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what the talk is about

finding simplicity in complexity

@ re-emerging complexity

lesson(s) learnt
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Introduction

deciphering Nature

The aim of particle physics is to

understand Nature at the smallest scales
in terms of
fundamental constituents and their interactions

we pursue this goal by

building models in mathematical formulation
Simplicity

and test them through experimental scrutiny
Complexity
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Introduction

guiding principle for building models

Occam’s razor — economy of thought
or

keep it simple — recycle successful ideas
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Complexity To Simplicity

finding simplicity in complexity

reductionism at work
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electromagnetic phenomena
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Complexity To Simplicity

abstraction: simplicity from complexity

e many “laws" for electric/magnetic effects

@ electromagnetic interactions summarised in Maxwell's equations:

(first unification of forces/phenomena, constructed bottom-up)

electricity + magnetism = electromagnetism

@ solutions for electric and magnetic fields from potentials

E:—%—%ﬁ and B=V x A

@ Lorentz force for fields acting on charge g

F=qgE+qvxB
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Complexity To Simplicity

abstraction: top-down

@ structure of Maxwell's equations:

o two vector fields with opposite parity: vector E and axial-vector B
o first derivatives only (spatial and temporal)

yields four equations, organised by spin & parity:

scalar : charge = vV-E
pseudo-scalar : O = V.B
- - OJF
vector : current = VXBF —
ot
- - OB
axial-vector 0 = VXETF ot

@ arrive at Maxwell's equations with:

e allow electric monopoles (charges), disallow magnetic monopoles
e enforce electromagnetism = theory of light

@ the first relativistic theory!




Complexity To Simplicity

abstraction: cranked up (Lagrangian)
@ recast as Lagrangian for four-potential A* = (¢, ﬁ)
1 .
L= 3F"Fu A,
where FHV = QHAY — Q¥ AF and FH = ¢hvpo Foo

(transverse polarizations only: &, A# = 0 from Fourier transform py, e/ = 0)

@ arrive at equations of motion

QuFH =

J¥ (scalar and vector from above)
9, F" = 0 (“funny parities”)

@ gauge invariance: invariant under (arbitrary A)

Al (x) = A™(x) = A*(x) + O*N\(x)
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Complexity To Simplicity

constructing QED, top-down

e start with Dirac particles (spin-3, mass m)

'C:'JJ [i’yua/—t_m] '1/}7

invariant under global phase transformations ) — 1/ = /9%

Noether's theorem: conserved currents 8, j* = 0 demand conserved charges;
.

demand invariance under local phase transformations: © — ©(x)

compensate non-invariant terms through “gauge” field A,(x):

Oy — D, =09, —iqA.(x)

identify A, with Maxwell’s four-vector potential

add kinetic term %F“”FW for gauge field & arrive at

1 - .
Lqep = *ZF“VF,W + ¢ [iv" Dy — m] 4
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Complexity To Simplicity

order from chaos: group theory

@ in 50's and 60's: lots of new particles (incl. “strange” ones)
@ introduce quarks as mnemonic device

@ sorting them with group theory: SU(3)g
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Complexity To Simplicity

recycling: interactions from more complicated symmetries
@ recycle gauge idea for more complicated charges: isospin, colour, ...

(e.g. p +—> n, e +— g, 3 quark colours)

@ necessitates multiplets ) — 1); — symmetry transformations:

Pi — Pl = exp (fZeJ;) ¥

with generators T2 (matrices)

o classify interactions by symmetry group (the T,j) and charge

Standard Model = SU(3). ® SU(2), ® U(1)y

encodes strong, weak, & electromagnetic interactions
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Complexity To Simplicity

breaking symmetries

@ for local phase transitions:
need massless gauge bosons

one for each generator
— 3 for SU(2),, 8 for SU(3),

(also: Dirac fermions can only be massless)
@ but: have massive particles
(top, W, Z, Higgs, ...)

