JUNE

open-source individual-based epidemics model

Frank Krauss

Institute for Data Science Institute for Particle Physics Phenomenology **Durham University**

DESY Data Science Colloquium, 22.4.2021

- 1 introduction: modelling epidemics
- a first individual-based model
- 3 introducing June
- 4 results for the first wave in England
- 6 a spin-off: Cox's Bazaar Refugee Operation
- 6 conclusions & outlook

discovered Corona Virus (1964)

introduction: modelling epidemics

introduction •0000000

the begin of epidemiology

start of epidemiology as a science in early 20's

Kermack-McKendrick models, three papers from 1927-1935: W.O.Kermack & A.G.McKendrick, "A contribution to the mathematical theory of epidemics", Proc. R. Soc. Lond. A115 (1927) 700-721 reprinted in:

Kermack, W. and McKendrick, A. "Contributions to the mathematical theory of epidemics - I-III", Bulletin of Mathematical Biology. 53 (1-2) (1991) 33-118

50,000,000 dead worldwide (estimated IFR: 10%), 675,000 in US; 228,000 in UK; 426,600 in Germany

analytical models (SIR and friends)

- simple compartment models: distribute population N in boxes according to infection status
- coupled rate equations for moving from one compartment to next
- simplest example: Susceptible-Infected- Rcovered)

$$\frac{\partial S(t)}{\partial t} = -\beta \frac{I(t)}{N} \cdot S(t)$$

$$\frac{\partial I(t)}{\partial t} = +\beta \frac{I(t)}{N} \cdot S(t) - \mu I(t)$$

$$\frac{\partial R(t)}{\partial t} = +\mu I(t)$$

$$N = S(t) + I(t) + R(t) = \text{const.}$$

can introduce more compartments ("exposed", "dead", etc.)

introduction

00000000

example result for SIR model

improving SIR: social mixing

- add detail of population: age & gender
- this amounts to sub-boxes in one compartment, e.g. $S o S = \sum S_i$
- modify interactions between boxes: social mixing matrices $\chi_{ii}^{(E)}$

count number of daily contacts of people i with people j in social environment E (home, work, school, ...)

Results

- J.Mossong et al. (POLYMOD), PLoS Med 5 (2008), 3:e74
- P.Klepac et al. (BBC pandemics project), https://www.medrxiv.org/content/10.1101/2020.02.16.20023754v2
- rate equations become, for example

$$\frac{\partial S_i(t)}{\partial t} = -\sum_{E} \beta^{(E)} \sum_{j} \chi_{ij}^{(E)} \frac{I_j(t)}{N_E} \cdot S_i(t),$$

where $\beta^{(E)}$ parametrizes the infection probability in setting E

analytical models to simulation

- advantages of analytical models:
 - "just" differential equations, transparent dynamics
 - fast solutions/fits to existing developments
 - satisfactory capture of global trends
- obvious drawback of analytical models
 - population in "boxes" insensitive to geography
 - deterministic models to describe statistical process
 - population densities only ("mean-field"): outliers/super-spreader events/variations not captured
- ideal for short-term forecasting (often driven by machine learning), not so good for understanding of inner dynamics
- solution: agent-based models

introduction

00000000

agent-based models: paradigm

- method for simulating complex systems
- individual agents represent actors:
 - individuals, organisations, etc.
 - interact with each other and environment according to fixed rules
- study impact of individual agent behaviour patterns on whole system
- core method of computational social sciences frequent preconception: useful for qualitative analyses only, impossible for quantitative real-world applications (too complex)
 - "mother of all ABM's": Schelling, T.C., "Dynamic Models of Segregation", Journal of Mathematical Sociology 1 (1971) 143-186
 - some reviews: Macy, M.W. and Willer, R., Annual Review of Sociology 28 (2002) 143-166; MacNamee B. and Cunningham P., International Journal of Intelligent Games and Simulation 2(2003) 186-221; Bruch E. and Atwell J. Social Methods Research 44 (2015) 186-221.

introduction 0000000

(starting point of JUNE, I built it for my kids in March to explain how epidemics spread)

- agents fixed on grid (200 × 200)
- i infects susceptible s with

$$\mathcal{P}_{si} = \beta \exp \left[-(r_{si}^2 - r_0^2)/r_0^2 \right]$$

with relative spatial distance r_{si}

- time to recovery or death distributed according to Gaussian
- observation(s):
 - similar to SIR solution
 - no herd immunity below 100%

0

20

A Simple Simulation $\beta = 0.5$, $\mu = 0.07$, and $R_D = 5\%$ 100 150

80

60

Time [Days]

100

a first individual-based model

IBM's ●000

agent-based models for epidemics: construction principle

track disease progression through each individual

(thus populations become highly heterogeneous by health status during simulations),

- track contacts of individuals in social environments and geographies
- add explicit rules for disease transmission and impact
- agents are individuals:

 individual-based model
- need to construct:

