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Solutions to previous control questions

Solutions to previous control questions

3.1(a) Unitarity of al: 1= (al)tal = UTUa*a is realised if UTU =1, ie.
U unitary and a*a = 1.

3.1(b) Unitarity of OV: 1= (OV)IOV = \A/TUTQ\A/ = VIV, if U unitary,
and the result equals the unit operator, if U unitary.

3.1(c) This is done by explicit calculation:

F_ Oty 1 (a* —B)(a )
1=viv a2+ B2\ B* « —p* a*

_ 1 ( aa* + B6* 0 > _ ( 1
a2+ 8P 0 aa* +88* )~ 0

as demanded.

y
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Solutions to previous control questions

Solutions to previous control questions

3.2(a)

The unit operator looks like
10 ... 0

i: 0 1 O — (i)ik:5ik and Tl"i:z,v:(s,',':/\/.
00 .. 1 =1

in N dimensions.
Remember matrix multiplication as “row x columns”:

R = Z/\A/, — K,J = Z L,'kMkj = L,'kMkj
k=1
using Einstein’s convention of summing over repeated indices.
(LR = S (LR = 3 (Z L,-kMk,-> -y (Z l\/lk,-L,-k> — (W)
i i k k i

as requested.
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More on operators

Special operators: Projection operators

Finally another class of operators is introduced, namely the projection
operators /5|v>. For an arbitrary vector |v) with unit length (v|v) =1,
they are defined through the

dyadic product: IS|V> = |v) (v|.

@ Projection operators are linear and Hermitean;
o they are idempotent: /E’ﬁ/> = IADM;
o PPy = PuyPyy =0
V (u|v) = 0 (orthogonal kets);
@ matrix elements: /A3|V>;k/k = (v |v) (v|w).

o T (P,) =1

v)(v]o)
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More on operators

Eigenvalues and eigenvectors

Definition of eigenvalues \; and eigenvectors |\;) of an operator O:

ON); = i [A\i).

Some nomenclature:
@ The set of all eigenvalues {\;} of an operator is called its spectrum;

@ an eigenvalue is called degenerate, if it corresponds to more than
one eigenvector.
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More on operators

Example: projection operators

The eigenvalue equation for a projection operator IADM reads:
Py [A) = [v) {v[]A) = A1A)

From this it can be read off that one eigenvalue is 1 with the
corresponding eigenvector being |v). In addition, all other eigenvectors
are orthogonal with respect to |v), with eigenvalue 0 - this is the only
other way to guarantee that the right equal sign in the equation above
holds true.

Therefore, these other eigenvectors, collectively denoted by {|v; 1)} span
an (N — 1)-dimensional subspace of the original N-dimensional Hilbert
space the kets live in.
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More on operators

Eigenproblem of Hermitean operators

Hermitean operators play a special role in Quantum mechanics, because

The eigenvalues of Hermitean operators are real,
and their eigenvectors are orthogonal.

In fact, strictly speaking, this is true only for operators with non-degenerate spectra.

To see this, consider the eigenvalue equation O [A); = Ai [Ai) and multiply from the
left with another eigenvector |)\j>:

([0 A7) = A (A = A7 (uIn
where the last part comes from applying the eigenvalue equation to <)\j|.
Then subtracting the two results yields
i = A7) (Ailyy) =0
and the reality of the eigenvalues becomes apparent for i = j, whereas the

orthogonality of the eigenvectors can be seen by setting i # j.
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More on operators

Spectrum of an operator

@ In lecture 3, it has been shown that the eigenvectors of an
Hermitean operator O are orthogonal, with real eigenvalues, if the
spectrum of O is non-degenerate.

@ For degenerate spectra, Schmidt’s orthogonalisation procedure
allows to rearrange the eigenvectors corresponding to a degenerate
eigenvalue into a mutually orthogonal set.

@ In both cases, the eigenvectors can be normalised,

; 1 .
)= Tom i

yielding an orthonormal base.
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Unitary transformations

Reminder: orthonormal bases

@ In previous lectures, orthonormal bases have been defined such that

(k|I) = Ok if k, I discrete
“ | 8(k—1) if k, | continuous.

@ They allow to expand all state vectors in them, yielding a
representation of the ket with respect to a particular base:

> Ik} (Kle)

6) =1 7
/dk |k) (k|¢) = /dk |k) ¢(k) if k continuous.

o 1k) bk if k discrete
k

and giving rise to discrete components ¢, of the associated vector or
to a wave function ¢(k).

@ This latter identification of ¢(k) extents the original idea of a wave
function, which typically has been applied to k indicating position or
momentum space only.
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Unitary transformations

Projection operators and closure
@ Using such an orthonormal base, one can define projection operators
P = [k) (k| = P(k),

which are linear, Hermitean operators.

@ Such projection operators are idempotent

Pebe = [K) (K| - |k) (k| = |&) (k| = Py
PePr = |K) (k|11 (1| =0.