@ must break/hide electroweak symmetry

@ most efficient way: Higgs mechanism

(another instance of Occam'’s razor)

F. Krauss
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Complexity To Simplicity

Standard Model in its full glory

gauge group G = SU(3) @ SU(2) ® U(1)

1 v
L= Y [—4F” F,W}
Feg

gauge kinetic terms and self-interactions

+ Z [1/_11 o D;ﬂ/’i] + Z [y,-sz_J,-CDd)j + h.C.]

i iJ

matter fermions matter interactions
kinetic terms and with Higgs doublet and
gauge interactions fermion masses

+ [(DuoN)(D" )] +  [V(o!0)]
— —— ——

kinetic terms and gauge vev of Higgs doublet and
interactions of Higgs dou- Higgs boson mass and
blet, gauge boson mass self-interactions

terms
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Complexity To Simplicity

mm Global EW fit
=3 Full EW 2-loop

m Z-partial widths at 1-loop -o Measurement
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Complexity To Simplicity

edge of the Standard Model
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Complexity To Simplicity

going beyond the edge

@ despite success and self-consistency of SM: not complete theory
o lacking: Gravitation, Dark Matter & Energy, ...
e plus questions: nature of neutrinos, why 3 generations, ...

@ aesthetic arguments

o naturalness, hierarchy problem, unification of couplings, ...
o Coleman-Mandula theorem

(maximal symmetry of S matrix = Lorentz ® gauge ® supersymmetry)

build more complete models
answering some of the (perceived) shortcomings

potentially with more symmetries that need to be broken
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Simplicity To Complexity

re-emerging complexity:

calculational technology and concepts

F. Krauss
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Simplicity To Complexity

complexity in calculating

F. Krauss
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example: magnetic moment (g — 2)

S
mszfg~% ¥

e S =1 = spin, ug = Bohr's magneton and g = 2 (classical)

@ measured through precession in a cylindrical Penning trap at 100 mK

(“one-electron quantum cyclotron”; Hanneke et al., PRA 83 (2011) 052122)

o for electron

Y.
a, = gT = (1,159,652,180.73 £ 0.28) - 10~ 12

yields most precise value of fine structure constant

o~ = 137.035,999, 040(90)
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Simplicity To Complexity

@ reminder: Feynman diagram =
part of QM transition amplitude

@ for extraction of « need to calculate
e ~ 900 4-loop QED diagrams

(every loop = one integral d*k)
results in semi-analytic form:
harmonic polylogarithms, elliptic
integrals, ...

J 191012
D) 1210
D) IS8
JRVEERE

(Laporta, PLB 772 (2017) 232)

e ~ 12,500 5-loop QED diagrams
(results only in numerical form)

DB Pl
D0
0]
B0

00
0401

(Aoyama et al., PRD91 (2015) 033006)
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Simplicity To Complexity

calculating cross sections for the LHC

@ master formula

1
dopp—x :Z /dxldXQfI(Xl»,“’F) G(Xz,MF)/dd’x Gijsx({px}:1r, pr)

U o

relating parton-level & with particle-level (observable) cross section o

(partons = quarks and gluons)

@ based on ‘“factorization”:
parton distribution function f(x, pr)
process-independent if typical momentum
scale Q = pF > Mproton

(PDF = probability to find one parton of type i with energy
fraction x at factorization scale g in proton)

F. Krauss
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Simplicity To Complexity

complex inputs |: parton distribution functions

@ PDFs not known from first principles, only their scaling with pf

(from the Altarelli-Parisi equations)

o fitted from data at different processes, at different, ug, at different
experiments, with different systematics

@ current accuracy: next-to—next-to—leading order (NNLO)
(various collaborations: CTEQ, MMHT, NNPDF, ABM, GRV, HeraPDF)
@ needs NNLO calculations and three-loop kernels driving the evolution

(4-loop kernels partially known; Moch et al., 1707.08315)

e but: a% is O(1%) — must also include electromagnetic and weak
evolution at (N)LO

(current frontier: LUXqed; Manohar PRL 117 (2016) 242002)

determining reliable PDFs — a complex endeavour

F. Krauss
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Simplicity To Complexity

complex inputs Il: partonic cross sections &

@ automated evaluation of & at LO and NLO,
integral over phase space d®x with 3n — 2 dimensions for n particles
— Monte Carlo methods with involved sampling strategies

@ problem beyond LO: occurrence of divergent structures when

e momenta k — oo (“ultraviolet divergence”)
regularization and renormalization
e or k — 0 (“infrared divergence”)
regularization and exact cancellation between contributions

(Kinoshita—Lee-Nauenberg theorem)

e regularization by analytic continuation d*k — dPk with D = 4 + 2¢
divergences manifest as poles 1/¢

@ straightforward for UV divergences but tricky for IR divergences:
cancellation is between contributions of different multiplicity

(and phase space integrals are usually done with Monte Carlo methods)
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Simplicity To Complexity

example: gg — H

NLO O(as)

(Dawson; Djouadi et al.; 1990)

NNLO O(a?)