 $\begin{array}{c} \text{population \& social environment} \\ + \\ \text{disease transmission \& health impact} \end{array}$

most famous example: Imperial College model

N.Ferguson et al., "Strategies for containing an emerging influenza pandemic in Southeast Asia", Nature 437 (2005) 209-214 N.Ferguson et al., "Strategies for mitigating an influenza pandemic", Nature 442 (2006) 448–452

- population model:
 - distribute population in age & sex according to national distributions
 - distribute population according to national population density
- social environments:
 - four relevant environments: household, company, school, other
 - household, company, and school sizes and composition distributed according to nation-wide distribution
 - "other" captures all contacts in the closer or wider community:
 - ightarrow venues such as: shops, gyms, pubs, . . .
 - → activities such as visiting friends & relatives, travel, ...
 - \rightarrow distribute them according to a $1/(r+r_0)$ -law w.r.t. place of residence

 one underlying assumption: transmission in equal parts in household, work/school, and other

(I am not sure in how far they changed this)

• disease transmission probability in interval Δt :

$$\mathcal{P}_{\mathit{si}}(t,\,t+\Delta t) = 1 - \exp\left[-\psi_{\mathit{s}}\,eta^{(\mathit{E})}\,rac{\sum\limits_{i}^{} \mathit{I}_{i}(t)}{\mathit{N}_{\mathit{E}}^{\eta_{\mathit{E}}}}\,\Delta t
ight]$$

- \rightarrow time-dependent infectiousness $I_j(t)$, and
- ightarrow susceptibility $\psi_{
 m s}$, and
- ightarrow normalisation exponent $\eta_{\it E}$ to capture different contact frequencies in environments $\it E$
- outcome of infection from continuously updated public health data

(they started as soon as the first data came out of Wuhan)

JUNE

motivation: why granularity matters

- impact of COVID=19 highly age-dependent
 - --- need geographical granularity for regional planning

(coincidence: Durham hosts & maintains England & Wales census data of past decades)

inputs: demographics

- last census (2011)
- hierarchical data structure

(data freely available from Office for National Statistics)

 OA's with ∼ 250 residents. with similar characteristics

- build virtual population in OA: age, gender, ethnicity, deprivation index
- example: Durham

virtual households

- correct compositions important: primary place for infections
- household composition in 20 categories at OA level

also: communal facilities

(carehomes)

- further test: interplay with social mixing
- example: North-East England

virtual schools

- information about schools: age range of children and locations
- send kids to nearest age-appropriate structure
- could modulate this with school sizes, if necessary

work & virtual companies

- workers and companies in ~ 20 macro-sectors at MSOA level
- know age/sex distribution in sectors nation wide
- distribute workers over companies (we know their sizes in bins)

(construct a big origin-destination matrix & optimise)

 information about commute mode: public vs. private

commuting patterns

distinguish commuting into and within metropolitan areas

(external vs. internal commuters)

simulating daily structure

- June allows flexible daily routines, separation of weekday/weekend
- time spent on activities known from ONS surveys

(this changes under lock-down)

can translate into age-dependent probabilities for activities

validation: average time budget

- compare our simulation with data from ONS
- average time spent per day in different activities

social mixing matrices

- move on to the environment for the interactions
- use social mixing matrices from POLYMOD and BBC Pandemics project
 J.Mossong et al., PLoS Med 5(3) et A, https://doi.org/10.1371/journal.pmed.0050074

 P.Klepac et al., https://www.medioi.org/content/10.1101/2020.02.16.20023754v2
- denote number of contacts of person with age i with person of age j
- somewhat tricky format: averages over full population
 - → have to normalise it to our fractured social environment
 - → interplay with household sizes etc. (may have to be fitted?)

JUNE output

example: household (left) & schools (right)

- (BBC results as inlays)
- broad agreement with input from surveys: interesting closure test

disease transmission

probabilistic process:

$$\mathcal{P}_{f
angle}(t,\,t+\Delta t) \,=\, 1 - \exp\left[-\psi_{s}eta_{si}^{(\mathcal{E},g)}\int\limits_{t}^{t+\Delta t}\mathrm{d}t'\sum_{i\in g}\mathit{I}_{i}(t')
ight]\,,$$

• ψ_s is susceptibility

- (reduced for children)
- $\beta_{si}^{(E,g)}$ is constant "closeness" in environment E, modulated by contact matrix:

$$\beta_{si}^{(E,g)} = \beta^E \cdot \frac{\chi_{si}^{(g)}}{N_g}$$

with size of group N_g

• $I_i(t')$ is infectiousness profile

outcomes of infection

- this was a tiring data-mining exercise with inconsistent and often contradictory data
- extra difficulty: include care homes (CH) vs. general population (GP)

compare infection fatality rate with other codes

policies

- below a list of relevant policies for results
- realised by modifications of β (e.g. social distancing) or by making activities unavailable

