decay rate in leading order in the large N_c expansion, with masses chosen to insure the final state mesons recoil slowly (the SV limit). We find, by explicit computation, violations to quark–hadron duality at order $1/M$ in the heavy mass expansion. The violation to duality is linear in the slope of the form factor for the associated semileptonic decay. Differences in slopes of form factors may help understand the puzzle of lifetimes of b–hadrons.

Comments: 17 pages, no figures, latex/revtex4
Report number: UCSD/PTH 03–05
Cite as: arXiv:hep-ph/0304202
(or arXiv:hep-ph/0304202v1 for this version)

Bibliographic data
[Enable Bibex (What is Bibex?)]

Submission history
From: Benjamin Grinstein [view email]
[v1] Tue, 22 Apr 2003 05:10:07 UTC (16 KB)
[v2] Tue, 29 Apr 2003 21:34:58 UTC (0 KB)
Explicit Quark–Hadron Duality Violations in B–Meson Decays

Benjamin Grinstein, Michael Savrov

(Submitted on 22 Apr 2003 (v1), last revised 29 Apr 2003 (this version, v2))

Duality is not violated at order Delta/M once j=3/2 and j=1/2+ states are properly accounted for.

Comments: Paper withdrawn by authors, due to crucial omission of higher resonances
Report number: UCSD/PTH 03–05
Cite as: arXiv:hep-ph/0304202
(or arXiv:hep-ph/0304202v2 for this version)

Bibliographic data
[Enable Bibex (What is Bibex?)]

Submission history
From: Benjamin Grinstein [view email]
[v1] Tue, 22 Apr 2003 05:10:07 UTC (16 KB)
[v2] Tue, 29 Apr 2003 21:34:58 UTC (0 KB)
Theoretical approaches to tackle QHD

Theoretical solution of whether QHD is violated or not requires a full solution of QCD and a subsequent comparison to predictions of the HQE.... clearly impossible and unnecessary

=> Study simplified models of nature

- SV limit
 \[N_c \to \infty \quad m_b, m_c \ll m_b - m_c \ll \Lambda_{QCD} \]

 1995 Boyd, Grinstein, Manohar: Duality holds for semi-leptonic decays
 2003 Grinstein, Savrov: also for non-leptonic ones

- Instanton based models

- Resonance based models

- 'tHooft model: \(D = 1+1, N_c = \infty \)

 \[\mathcal{L}_{\text{t Hooft}} = -\frac{N_c}{4\pi\Lambda^2} \text{tr}[G_{\mu\nu}G^{\mu\nu}] + i\bar{\psi}i\gamma^\mu\psi - m_q\bar{\psi}\psi, \]

9708396 Grinstein, Lebed: small \(1/M_Q \) correction for non-leptonic decays
9805241: Bigi, Shifman, Uraltsev, Vainshtein: no \(1/M_Q \) terms, but tiny oscillatory ones
9805404 Grinstein, Lebed: QHD - not good for annihilation contribution
9903258: Bigi, Uraltsev: QHD works well for Pauli-interference
0006346: Lebed, Uraltsev: impressive agreement with HQE for semi-leptonic decays
0106205 Grinstein: \(1/M_Q^2 \) corrections, if smeared -> QHD violation?
Shut up and calculate in the real world

What is the state of the art of the HQE? How does it compare to Experiment?

\[
\Gamma = \Gamma_0 \langle O_{D=3} \rangle + \Gamma_2 \frac{\langle O_{D=5} \rangle}{m_Q^2} + \tilde{\Gamma}_3 \frac{\langle \tilde{O}_{D=6} \rangle}{m_Q^3} + \ldots \\
+ 16\pi^2 \left[\Gamma_3 \frac{\langle O_{D=6} \rangle}{m_Q^3} + \Gamma_4 \frac{\langle O_{D=7} \rangle}{m_Q^4} + \Gamma_5 \frac{\langle O_{D=8} \rangle}{m_Q^5} + \ldots \right]
\]
How much can I trust theoretical predictions? Finally the star-based rating system I've been waiting for! Thanks @alexlenz42! arxiv.org/pdf/1809.09452...