(Harlander et al., Anastasiou et al.; 2002)

el ETE

Double virtual

Real-virtual

é% (x%i

Double real

NNNLO O(a3)

(Anastasiou et al.; 2015)

B <

Real-virtual

Triple virtual
squared

Double virtual

real

Double real
virtual

i,

Triple real

@ ~ 1,000 Feynman diagrams at NNLO

@ ~ 100,000 Feynman diagrams at N3LO
reduced to ~ 1000 master integrals
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symbols

@ emergence of integrals of special functions (e.g. polylogarithms)
that cannot be found in Mathematica or Standard integral tables

Lip ((x+1L)IE(v+X))
example: | = [ dx ,
X2+ (l—u+v)x+v
0

where u, v ratios of invariant masses, and dilogarithm
z

Lia(x) = —/¥ log(1 — £).

0

@ with identities may be mapped onto known integrals
but which identity? — not all of them known

o trick: special functions follow algebraic structures (Hopf algebra)
that allow to construct all identities
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Simplicity To Complexity

technological /complexity limit

3
ug’.f . dene
L 2 for some processes
= B first solutions

n IS particles
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Simplicity To Complexity

embedding in full simulations

o fixed-order perturbation theory
does not give full picture of pp
collisions at LHC.

@ more particles produced by

e radiation of secondaries
all-orders PT in approximation
e transition from quarks & .
gluons to hadrons
e decays of unstable hadrons &
QED radiation
e multiple interactions
@ all in numerical simulation

combination of first principles PT, effective theories,
heavy modelling, and fitting to data

F. Krauss
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Simplicity To Complexity

overall agreement with data

Standard Model Production Cross Section Measurements Status: August 2016
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complexity in concepts
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example: multi-parton interactions

@ protons = extended objects
— possibility of more parton pairs interacting
resulting final states may be hard
in “perturbative regime” p; > few GeV

@ but: no factorization theorem available
— no first-principles theory

@ simplistic parameterization

ATLAS o Wiy data - physics BG,\s=7 TeV
o = Fit distribution .
A lemplate A

—— template B

(DPS)  Ox X0y
Ox+y =

Events /0.03

Oeff

[

with oo & 15 mb (measured)

(0tot &~ 100 mb = 10~29m2 at LHC)
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example: the ridge

@ momentum conservation in transverse plane:
—> in 2 — 2 collisions particles produced
“back-to-back”
— decorrelation by additional radiation

@ well understood in pert.QCD o
i == memeofow)
10°F A scale une.

w2 2n/3

5n/6 T
A0 [radians]
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@ however: surprising structure in high-multiplicity pp
cannot be reproduced in standard pert.QCD Monte Carlo

(@) pp Vs =7 TeV. N2 110 (D) pPb (S =502 TeV, 220 < Ni™ 5 260 (C) POPb (S =276 TeV, 220 < NiI™ 5 260

- “\‘\

< R

2 4 AR T \‘\\-\\,\\‘l - ‘/
-1~ \\ \" \“ 8

3 3/ \“:’\\ \‘\ I ““‘““

& 4 o‘\t“‘ )

GZ 0
4 o =2 b’(\ ) g 2 >
1<p, <3 GeVle 4 1<p;<3GeVic ” 1<p;<3GeVie %

o typically explained as “collective effect”
in heavy-ion collisions: “hydrodynamics”
in pp: colour-ropes, “glasma”

( colour-glass condensate = non-pert. in weak coupling, glasma = Bose enhancement + Pauli blocking)

@ conceptually different from textbook perturbation theory




The End

wrapping up
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The End

summary

@ model building in particle theory driven by

symmetry considerations — simplicity / elegance

breaking mechanisms play crucial role

@ phenomenological scrutiny of models reintroduces

complexity in calculations and concepts

technological breakthroughs in perturbation theory
insufficiency of perturbative language
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The End

UnTi You Sereab Your WiNGS,
You’'lL Have No Ipea How FaR You CAN WaLK.
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