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Solutions to previous control questions

3.1(a) Unitarity of aÛ: 1̂ ≡ (aÛ)†aÛ = Û†Ûa∗a is realised if Û†Û ≡ 1̂, i.e.
Û unitary and a∗a = 1.

3.1(b) Unitarity of ÛV̂ : 1̂ ≡ (ÛV̂ )†ÛV̂ = V̂ †Û†ÛV̂ = V̂ †V̂ , if Û unitary,
and the result equals the unit operator, if Û unitary.

3.1(c) This is done by explicit calculation:

1̂ ≡ V̂ †V̂ =
1

|α|2 + |β|2
(

α∗ −β
β∗ α

)(

α β

−β∗ α∗

)

=
1

|α|2 + |β|2
(

αα∗ + ββ∗ 0
0 αα∗ + ββ∗

)

=

(

1 0
0 1

)

as demanded.
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Solutions to previous control questions
3.2(a) The unit operator looks like

1̂ =











1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1











−→ (1̂)ik = δik and Tr1̂ =

N
∑

i=1

δii = N .

in N dimensions.

3.2(b) Remember matrix multiplication as “row × columns”:

K̂ = L̂M̂ ←→ Kij =
∑

k=1

LikMkj ≡ LikMkj

using Einstein’s convention of summing over repeated indices.

Tr(L̂M̂) ≡
∑

i

(L̂M̂)ii =
∑

i

(

∑

k

LikMki

)

=
∑

k

(

∑

i

MkiLik

)

= Tr(M̂L̂)

as requested.
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Special operators: Projection operators

Finally another class of operators is introduced, namely the projection
operators P̂|v〉. For an arbitrary vector |v〉 with unit length 〈v |v〉 = 1,
they are defined through the

dyadic product: P̂|v〉 = |v〉 〈v |.
Projection operators are linear and Hermitean;

they are idempotent: P̂2
|v〉 = P̂|v〉;

P̂|v〉P̂|u〉 = P̂|u〉P̂|v〉 = 0

∀ 〈u|v〉 = 0 (orthogonal kets);

matrix elements: P̂|v〉;k′k = 〈v ′
k |v〉 〈v |vk〉.

Tr

(

ˆP|v〉

)

= 1.

|v〉〈v|φ〉

|v〉

|φ〉

P̂|v〉 = |v〉〈v|
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Eigenvalues and eigenvectors

Definition of eigenvalues λi and eigenvectors |λi 〉 of an operator Ô:

Ô |λ〉i = λi |λi 〉.

Some nomenclature:

The set of all eigenvalues {λi} of an operator is called its spectrum;

an eigenvalue is called degenerate, if it corresponds to more than
one eigenvector.
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Example: projection operators

The eigenvalue equation for a projection operator P̂|v〉 reads:

P̂|v〉 |λ〉 = |v〉 〈v |λ〉 = λ |λ〉 .

From this it can be read off that one eigenvalue is 1 with the
corresponding eigenvector being |v〉. In addition, all other eigenvectors
are orthogonal with respect to |v〉, with eigenvalue 0 - this is the only
other way to guarantee that the right equal sign in the equation above
holds true.
Therefore, these other eigenvectors, collectively denoted by {|vi,⊥〉} span
an (N − 1)-dimensional subspace of the original N-dimensional Hilbert
space the kets live in.
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Eigenproblem of Hermitean operators

Hermitean operators play a special role in Quantum mechanics, because

The eigenvalues of Hermitean operators are real,
and their eigenvectors are orthogonal.

In fact, strictly speaking, this is true only for operators with non-degenerate spectra.

To see this, consider the eigenvalue equation Ô |λ〉i = λi |λi 〉 and multiply from the
left with another eigenvector

∣

∣λj

〉

:

〈

λj

∣

∣

∣
Ô

∣

∣

∣
λi

〉

= λi

〈

λj |λi

〉

= λ∗
j

〈

λj |λi

〉

,

where the last part comes from applying the eigenvalue equation to
〈

λj

∣

∣.
Then subtracting the two results yields

(λi − λ∗
j )

〈

λi |λj

〉

= 0

and the reality of the eigenvalues becomes apparent for i = j , whereas the

orthogonality of the eigenvectors can be seen by setting i 6= j .
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Spectrum of an operator

In lecture 3, it has been shown that the eigenvectors of an
Hermitean operator Ô are orthogonal, with real eigenvalues, if the
spectrum of Ô is non-degenerate.

For degenerate spectra, Schmidt’s orthogonalisation procedure

allows to rearrange the eigenvectors corresponding to a degenerate
eigenvalue into a mutually orthogonal set.

