Context	Plant Health	COVID-19 in England	Epidemics in Refugee Camps	Summary
0000	0000	0000000000	000000	0000

Data, Models, and Reality

Frank Krauss

Institute for Data Science Institute for Particle Physics Phenomenology Durham University

Victoria University, Wellington, 7.12.2023

イロト イポト イヨト イヨト

disclaimer: my background

• many aspects of this talk outside my "core" competence

(theoretical particle physicist by training)

• background in high-precision modelling for Large Hadron Collider

- relatively simple simulation task: first-principles theory, data-rich environment, high-quality data
- code: SHERPA (250,000 lines in public release, about 20,000 CPU years per year of simulation run by users)
- used to analyse data (by comparison with theory)

(the work by our experimental colleagues)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• used to suggest new analyses/analysis strategies

(routinely using ML techniques)

Context	Plant Health	COVID-19 in England	Epidemics in Refugee Camps	Summary
0000	0000	0000000000	000000	0000

Outline

- 1 Data Science: Context
- **2** Monitoring Plant Health
- **3** Modelling Reality: Epidemics
- Modelling Reality: COVID-19 in Cox's Bazar
- Summary & Outlook

Data Science in Context

F. Krauss Data, Models, and Reality

two (extreme) views of data science: goal-driven

("how to extract knowledge from data")

- data science = statistical data analysis + computational methods
- self-contained field of study and research: "all data are created equal"

- relatively "blind" to domain knowledge
- challenge: select/create best suited method for data type and range:

e.g. training vs. validation

・ロト ・同ト ・ヨト ・ヨト

Theoretical, practical, ethical, and legal questions along the way

イロト イポト イヨト イヨト

example applications of data science: bird's eye view

• purist (particle theory): near perfect, well-understood data mainly statistical interpretation and parameter fitting

(e.g. discovery of new particle according to pre-defined statistical threshold \ldots)

• opportunist (amazon): good data, not particularly well understood mainly pattern detection and optimisation of choices

(important factor here: cost-benefit of storage, analysis, ...)

Image: A math a math

• pragmatist (public health): messy data, often badly understood mainly understanding reality and models for decision support

(challenges: provenance, quality, and context of data; complex, hard-to-model reality)

<ロト <部ト <きト <き>

Monitoring Plant Health

F. Krauss Data, Models, and Reality **IDAS & IPPP**

590

Э

coffee in Thailand

• valuable traded good: coffee

(total value about \$36B)

- stable cash-crop for many LMICs
- threatened by coffee-leaf-rust (CLR): not curable, highly contagious
- infected plants must be quickly identified and destroyed
- plantations often on steep hills: impediment to inspection

 \implies UAVs (drones)

(work by my Durham colleague Anthony Brown)

Epidemics in Refugee Camp 000000

coffee in Thailand: bespoke solution

(work by my Durham colleague Anthony Brown)

- "different greens" that will do
- quantitative identification through spectral analysis of reflected light
- database with 100's of labelled/identified reference spectra

(this data acquisition is the "manual" part of the project)

イロト イヨト イヨト

- $PCA + ML \longrightarrow 4$ critical wavebands
- lovely, BUT ...

Wavelength (nm)

Epidemics in Refugee Camp 000000

(work by my Durham colleague Anthony Brown)

coffee in Thailand: bespoke solution

20%

10%

• typical pass bands of commercial multi-spectral cameras

イロト イポト イヨト イヨト

60%

40%

20%

056

Epidemics in Refugee Camp 000000

coffee in Thailand: bespoke solution

800 850 900

Wavelength (pm)

- not covering critical regions
- need to build bespoke camera: mobile-phone cameras plus filters

(日)

• tests in the field as next step

100%

80%

60%

209

400 450 500 550 600 651

mangrove surveying and identification in Suriname

(work by my Durham colleagues Anthony Brown and Isabella Bovolo)

- protecting and stabilising coastlines
- contributor to biodiversity
- but: threatened by climate change \implies need to monitor
- three species with subtle differences in Suriname: black, red, white

multi-spectral, encore?

Image: Image:

(tested tool-chain)

F. Krauss Data, Models, and Reality

mangrove surveying and identification in Suriname

(work by my Durham colleagues Anthony Brown and Isabella Bovolo)

- protecting and stabilising coastlines
- contributor to biodiversity
- but: threatened by climate change \implies need to monitor
- three species with subtle differences in Suriname: black, red, white

multi-spectral, encore?

Image: A matrix and a matrix

(tested tool-chain)

- insufficient discriminatory power
 3-D point cloud ↔ shapes?
- tests underway

Modelling Reality:

JUNE & COVID-19 in England

・ロト・日本・日本・日本・日本・日本

F. Krauss Data, Models, and Reality

motivation: why granularity matters

impact of COVID=19 highly age-dependent

\rightarrow need geographical granularity for regional planning

(coincidence: Durham hosts & maintains England & Wales census data of past decades)

Image: A matrix and a matrix

3

example data inputs: demographics

• last census (2011)

(data freely available from Office for National Statistics)

hierarchical data structure

North East => 26,000 output areas

area (OA)

• OA's with ~ 250 residents, with similar characteristics

- build virtual population in OA: age, gender, ethnicity, deprivation index
- example: Durham