<table>
<thead>
<tr>
<th>Obs.</th>
<th>$\Gamma_3^{(0)}$</th>
<th>$\Gamma_3^{(1)}$</th>
<th>$\Gamma_3^{(2)}$</th>
<th>$\langle O^{d=6} \rangle$</th>
<th>$\Gamma_4^{(0)}$</th>
<th>$\Gamma_4^{(1)}$</th>
<th>$\langle O^{d=7} \rangle$</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau(B^+)/\tau(B_d)$</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>** (7+)</td>
</tr>
<tr>
<td>$\tau(B_s)/\tau(B_d)$</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>$\pm\frac{1}{2}$</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>** (6.5+)</td>
</tr>
<tr>
<td>$\tau(\Lambda_b)/\tau(B_d)$</td>
<td>++</td>
<td>$\pm\frac{1}{2}$</td>
<td>0</td>
<td>$\pm\frac{1}{2}$</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>** (4+)</td>
</tr>
<tr>
<td>$\tau(b - baryon)/\tau(B_d)$</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>* (3+)</td>
</tr>
<tr>
<td>$\tau(B_c)$</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>* (2+)</td>
</tr>
<tr>
<td>$\tau(D^+)/\tau(D^0)$</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>** (7+)</td>
</tr>
<tr>
<td>$\tau(D_s^+)/\tau(D^0)$</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>$\pm\frac{1}{2}$</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>** (6.5+)</td>
</tr>
<tr>
<td>$\tau(c - baryon)/\tau(D^0)$</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>* (3+)</td>
</tr>
</tbody>
</table>
Most recent development: Determination of $D=6$ matrix elements in 2017

So far only preliminary lattice studies from 2001 and earlier and preliminary sum rule studies from the 90ies. Up to date lattice studies would be very desirable.

3-loop HQET sum rules for $B+/Bd$ and $D+/D0$:

Claim: This method is competitive to lattice - see mixing case
Mass difference ΔM_q

Experiment: HFLAV 2019

\[\Delta m_s = 17.757 \pm 0.021 \text{ ps}^{-1} \quad \Delta m_d = 0.5064 \pm 0.0019 \text{ ps}^{-1} \]

Theory

In the SM one operator:

\[Q = \bar{s}^\alpha \gamma_\mu (1 - \gamma_5) b^\alpha \times \bar{s}^\beta \gamma_\mu (1 - \gamma_5) b^\beta \]

\[\langle Q \rangle \equiv \langle B_s^0 | Q | \bar{B}_s^0 \rangle = \frac{8}{3} M_{B_s}^2 f_{B_s}^2 B(\mu) \]

Non-perturbative theory input:
1) Lattice: ETM, FNAL-MILC, RBC-UKQCD, HPQCD
2) Sum rules: Siegen, Durham
Mass difference ΔM_q

Mixing Operators
Delta $B = 2$

Parameterisation in terms of decay constants and Bag parameter

$Q_1 = \overline{b}_i y_{1s} (1-y_{5s}) s_j \times \overline{b}_j y_{1s} (1-y_{5s}) s_j$

$Q_2 = \overline{b}_i (1-y_{5s}) s_j \times \overline{b}_j (1-y_{5s}) s_j$

$Q_3 = \overline{b}_i (1-y_{5s}) s_j \times \overline{b}_j (1-y_{5s}) s_j$

$Q_4 = \overline{b}_i (1-y_{5s}) s_j \times \overline{b}_j (1-y_{5s}) s_j$

$Q_5 = \overline{b}_i (1-y_{5s}) s_j \times \overline{b}_j (1-y_{5s}) s_j$

$\langle B_s | Q_1 | B_s \rangle = \frac{8}{3} \pi B_{B_s} f_{B_s}^2 B_1$

$\langle B_s | Q_2 | B_s \rangle = -\frac{8}{3} \pi \left[\frac{M_{B_s}}{m_{b} + m_{s}} \right]^2 \pi B_{B_s} f_{B_s}^2 B_2$