In both cases, the eigenvectors can be normalised,
|λi 〉 −→ 1√

〈λi |λi 〉
|λi 〉,

yielding an orthonormal base.
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Reminder: orthonormal bases
In previous lectures, orthonormal bases have been defined such that

〈k |l〉 =
{

δkl if k , l discrete

δ(k − l) if k , l continuous.

They allow to expand all state vectors in them, yielding a
representation of the ket with respect to a particular base:

|φ〉 =











∑

k

|k〉 〈k |φ〉 =
∑

k

|k〉φk if k discrete

∫

dk |k〉 〈k |φ〉 =

∫

dk |k〉φ(k) if k continuous.

and giving rise to discrete components φk of the associated vector or
to a wave function φ(k).

This latter identification of φ(k) extents the original idea of a wave
function, which typically has been applied to k indicating position or
momentum space only.
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Projection operators and closure

Using such an orthonormal base, one can define projection operators

P̂k = |k〉 〈k | = P̂(k) ,

which are linear, Hermitean operators.

Such projection operators are idempotent

P̂k P̂k = |k〉 〈k | · |k〉 〈k | = |k〉 〈k | = P̂k

P̂k P̂l = |k〉 〈k | · |l〉 〈l | = 0 .

They exhibit closure (i.e. add up to 1):

1 =











∑

k

P̂k for k discrete

∫

dkP̂(k) for k continuous.
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Unitary operators, once more

Remember unitary operators Û which by definition satisfy

Û† = Û−1 .

Unitary transformations of kets leaves their scalar products invariant:

〈

Ûφ|Ûχ
〉

= 〈φ| Û†Û |χ〉 = 〈φ|χ〉 .

Also “operator sandwiches” remain invariant:

〈

φ

∣

∣

∣Â
∣

∣

∣χ
〉

= 〈φ| Û†ÛÂÛ†Û |χ〉 = 〈Ûφ|Â′|Ûχ〉 =
〈

φ′
∣

∣

∣Â′
∣

∣

∣χ
′
〉

.

Under unitary transformations, operators remain Hermitean:

Â′ = ÛÂÛ† ←→ Â′† = (ÛÂÛ†)† = ÛÂ†Û† .
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Unitary operators, once more

Eigenvalues of transformed matrices equal the original ones:

Â |λ〉 = ÂÛ†Û |λ〉 = λÛ†Û |λ〉
ÛÂÛ†Û |λ〉 = ÛλÛ†Û |λ〉

Â′ |λ′〉 = λ |λ′〉 .

Traces are invariant under unitary transformations

TrÂ′ =
∑

m

(Â′)mm =
∑

m,k,l

(Û)mk(Â)kl (Û
†)lm

=
∑

k,l

[

∑

m

(Û†)lm(Û)mk

]

(Â)kl =
∑

k,l

δkl (Â)kl

=
∑

k

(Â)kk = TrÂ .
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Unitary base transformations

Consider the action of an unitary transformation on the
representation of kets through their components.

Such a transformation may be seen in two ways:

1. Active: The operators act on kets, “moving” them around,

|φ〉
V

−→
∣

∣φ
′
〉

= V̂ |φ〉 , |vk〉 = const. ,

but keeping the base vectors fixed;

2. Passive: The base vectors are “moved in the opposite direction”,

|vk〉
U

−→
∣

∣v
′
k

〉

= Û |vk〉 , |φ〉 = const. ,

where V̂ = Û
† and the physical kets stay fixed.

This is the case when discussing a base transformation.
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Unitary base transformations

Assume you want to go from an orthonormal set of old base vectors
{|vk〉} to another set of new base vectors {|ul〉}, through a

transformation T : {|vk〉} T−→ {|ul〉}
Of course, being bases, both sets have an identical number of members. This means
that, of course, the dimension of the space spanned by them remains fixed.

Express the new base vectors through the old ones - i.e. re-expand
the new base in terms of the old one:

|ul〉 =
∑

k

|vk〉 〈vk |ul 〉.
Remark: As before, the object |vk〉 〈vk | has matrix form (a so-called
dyadic product), and is known as projection operator.

Cf. slides 14 and 16 of lecture 3 for a quick recap.