Image: A matrix and a matrix

example data inputs: daily activities

time spent on activities known from ONS surveys

(this changes under lock-down)

translate into age-dependent probabilities for activities

《日》《聞》《田》《田》 田 《

Context Plant Health COVID-19 in England Epidemics in Refugee Camps Summary 0000 0000 0000 00000 00000 00000

example data inputs: social mixing matrices

- social mixing matrices from POLYMOD and BBC Pandemics project
 J.Mossong et al., PLoS Med 5(3) e74, https://doi.org/10.1371/journal.pmed.0050074;
 P.Klepac et al., https://www.medrxiv.org/content/10.1101/2020.02.16.20023754v2
- denote number of contacts of person with age *i* with person of age *j*
- tricky: averages over full population (good for compartment models)
- broad agreement with input from surveys: important closure test

(in JUNE contacts also depend on composition of environment)

• example: household interactions vs. BBC pandemics project

(census has 4 categories of residents: kids, young adults, adults, old adults)

example data inputs: outcomes of infection

- tiring data-mining exercise with inconsistent and often contradictory data
- extra difficulty: include care homes (CH) vs. general population (GP)

Image: A match the second s

JUNE simulation content - summary

э

・ロト ・四ト ・ヨト ・ヨト

Results for 1^{st} wave: fatalities

• 1st wave: deaths in hospitals - regional distribution

Results for 1^{st} wave: fatalities

• 1^{st} wave: deaths in hospitals - age distribution

<ロト < 団ト < 団ト < 団ト

Results for 1^{st} wave: fatalities

• 1st wave: all deaths - distribution of location

Breakdown of location of death in England

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

F. Krauss Data, Models, and Reality

Results for 1^{st} wave: social imbalances

- look at cumulative infection rates until July 2020 in dependence on
 - household size
 - ethnicity
- nota bene: all imbalances only due to differences encoded in census data

A spin-off: measles in New Zealand

(from a collaboration with ESR New Zealand)

ESR team adapted JUNE to measles in New Zealand

(population & disease characteristics)

- validated model
- projected results from different vaccination regimes

IUNE-NZ validation. Manukau DHB

Modelling Reality:

Epidemics & JUNE in Cox's Bazar

<ロト < 部 ト < 臣 ト < 臣 ト ○ 臣 ○ のへの</p>

F. Krauss Data, Models, and Reality

COVID-19 in England

Epidemics in Refugee Camps

background: Cox's Bazar

- largest settlement in the world
- in some areas, the settlement is denser than New York City
- high risk of COVID transmission

▲ロト▲園ト▲目ト▲目ト 目 のなの

F. Krauss Data, Models, and Reality

input data: demographics

- high-quality data thanks to WHO census
- need to adapt demography & distribute over households (=shelters)

(日)

-

input data: social interactions

 no data available => mixed method approach: questionnaire in simplest categories + digital twin of population

(this is the first attempt ever in a refugee/IDP camp setting! important input for compartment models)

• different places for interactions: shelters (see below), distribution centres, communal kitchens, pump & latrines, mosques, etc.

input data: infer health impacts

- no data available \implies infer from UK data
- need to account for difference in life expectancy (model!)

$$A_{P} = \begin{cases} A, & \text{if } A \leq A_{\text{cut-off}} \\ (A - A_{\text{cut-off}}) \left[\frac{LE(\text{sex}) - A_{\text{cut-off}}}{LE_{\text{uk}}(\text{sex}) - A_{\text{cut-off}}} \right], & \text{if } A > A_{\text{cut-off}} \end{cases}$$

with A = age and LE = life expectancy.

• need to account for co-morbidities in Cox' Bazar (CB):

 $P_{CB}(\text{severe} \mid \boldsymbol{c}, \text{ age, sex}) = \gamma \lambda_{\boldsymbol{c}} P_{UK}(\text{severe} \mid \text{age, sex})$

with γ overall scaling and λ_c risk multiplier

・ロト ・同ト ・ヨト ・ヨト

example results for wild-type (until March 2021)

- identify deaths in various ways: excess deaths (when camp was closed down) or "certified" by trained health visitors/workers
- wild-type was slowly replaced by Delta variant at about week 60

Summary & Outlook

F. Krauss Data, Models, and Reality

Э **IDAS & IPPP**

590

<ロト < 四ト < 回ト < 回ト

Context	Plant Health	COVID-19 in England	Epidemics in Refugee Camps	Summary
0000	0000	0000000000	000000	0●00

summary

- data science
 - important addition in the scientific canon: permeating all fields of research: (nearly) everything is data
 - we live in the era of data: data science is here to stay
 - important to treat it with professional respect
- showed $2\frac{1}{2}$ applications of data science modelling:
 - monitoring of plant health and early warning of pathogens
 - large-scale modelling for public health

(direct ramifications as decision support for governments etc.)

some final thoughts on (data) science

language: parametrizations vs. models of reality

(black box vs. grey box or description vs. understanding)

• intellectual ownership: provenance, quality, meaning of data

(added value of results without context/interpretation)

uncertainties: how to have robust estimates

(importance for decision support: necessity to estimate risk vs. reward)

accuracy vs. precision

(they are not the same! you can be precisely wrong ...)

イロト イポト イヨト イヨト

COVID-19 in England

Epidemics in Refugee Camp 000000

final-final thought

