Complexity to Simplicity and Back:

Challenges in Theoretical (Particle) Physics

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

HiggsTools Meeting, Durham, 12.9.2017

• □ ▶ • □ ▶ • □ ▶ •

- what the talk is about
- finding simplicity in complexity
- re-emerging complexity
- lesson(s) learnt

what the talk is about

deciphering Nature

The aim of particle physics is to

understand Nature at the smallest scales in terms of fundamental constituents and their interactions

we pursue this goal by

building models in mathematical formulation Simplicity

and test them through experimental scrutiny Complexity

guiding principle for building models

F. Krauss Complexity to Simplicity and Back IPPP

finding simplicity in complexity

reductionism at work

▲ロ → ▲ 聞 → ▲ 国 → ▲ 国 → 今 Q @

▲ロト ▲母 ト ▲目 ト ▲目 ト → 日 → ⊙ へ (?)

electromagnetic phenomena

abstraction: simplicity from complexity

- many "laws" for electric/magnetic effects
- electromagnetic interactions summarised in Maxwell's equations:

(first unification of forces/phenomena, constructed bottom-up)

electricity + magnetism = electromagnetism

• solutions for electric and magnetic fields from potentials

$$ec{E} = -ec{
abla}\phi - rac{\partial}{\partial t}ec{A} \ ext{ and } \ ec{B} = ec{
abla} imes ec{A}$$

Lorentz force for fields acting on charge q

$$\vec{F} = q\vec{E} + q\vec{v} imes \vec{B}$$

abstraction: top-down

- structure of Maxwell's equations:
 - two vector fields with opposite parity: vector \vec{E} and axial-vector \vec{B}
 - first derivatives only (spatial and temporal)

yields four equations, organised by spin & parity:

scalar	:	charge	=	$\vec{\nabla} \cdot \vec{E}$
pseudo-scalar	:	0	=	$\vec{\nabla}\cdot\vec{B}$
vector	:	current	=	$\vec{\nabla} \times \vec{B} \mp \frac{\partial \vec{E}}{\partial t}$
axial-vector	:	0	=	$\vec{\nabla} \times \vec{E} \mp \frac{\partial \vec{B}}{\partial t}$

- arrive at Maxwell's equations with:
 - allow electric monopoles (charges), disallow magnetic monopoles
 - $\bullet~$ enforce ${\sf electromagnetism}$ = theory of light
- the first relativistic theory!

<ロ> <同> <同> <同> <同> <同

abstraction: cranked up (Lagrangian)

• recast as Lagrangian for four-potential $A^{\mu} = (\phi, \vec{A})$

$$\mathcal{L}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+j^{
u}A_{
u}$$

where $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ and $\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

(transverse polarizations only: $\partial_{\mu}A^{\mu}=0$ from Fourier transform $p_{\mu}\epsilon^{\mu}=0$)

・ロト ・四ト ・ヨト ・ヨト

• arrive at equations of motion

 $\partial_{\mu}F^{\mu\nu} = j^{\nu}$ (scalar and vector from above) $\partial_{\mu}\tilde{F}^{\mu\nu} = 0$ ("funny parities")

gauge invariance: invariant under (arbitrary Λ)

$$A^{\mu}(x)
ightarrow A'^{\mu}(x) = A^{\mu}(x) + \partial^{\mu}\Lambda(x)$$

constructing QED, top-down

• start with Dirac particles (spin- $\frac{1}{2}$, mass m)

$$\mathcal{L} = \bar{\psi} \left[i \gamma^{\mu} \partial_{\mu} - \mathbf{m} \right] \psi \,,$$

invariant under global phase transformations $\psi \rightarrow \psi' = \mathrm{e}^{iq\Theta}\psi$

(Noether's theorem: conserved currents $\partial_\mu j^\mu$ = 0 demand conserved charges)

- demand invariance under local phase transformations: $\Theta
 ightarrow \Theta(x)$
- compensate non-invariant terms through "gauge" field $A_{\mu}(x)$:

$$\partial_{\mu}
ightarrow D_{\mu} = \partial_{\mu} - iq A_{\mu}(x)$$

- identify A_{μ} with Maxwell's four-vector potential
- add kinetic term $\frac{1}{4}F^{\mu\nu}F_{\mu\nu}$ for gauge field & arrive at

$$\mathcal{L}_{ ext{QED}} = -rac{1}{4} \mathcal{F}^{\mu
u} \mathcal{F}_{\mu
u} \,+\, ar{\psi} \,\left[i \gamma^{\mu} \mathcal{D}_{\mu} - m
ight] \,\psi$$

order from chaos: group theory

- in 50's and 60's: lots of new particles (incl. "strange" ones)
- introduce quarks as mnemonic device
- sorting them with group theory: $SU(3)_F$

recycling: interactions from more complicated symmetries

• recycle gauge idea for more complicated charges: isospin, colour, ...