The transformation operator (matrix) T̂ is given by
T̂kl = 〈vk |ul 〉,

its components are the components of the new base vectors with
respect to the old ones.
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Unitary base transformations (cont’d)

Demanding that the new base vectors are orthonormal translates into

δkl ≡ 〈uk |ul 〉 =
∑

i,j

(

〈uk |vi 〉 〈vi | · |vj〉 〈vj |ul 〉
)

=
∑

i,j

〈uk |vi 〉 〈vi |vj〉 〈vj |ul 〉 =
∑

i

〈uk |vi 〉 〈vi |ul 〉 =
∑

i

(T̂ )∗ki (T̂ )il

or, in operator notation, 1̂ = T̂ †T̂

In other words, the transformation operator transforming one
orthonormal base into another one is unitary.
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Back-transformation

Of course, conversely, the old base vectors {|vk〉} can be expressed
through the new ones:

|vk〉 =
∑

l

|ul〉 〈ul |vk〉 .

This implies that the matrix elements of the back-transformation

{|ul〉} S−→ {|vk〉} are given by

(Ŝ)lk = 〈ul |vk〉 = (〈vk |ul 〉)∗ = (T̂ )∗kl = (T̂ †)lk .

Therefore, in the new coordinates, an operator Â reads

Â
∣

∣

∣

u
= T̂ † Â

∣

∣

∣

v
T̂ ,

where the operator in the old base {|vk〉} is given by Â
∣

∣

∣

v
.
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Continuous base vectors

The above properties also apply for transformations involving
continuous base vectors. The new base vectors |u(l)〉 emerging from

the old ones |v(k)〉 through the transformation |v(k)〉 T−→ |u(l)〉 can
be expressed in terms of these old base as

|u(l)〉 =
∫

dk |v(k)〉 〈v(k)|u(l)〉,

and the components of the transformation operator T̂ , as before are
given by the continuous elements T̂ (k , l) = 〈v(k)|u(l)〉.
Demanding an orthonormal bases implies 〈u(k)|u(l)〉 = δ(k − l):

δ(k − l) ≡ 〈u(k)|u(l)〉 =
∫

didj (〈u(k)|v(i)〉 〈v(i)|v(j)〉 〈v(j)|u(l)〉)

=

∫

di (〈u(k)|v(i)〉 〈v(i)|u(l)〉) =
∫

di T̂ ∗(k , i)T̂ (i , l) ,

the integral form of the operator equation 1̂ = T̂ †T̂ .
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Continuous base vectors: An example

Consider the transformation from a base given by “position”-kets |x〉
in one dimension to one given by “momentum”-kets |p〉:

For the moment, let’s forget about some tricky factors of ~. |x〉 T−→ |p〉, where both bases are
orthonormal:

〈x |x ′〉 = δ(x − x ′) and 〈p|p′〉 = δ(p − p′).

A state ket |φ〉 in both bases is given by

|φ〉 =
∞
∫

−∞

dx |x〉 φ(x) =
∞
∫

−∞

dp |p〉 φ̃(p),

φ(x) =
1√
2π

∞
∫

−∞

dp e ipx φ̃(p) and φ̃(p) =
1√
2π

∞
∫

−∞

dx e−ipxφ(x).
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Continuous base vectors: An example (cont’d)

The transformation matrix is given by

〈x |p〉 = T̂ (x , p) =
1√
2π

e ipx ,

and because, as we know, all functions can be Fourier-transformed,
we know that we go from one complete base to another.

Using this to evaluate the scalar products of the base vectors yields

〈x ′|x〉 = 1

2π

∞
∫

−∞

dp 〈x ′|p〉 〈p|x〉 = 1

2π

∞
∫

−∞

dp e ip(x
′−x) = δ(x − x ′)

and similarly 〈p′|p〉 = δ(p − p′).
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Learning outcomes

Eigenvalues and eigenvectors.

Unitary transformations for transformations from one orthonormal
base to another.

Using eigenkets of an Hermitean operator as orthonormal base.
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Control questions

4.1 Consider a two-dimensional system where the kets |ψ1〉 and |ψ2〉
form an orthonormal basis. In this basis the operator Â is given by

Â
∣

∣

∣

ψ
=





〈

ψ1

∣

∣

∣Â
∣

∣

∣ψ1

〉 〈

ψ1

∣

∣

∣Â
∣

∣

∣ψ2

〉

〈

ψ2

∣

∣

∣
Â
∣

∣

∣
ψ1

〉 〈

ψ2

∣

∣

∣
Â
∣

∣

∣
ψ2

〉



 =

(

1 ǫ

ǫ 1

)

.

What is the representation of this operator in a basis given by

|φ1,2〉 =
1√
2
(|ψ1〉 ± |ψ2〉) ?
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Control questions

4.2 What are the eigenkets and eigenvalues of the Hamiltonian given by

Ĥ = H11|1〉〈1|+ H12|1〉〈2|+ H21|2〉〈1|+ H22|2〉〈2| ,

where all entries Hij ∈ R are real numbers and where, in particular,
H12 = H21.
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