@ They exhibit closure (i.e. add up to 1):

Z I5k for k discrete
1={ &
/ dkP(k) for k continuous.
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Unitary transformations

Unitary operators, once more
@ Remember unitary operators U which by definition satisfy
S
@ Unitary transformations of kets leaves their scalar products invariant:
(0810x) = (6] UT0 1) = (@) -
@ Also “operator sandwiches” remain invariant:

(0|4 x) = (0] U DADT U |x) = (D0IA|0x) = (&' |4

!
) -
@ Under unitary transformations, operators remain Hermitean:

A = DAUT s AT = (UADT) = DATDT.
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Unitary transformations

Unitary operators, once more

@ Eigenvalues of transformed matrices equal the original ones:

N

Al =

):-

Utny = OO
UAUTO N = OXUTO N
ANy = AN

@ Traces are invariant under unitary transformations

A = Z(Z\’)mmzZ(U)mk(zz\)k/(m)/m

= Z Z(UT)/m(U)mkl (A)kl = Z5k/(/2\)k/
= > (A =TrA.
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Unitary transformations

Unitary base transformations

@ Consider the action of an unitary transformation on the
representation of kets through their components.

@ Such a transformation may be seen in two ways:
1. Active: The operators act on kets, “moving” them around,

|¢>> L> ’¢/> = \7|¢> 5 \Vk> = const. ,

but keeping the base vectors fixed;
2. Passive: The base vectors are “moved in the opposite direction”,

[Vic) 2 ‘Vzi> = U|Vk> , |¢) = const.

where V = U' and the physical kets stay fixed.
This is the case when discussing a base transformation.
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Unitary transformations

Unitary base transformations

@ Assume you want to go from an orthonormal set of old base vectors
{|vk)} to another set of new base vectors {|u/)}, through a

transformation T: {|vk)} I, {Jun)}

Of course, being bases, both sets have an identical number of members. This means
that, of course, the dimension of the space spanned by them remains fixed

@ Express the new base vectors through the old ones - i.e. re-expand
the new base in terms of the old one:

lu) = > [vie) (vi|uy).
k

Remark: As before, the object |vk) (vk| has matrix form (a so-called
dyadic product), and is known as projection operator.

Cf. slides 14 and 16 of lecture 3 for a quick recap.

@ The transformation operator (matrix) Tis given by
T = (vic|uy),
its components are the components of the new base vectors with
respect to the old ones.
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Unitary transformations

Unitary base transformations (cont’d)

@ Demanding that the new base vectors are orthonormal translates into

S = uslan) = 35 (sl vl 1) ()
i
= > (uvi) (vilvy) (vl = Cuilvi) (viluy) = Z(T ()i
i i
or, in operator notation, 1=7TtT
@ In other words, the transformation operator transforming one
orthonormal base into another one is unitary.
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Unitary transformations

Back-transformation

o Of course, conversely, the old base vectors {|vk)} can be expressed
through the new ones:

Vi) = D lur) {unlvi) -
i

@ This implies that the matrix elements of the back-transformation
S .
{lu))} = {|w)} are given by
(5)ie = (uilvie) = ((vilun))* = (T = (TTie.
@ Therefore, in the new coordinates, an operator A reads

~

A T

v

— 71 A

u

)

where the operator in the old base {|v,)} is given by Al .
v
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Unitary transformations

Continuous base vectors

@ The above properties also apply for transformations involving
continuous base vectors. The new base vectors |u(/)) emerging from

the old ones |v(k)) through the transformation |v(k)) LN |u()) can
be expressed in terms of these old base as

u(l)) = /deV(k)> {v(K)u(l)),

and the components of the transfoArmation operator T, as before are
given by the continuous elements T (k, I) = (v(k)|u(/)).

@ Demanding an orthonormal bases implies (u(k)|u(l)) = §(k — I):
Sk = 1) = ((Ra) = [ did (VD) ()10 ()] a()
= [ i) Ol = [T k)T D,

the integral form of the operator equation i=T71T.
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Unitary transformations

Continuous base vectors: An example

o Consider the transformation from a base given by “position”-kets |x)
in one dimension to one given by “momentum”-kets |p):

T
For the moment, let’s forget about some tricky factors of h. ‘X> — |p> , Where both bases are
orthonormal:

(x|x") = 6(x = x) and (p|p) = 6(p — P').
@ A state ket |¢) in both bases is given by

oo oo

16) = / dx|x) ¢(x) = / aplp) (p).
1 r ipx 1 1 _ 1 r —ipx
¢(X)_\/%_/ dpeP*3(p) and ¢(p)2ﬂ_/ )

Theoretical Physics Il B — Quantum Mechanics[lcm] Lecture 4



Unitary transformations

Continuous base vectors: An example (cont'd)

@ The transformation matrix is given by

N 1 .
(xIp) = T(x, p) = —== ™
. 27T .
and because, as we know, all functions can be Fourier-transformed,
we know that we go from one complete base to another.

@ Using this to evaluate the scalar products of the base vectors yields
1 o0
(') = / Ao (x19) (ph) = 5= [ At =) = b(x—x)
27
—00

and similarly (p’|p) = 6(p — p').
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Learning outcomes & control questions

Learning outcomes

@ Eigenvalues and eigenvectors.

@ Unitary transformations for transformations from one orthonormal
base to another.

@ Using eigenkets of an Hermitean operator as orthonormal base.
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Learning outcomes & control questions

Control questions

4.1 Consider a two-dimensional system where the kets [¢1) and [t)2)
form an orthonormal basis. In this basis the operator A is given by

(Gl Gl o
v\ (e [Afen) (va]A|en) ( 1>~

What is the representation of this operator in a basis given by

|p1,2) = % (Ith1) £ [¥2)) ?
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Learning outcomes & control questions

Control questions

4.2 What are the eigenkets and eigenvalues of the Hamiltonian given by
A = Hua|1) (1] + Hi21)(2] + Ha[2) (1] + Ha2[2)(2],

where all entries H;; € R are real numbers and where, in particular,
Hiz = Ha1.
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