(e.g. $p \leftrightarrow n$, $e \leftrightarrow \nu_e$, 3 quark colours)

• necessitates multiplets $\psi \rightarrow \psi_i \longrightarrow$ symmetry transformations:

$$\psi_i \to \psi'_i = \exp\left(i\sum_{a}\Theta_a T^a_{ij}\right)\psi_j$$

with generators T^a (matrices)

• classify interactions by symmetry group (the T_{ij}^a) and charge

Standard Model = $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

encodes strong, weak, & electromagnetic interactions

breaking symmetries

- for local phase transitions: need massless gauge bosons one for each generator → 3 for SU(2)_L, 8 for SU(3)_c (also: Dirac fermions can only be massless)
 but: have massive particles
 - (top, W, Z, Higgs, ...)
- must break/hide electroweak symmetry
- most efficient way: Higgs mechanism

(another instance of Occam's razor)

Standard Model in its full glory

edge of the Standard Model

going beyond the edge

- despite success and self-consistency of SM: not complete theory
 - lacking: Gravitation, Dark Matter & Energy, ...
 - plus questions: nature of neutrinos, why 3 generations, ...
- aesthetic arguments
 - naturalness, hierarchy problem, unification of couplings, ...
 - Coleman-Mandula theorem

(maximal symmetry of S matrix = Lorentz \otimes gauge \otimes supersymmetry)

イロト イポト イヨト イヨト

build more complete models

answering some of the (perceived) shortcomings

potentially with more symmetries that need to be broken

re-emerging complexity:

calculational technology and concepts

complexity in calculating

・ロト・日本・モート・ヨークへの

example: magnetic moment (g - 2)

$$m_S = -g \cdot \frac{\mu_B S}{\hbar}$$

- $S = \frac{1}{2} = \text{spin}, \ \mu_B = \text{Bohr's magneton and } g = 2$ (classical)
- measured through precession in a cylindrical Penning trap at 100 mK

("one-electron quantum cyclotron"; Hanneke et al., PRA 83 (2011) 052122)

イロト イヨト イヨト イヨト

for electron

$$a_e = rac{g-2}{2} = (1, 159, 652, 180.73 \pm 0.28) \cdot 10^{-12}$$

yields most precise value of fine structure constant

$$\alpha^{-1} = 137.035,999,040(90)$$

- reminder: Feynman diagram = part of QM transition amplitude
- \bullet for extraction of α need to calculate
 - ullet pprox 900 4-loop QED diagrams

(every loop = one integral d^4k)

results in semi-analytic form: harmonic polylogarithms, elliptic integrals, ...

(Laporta, PLB 772 (2017) 232)

• \approx 12,500 5-loop QED diagrams (results only in numerical form)

(Aoyama et al., PRD91 (2015) 033006)

• □ ▶ • • • • • • • • •

calculating cross sections for the LHC

master formula

$$\mathrm{d}\sigma_{pp\to X} = \sum_{ij} \int_{0}^{1} \mathrm{d}x_{1} \mathrm{d}x_{2} f_{i}(x_{1}, \mu_{F}) f_{j}(x_{2}, \mu_{F}) \int \mathrm{d}\Phi_{X} \hat{\sigma}_{ij\to X}(\{p_{X}\}; \mu_{F}, \mu_{R})$$

relating parton-level $\hat{\sigma}$ with particle-level (observable) cross section σ

(partons = quarks and gluons)

• based on "factorization": parton distribution function $f_i(x, \mu_F)$ process-independent if typical momentum scale $Q \approx \mu_F \gg m_{\text{proton}}$ (PDF = probability to find one parton of type *i* with energy

fraction x at factorization scale μ_{E} in proton)

complex inputs I: parton distribution functions

• PDFs not known from first principles, only their scaling with μ_F

(from the Altarelli-Parisi equations)

- fitted from data at different processes, at different, μ_F , at different experiments, with different systematics
- current accuracy: next-to-next-to-leading order (NNLO)

(various collaborations: CTEQ, MMHT, NNPDF, ABM, GRV, HeraPDF)