$\langle B_s | Q_3 | B_s \rangle = \frac{1}{3} \pi \left[\frac{M_{B_s}}{m_{b} + m_{s}} \right]^2 \pi B_{B_s} f_{B_s}^2 B_3$

$\langle B_s | Q_4 | B_s \rangle = (2 \left[\frac{M_{B_s}}{m_{b} + m_{s}} \right]^2 + \frac{1}{3}) \pi B_{B_s} f_{B_s}^2 B_4$

$\langle B_s | Q_5 | B_s \rangle = \left(\frac{2}{3} \left[\frac{M_{B_s}}{m_{b} + m_{s}} \right]^2 + 1 \right) \pi B_{B_s} f_{B_s}^2 B_5$
Non-perturbative input for ΔM_q

1. Lattice
 - ETM 1308.1851
 - FNAL-MILC 1602.03560
 - HPQCD 1907.01025

2. HQET-sum rules: 3-loop + part of NNLO matching:
 - Siegen: Grozin, Klein, Mannel, Pivovarov 1606.06054, 1706.05910, 1806.00253
 - Durham: Kirk (Rome), AL, Rauh (Bern) 1711.02100

Three-loop HQET vertex diagrams for $B^0-\bar{B}^0$ mixing

The various NLO contributions:
- Perturbative contribution (3-loop)
 $\Delta B_{PT} = -0.10 \pm 0.02 \pm 0.03$
- Quark condensate contribution (2-loop)
 $\Delta B_q = -0.002 \pm 0.001$
- Other condensates (tree-level+2-loop gluon cond)
 $\Delta B_{nonPT} = -0.006 \pm 0.005$

Total $\Delta B = -0.11 \pm 0.04 \pm 0.03$
Non-perturbative input for ΔM_q

B\(_s\)-mixing

1. Lattice
 * ETM 1308.1851
 * FNAL-MILC 1602.03560
 * HPQCD 1907.01025

2. HQET-sum rules: 3-loop + NLO matching:
 * Durham: King, AL, Rauh (Bern) 1904.00940

\[
\begin{align*}
 r_{Q_1}^{(0)} &= 8 - \frac{a_2}{2} - \frac{8\pi^2}{3} \\
 r_{Q_1}^{(2)} &= \frac{1}{1 + x^2} \left[\frac{(1 - x)^2 a_2}{4} + \frac{2\pi^2(1 - 4x + x^2)}{3} + 2x\psi(x) \left(2 + \frac{1 + x}{1 - x} \ln(x) \right) \right] \\
 &\quad + \begin{cases}
 -\frac{2(6+6x-x^2+2x^3)}{3x} + 2(2 - 4x + x^2) \ln(x) - 4(1 - x^2)\text{Li}_2(1 - 1/x), & x \leq 1, \\
 -\frac{2(2-x+6x^2+6x^3)}{3x} - 2(1 - 4x + 2x^2) \ln(x) + 4(1 - x^2)\text{Li}_2(1 - x), & x > 1,
 \end{cases}
\end{align*}
\]
Very active field:
- Flag 19: mostly FNAL-MILC (2/16)
- RBC-UK: 12-18
- Sum rules: Durham 4/19 (based on Siegen 16-18, Durham 17)
- HPQCD: 07/19

Method is very successful in mixing - What results do we get with this method for lifetimes?
Charm Lifetimes

\[\frac{\Lambda}{m_c} \approx 3\frac{\Lambda}{m_b} \] - could still give some reasonable estimates!