Date (dd/mm/yy)	Policy
12/03/20	case isolation at home
16/03/20	voluntary household quarantine, work from home, avoidance of leisure activities, encourage social distancing stop all non-essential travel & contact, shielding of over 70's
20/03/20	closure of schools and universities
21/03/20	closure of leisure venues
11/05/20	multiple trips outside are allowed in England only
13/05/20	encourage to go back to work while distancing
01/06/20	meeting in groups of up to 6 outside allowed, shielding of over 70s relaxed, school reopening for Early Year and Year 6 students
13/06/20	'support bubbles' allowed
15/06/20	school reopening for Year 10 and 12 students for face-to-face support
04/07/20	leisure venues allowed to reopen, household-to-household visits permitted along with overnight stays
24/07/20	Mask wearing compulsory in grocery stores
01/08/20	shielding is paused, 'Eat Out to Help Out' scheme introduced
31/08/20	'Eat Out to Help Out' scheme ends
01/09/20	schools and Universities allowed to reopen, 'Rule of 6'
14/10/20	Tiered local lock-down system introduced

JUNE simulation content - summary

The combination of the population structure and demographics, population behaviour and the disease characteristics determines the course of the epidemic and ultimately the number of infections, hospitalisations, and deaths

JUNE results for the first wave

JUNE results

- below a selection of June results for the 1st wave in England
- some aspects of the code changed in the meantime:
 - seeding of infections must reorganise due to multiple CoVid streams
 - added gyms as leisure venues
 - take into account ethnicity in household compositions
 - added vaccination protocols
- refitting underway

IDAS & IPPP

• 1st wave: deaths in hospitals - regional distribution

Results

1st wave: all deaths - distribution of location

Date

social imbalances

- look at cumulative infection rates until July 2020 in dependence on
 - age band
 - household size
 - ethnicity
- keep in mind: all imbalances only due to regional and sociological differences encoded in census data

impact of ethnicity

Results 00000000000

Results 0000000000

a spin-off:

JUNE for Cox's Bazaar Refugee Operation

- one of our students (J.Bullock) has spent 6 months of placement with UN Global Pulse in New York
- ongoing contact, and he talked with them about our code
- as a result, three students collaborate with WHO, UN-Global Pulse, and IBM-MIT Watson AI lab to provide tools for scenario planning for Cox's Bazaar in Bangladesh

(huge refugee camp, Rohingya crisis in Myanmar)

- largest settlement in the world
- in some areas, the settlement is denser than New York City
- high risk of COVID transmission

- Learning centers, indoor intensity: 45%
 Learning centers, indoor intensity: 55%
 Learning centers, indoor intensity: 65%
 Learning centers mean
- Learning centers mean
 No learning centers, indoor intensity: 45%
- No learning centers, indoor intensity: 55%
 No learning centers, indoor intensity: 65%
- Non learning centers mean

summary

- epidemiology is an interesting field of science
- constructed an individual-based model with supreme granularity: demography, geography, sociology
- model informed operational planning of NHS:
 - ightarrow early warning of second wave
 - ightarrow understanding of transmission sociology
- code is highly flexible:
 - $\rightarrow\,$ addition of new effects & policies relatively painless
 - $\rightarrow\,$ adaptation to new environments: Cox's Bazaar
 - \rightarrow adaptation to Germany underway (M.Schott, U Mainz)
- challenge to widespread perception in computational sociology: more and better detail often helps

outlook

- continue decision support for NHS:
 - impact of mutations: added Kent variant B1.1.7
 - impact of vaccination protocols: take-up, efficacy
 - new fits underway (difficulty: Xmas mixing)
- follow-up studies on social imbalances: ethnicity, IFR in dependence on socio-economic deprivation
- use for historical studies: Spanish Flu, Black Death

meet the JUNE team

- work started in March
- publication on medRxiv (https://www.medrxiv.org/content/10.1101/2020.12.15.20248246v2)
- very interdisciplinary research, programming and data crunching mainly driven by PhD students from Durham CDT

```
Joseph Bullock<sup>1,3</sup>, Carolina Cuesta-Lazaro<sup>1,2</sup>, Arnau Quera-Bofarull<sup>1,2</sup>, Miguel de-Icaza-Lizaola<sup>1,2</sup>, Aidan Sedgewick<sup>1,2</sup>, Henry Truong<sup>1,3</sup>, Aoife Curran<sup>1,2</sup>. Edward Elliott<sup>1,2</sup>.
```

Richard Bower^{1,2}, Tristan Caulfield⁴, Kevin Fong⁴, Ian Vernon⁵, Julian Willams⁶ & FK^{1,3}

- Institute for Data Science Durham
- 2 Institute for Computational Cosmology Durham
- Institute for Particle Physics Phenomenology Durham
- University College London & NHS
- Mathematical Sciences, Durham
- Institute for Hazard, Risk & Resilience Durham