• needs NNLO calculations and three-loop kernels driving the evolution

(4-loop kernels partially known; Moch et al., 1707.08315)

 but: α²₅ is O(1%) – must also include electromagnetic and weak evolution at (N)LO

(current frontier: LUXqed; Manohar PRL 117 (2016) 242002)

determining reliable PDFs — a complex endeavour

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲□ ● ● ●

complex inputs II: partonic cross sections $\hat{\sigma}$

- automated evaluation of $\hat{\sigma}$ at LO and NLO. integral over phase space $d\Phi_X$ with 3n-2 dimensions for *n* particles \rightarrow Monte Carlo methods with involved sampling strategies
- problem beyond LO: occurrence of divergent structures when
 - momenta $k \to \infty$ ("ultraviolet divergence") regularization and renormalization
 - or $k \rightarrow 0$ ("infrared divergence") regularization and exact cancellation between contributions

(Kinoshita-Lee-Nauenberg theorem)

- regularization by analytic continuation $d^4k \rightarrow d^Dk$ with $D = 4 + 2\epsilon$ divergences manifest as poles $1/\epsilon$
- straightforward for UV divergences but tricky for IR divergences: cancellation is between contributions of different multiplicity

(and phase space integrals are usually done with Monte Carlo methods)

example: $gg \rightarrow H$

- m ullet \sim 1,000 Feynman diagrams at NNLO
- \sim 100,000 Feynman diagrams at N³LO reduced to \sim 1000 master integrals

symbols

 emergence of integrals of special functions (e.g. polylogarithms) that cannot be found in Mathematica or Standard integral tables

example:
$$I = \int_{0}^{\infty} \mathrm{d}x \frac{\mathrm{Li}_{2}\left(\frac{ux}{(x+1)(v+x)}\right)}{x^{2} + (1-u+v)x + v},$$

where u, v ratios of invariant masses, and dilogarithm

$$\operatorname{Li}_2(x) = -\int_0^x \frac{\mathrm{d}t}{t} \, \log(1-t) \, .$$

- with identities may be mapped onto known integrals but which identity? → not all of them known
- trick: special functions follow algebraic structures (Hopf algebra) that allow to construct all identities

technological/complexity limit

embedding in full simulations

- fixed-order perturbation theory does not give full picture of *pp* collisions at LHC.
- more particles produced by
 - radiation of secondaries

all-orders PT in approximation

- transition from quarks & gluons to hadrons
- decays of unstable hadrons & QED radiation
- multiple interactions

 all in numerical simulation combination of first principles PT, effective theories, heavy modelling, and fitting to data

overall agreement with data

complexity in concepts

example: multi-parton interactions

- protons = extended objects

 → possibility of more parton pairs interacting resulting final states may be hard
 in "perturbative regime" p_⊥ ≥ few GeV
- but: no factorization theorem available
 → no first-principles theory
- simplistic parameterization

$$\sigma_{X+Y}^{(DPS)} = \frac{\sigma_X \otimes \sigma_Y}{\sigma_{\text{eff}}}$$

with $\sigma_{
m eff} pprox$ 15 mb (measured)

$$(\sigma_{
m tot}pprox$$
 100 mb = 10 $^{-29}$ m 2 at LHC)

F. Krauss

example: the ridge

- momentum conservation in transverse plane:
 - \longrightarrow in 2 \rightarrow 2 collisions particles produced "back-to-back"
 - \longrightarrow decorrelation by additional radiation
- well understood in pert.QCD

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

 however: surprising structure in high-multiplicity pp cannot be reproduced in standard pert.QCD Monte Carlo

 typically explained as "collective effect" in heavy-ion collisions: "hydrodynamics" in pp: colour-ropes, "glasma"

 $(\ {\sf colour-glass\ condensate\ =\ non-pert.\ in\ weak\ coupling,\ glasma\ =\ Bose\ enhancement\ +\ Pauli\ blocking)}$

イロト イポト イヨト イヨト

conceptually different from textbook perturbation theory

▲□▶▲圖▶▲圖▶▲圖▶ 圖 - 今年や

IPPP

wrapping up

summary

• model building in particle theory driven by

symmetry considerations \longrightarrow simplicity / elegance

breaking mechanisms play crucial role

phenomenological scrutiny of models reintroduces

complexity in calculations and concepts

technological breakthroughs in perturbation theory insufficiency of perturbative language

< ロ > < 同 > < 三 > < 三 :