Look in systems without GIM cancellation: D-lifetimes

\[\frac{\tau(D^+)}{\tau(D^0)} = 2.7 = 1 + 16\pi^2 (0.25)^3 (1 - 0.34) \]

Expansion parameter for HQE in charm = 0.3
not a back of envelope statement, but real calculations

d=6 calculated with sum rules
lattice confirmation urgently needed

d=7 estimated in vacuum insertion approximation
do sum rule/lattice

Kirk, AL, Rauh 1711.02100
pert. NLO-QCD:
AL, Rauh 1305.3588
Dim 6 matrix elements determined with 3loop HQET sum rules
Lattice confirmation very welcome

Kirk, AL, Rauh 1711.02100

Amazing cancellations in the Bs/Bd system

\[\frac{\tau(B_s)}{\tau(B_d)} = \frac{\Gamma_b + \delta\Gamma_{B_d}}{\Gamma_b + \delta\Gamma_{B_s}} = 1 + (\delta\Gamma_{B_d} - \delta\Gamma_{B_s}) \tau(B_s). \]

Leads to an unexpected sensitivity to
• higher orders in the HQE

\[
\Gamma = \Gamma_0 \langle O_{D=3} \rangle + \Gamma_2 \frac{\langle O_{D=5} \rangle}{m_Q^2} + \Gamma_3 \frac{\langle \tilde{O}_{D=6} \rangle}{m_Q^3} + \ldots + 16\pi^2 \left[\Gamma_3 \frac{\langle O_{D=6} \rangle}{m_Q^3} + \Gamma_4 \frac{\langle O_{D=7} \rangle}{m_Q^4} + \Gamma_5 \frac{\langle O_{D=8} \rangle}{m_Q^5} + \ldots \right]
\]

in progress

• invisible Bs decays at the permille level, e.g.

\[Br(B_s \to \tau^+\tau^-) < 6.8 \cdot 10^{-3} \text{ LHCb} \]
\[Br(B_d \to \tau^+\tau^-) < 2.1 \cdot 10^{-3} \text{ LHCb} \]
HEAVY HADRON LIFETIMES

1/Lifetime = total decay rate = Sum over all possible final states

Comparison of experiment and HQE

- Agrees at sub-percent level for Bs/Bd
- Agrees at 2 percent level for B+/Bd
- Agrees at 5 percent level for Lambda_b/Bd
- Agrees at 70 percent level for D+/D0

Precision mostly limited by theory

- Can be improved by about a factor of two by sum rules
- Can be improved considerably by lattice
- Can be extended to more hadron systems

What about decay rate differences of B_s?

= Sum over final states common to Bs and barBs
Decay rate difference $\Delta \Gamma_s$

Calculation is more difficult than mass difference - use Heavy Quark Expansion

$$\Gamma_{12} = \frac{\Lambda^3}{m_b^3} \Gamma_3 + \frac{\Lambda^4}{m_b^4} \Gamma_4 + \ldots$$

Each term can be split up into a perturbative part and non-perturbative matrix elements

$$\Gamma_i = \left[\Gamma_i^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_i^{(1)} + \frac{\alpha_s^2}{(4\pi)^2} \Gamma_i^{(2)} + \ldots, \right] \langle O^{d=i+3} \rangle$$

Status of theory predictions

Q_1, Q_2, Q_3 known

Q_4, Q_5, R_2, R_3 HP-QCD 1910.00970

<table>
<thead>
<tr>
<th>Obs.</th>
<th>$\Gamma_{3}^{(0)}$</th>
<th>$\Gamma_{3}^{(1)}$</th>
<th>$\Gamma_{3}^{(2)}$</th>
<th>$\langle O^{d=6} \rangle$</th>
<th>$\Gamma_{4}^{(0)}$</th>
<th>$\Gamma_{4}^{(1)}$</th>
<th>$\langle O^{d=7} \rangle$</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{12}^{s}</td>
<td>++</td>
<td>++</td>
<td>$\pm \frac{1}{2}$</td>
<td>+++</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>10.5 + (****)</td>
</tr>
<tr>
<td>Γ_{12}^{d}</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>+++</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>10 + (****)</td>
</tr>
</tbody>
</table>
Decay rate difference $\Delta \Gamma_s$

Relation to experiment

$$\Re \left(\frac{\Gamma_{12}^q}{M_{12}^q} \right) = -\frac{\Delta \Gamma_s}{\Delta M_q}$$

$$\Im \left(\frac{\Gamma_{12}^q}{M_{12}^q} \right) = \alpha_{sl}^q$$

SM predictions

- Decay constants cancel completely
- Bag parameter cancel largely

- Good agreement
- Experiment about 4 times more precise

$$\Delta \Gamma_s^{\text{exp}} = (0.088 \pm 0.006) \, \text{ps}^{-1},$$
$$\Delta \Gamma_s^{\text{SR}} = (0.091^{+0.022}_{-0.030}) \, \text{ps}^{-1}$$
$$= (0.091 \pm 0.020 \, \text{had.})^{+0.008}_{-0.021} \, (\text{scale})^{+0.002}_{-0.005} \, (\text{param.}) \, \text{ps}^{-1}.$$
Decay rate difference $\Delta \Gamma_s$

Relation to experiment

$$\mathcal{R} \left(\frac{\Gamma_{12}^q}{M_{12}^q} \right) = - \frac{\Delta \Gamma_s}{\Delta M_q}$$

$$\mathcal{S} \left(\frac{\Gamma_{12}^q}{M_{12}^q} \right) = \alpha_{s,12}^q$$

SM predictions

- Decay constants cancel completely
- Bag parameter cancel largely

$\Delta \Gamma_{s,\text{exp}} = (0.088 \pm 0.006) \text{ ps}^{-1}$,

$\Delta \Gamma_{s,\text{SR}} = (0.091^{+0.022}_{-0.030}) \text{ ps}^{-1}$

$$= (0.091 \pm 0.020 \text{ (had.)} +^{0.008}_{-0.021} \text{ (scale)} +^{0.002}_{-0.005} \text{ (param.)})$$

- Good agreement
- Experiment about 4 times more precise
- Might be a solution to the D0 di-muon asymmetry

$\Delta \Gamma_{d,\text{exp}} = (-1.3 \pm 6.6) \cdot 10^{-3} \text{ ps}^{-1}$,

$\Delta \Gamma_{d,\text{SR}} = (2.6^{+0.6}_{-0.9}) \cdot 10^{-3} \text{ ps}^{-1}$

$$= (2.6 \pm 0.6 \text{ (had.)} +^{0.2}_{-0.6} \text{ (scale)} +^{0.1}_{-0.2} \text{ (param.)}) \cdot 10^{-3} \text{ ps}^{-1}$$

- Strong test of HQE
- Violation of Quark hadron duality must be small
- Dim 7 operator have to be determined
- NNLO-QCD corrections have to be determined

Very preliminary HFLAV combination

$\varphi_s = -0.054 \pm 0.021 \text{ rad}$

$\Delta \Gamma_s = 0.0762 \pm 0.0034 \text{ ps}^{-1}$
Decay rate difference $\Delta \Gamma_s$

Relation to experiment

$$\Re \left(\frac{\Gamma^q_{12}}{M^q_{12}} \right) = - \frac{\Delta \Gamma_s}{\Delta M_q}$$

$$\Im \left(\frac{\Gamma^q_{12}}{M^q_{12}} \right) = a^q_{sl}$$

SM predictions

$$a^d_{fs, SM, 2015} = (-4.7 \pm 0.6) \cdot 10^{-\xi}$$

$$a^s_{fs, SM, 2015} = (2.22 \pm 0.27) \cdot 10^{-\xi}$$

- Very sensitive to BSM effects!
- Experimental number needed
HQE Predictions

1/Lifetime = total decay rate = Sum over all possible final states

Comparison of experiment and HQE

- Agrees at sub-percent level for Bs/Bd
- Agrees at 2 percent level for B+/Bd
- Agrees at 5 percent level for Lambda_b/Bd
- Agrees at 25 percent level for Delta Gamma_s
- Agrees at 70 percent level for D+/D0

Precision mostly limited by theory

- Can be improved by about a factor of two by sum rules
- Can be improved considerably by lattice
- Can extended to more hadron systems

Can we make some generic statements about the remaining possible size of violations of QHD violations and about its consequences?
Try a parametrisation of potential QHD violations

HQE is actually an expansion in $1/\text{momentum release}$

For the case of B_s decays

$$M_{B_s^0} - M_K - M_{\pi} = 4.73 \text{ GeV},$$

$$M_{B_s^0} - M_{D_s^+} - M_{\pi} = 3.26 \text{ GeV},$$

$$M_{B_s^0} - 2M_{D_s^{(*)+}} = 1.43(1.15) \text{ GeV}.$$

Seems to be worse for heavier final states, model:

$$\Gamma^{s,cc}_{12} \to \Gamma^{s,cc}_{12} (1 + 4\delta),$$

$$\Gamma^{s,uc}_{12} \to \Gamma^{s,uc}_{12} (1 + \delta),$$

$$\Gamma^{s,uu}_{12} \to \Gamma^{s,uu}_{12} (1 + 0\delta).$$

1603.07770 $\delta \in [-0.066, +0.046]$
Try a parametrisation of potential QHD violations

Exactly the same diagrams contribute to semi-leptonic asymmetries and Delta Gamma_D => consequences for BSM searches

Any measurement outside the orange region cannot be due to duality violations
Charm mixing

Naive HQE estimate deviates by 10^4 from Exp

due to severe GIM cancellation of 3 contributions that are individually 5 times larger than experiment

20% of deviation from HQE expectation sufficient to explain experiment! Not 1000000%

So far no proof for this possibility, but many doable ideas around to test that idea
Try a parametrisation of potential QHD violations

As naively expected: 20% of QHD violations might be sufficient to explain discrepancy between HQE and experiment.

\[\Gamma_{12}^{ss} \rightarrow \Gamma_{12}^{ss}(1 + 4\delta), \]
\[\Gamma_{12}^{sd} \rightarrow \Gamma_{12}^{sd}(1 + \delta), \]
\[\Gamma_{12}^{dd} \rightarrow \Gamma_{12}^{dd}(1 + 0\delta), \]
HQE - Conclusions

1. Total inclusive decay rates
 HQE works perfect for Bs/Bd sub-percent level
 HQE works well for B+/Bd 2 percent level
 HQE works well for Lambda_b/Bd 5 percent level
 Indication HQE works for D+/D0! 70% level
 Much more work has to be done for improving theoretical precision and extending studies to b-baryons, more charm mesons and more charmed baryons

2. Inclusive decay rates, like Gamma_12 of neutral B-mesons
 HQE works well for Bs 25 per cent level
 Much more work has to be done for improving theoretical precision and experimentally Delta Gamma_d and the semi-leptonic CP asymmetries have to be measured

3. Semileptonic-branching ratio, B_sl and determination of V_cb and V_ub.
 agrees well on the per cent level
 a kind of discrepancy between exclusive inclusive determinations exclusive values point towards further problems
Duality - Conclusions

1. Comparison of Experiment and theory show no sign of duality violations in a number of very different observables:
 - Total inclusive decay rates of heavy hadrons
 - Inclusive decay rates of heavy hadron
 - Hadronic tau decays
 - e^+e^-, …
 Much more work can be done for improving theory precision

2. Theoretical approaches like SV-limit, t’Hooft model studies gave no indication for sizeable violation of quark-hadron duality

3. Large duality violating effects in the b-system clearly ruled out

4. Duality violation in the charm system as low as 20% could be responsible for explaining discrepancy between HQE predictions for D-mixing and experiment - should be further investigated!

5. Considerable phenomenological progress => Time to revisit theoretical studies of duality and its violations?