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@ The harmonic oscillator, once more
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Solutions to previous control questions

Solutions to previous control questions

6.1 Some properties of derivatives of operators:
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Solutions to previous control questions

Solutions to previous control questions

6.1 Continue by now choosing a =1 and a9 = 0 to write
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Solutions to previous control questions

Solutions to previous control questions

A A K2 a
6.2 The commutators read [S SJ} =—|[gi, dj] = —5 0k= ihe ik Sk

Then

(.n>

= cos(wt)S, + sin(wt)S,
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Solutions to previous control questions

Solutions to previous control questions

6.3 The integrals to perform are

o0

B = [ A (i) v
—i 7 . X X2 »
= \F?F; /dx(/prﬁ)exp () = j;d Vrd = hpy,

— 00

where the symmetry of integrating an odd function over an even
interval has been used to deal with the term  x/d?.
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Solutions to previous control questions

Solutions to previous control questions

6.3 and
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Together this yields the dispersion in P as given in lecture 4.
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The harmonic oscillator, once more

Hamiltonian operator

@ The Hamiltonian operator for the one-dimensional harmonic
oscillator reads

A 1 k 1 mw?
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where w” =
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The harmonic oscillator, once more

Creation and annihilation operators

o Introducing creation/lowering (3, = ) and annihilation/raising
(54— = 3) operators through

>
H

1 R
= Vi MR F 1P

e Employing [%, px] = ih, they fulfil

[4%, &%] = 343+ —3:3. =0
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The harmonic oscillator, once more

Expressing the Hamiltonian through a.

@ Invert the definition to express X and py through 3.:

X ho. N R . [hmw R
X:”2mw [3: +3-] and py= 5 [+ —a_]

e Insert into H:

mw?® ko, 2
ay +a_
w

)
|
[
">
—+
I
P
)
+

1 ~ o1

where 3_3, = 3,3 — [d}, d_] has been used, and where the
number operator N = 32, 3_ has been defined.
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The harmonic oscillator, once more

Commutators
o Calculate
[N, 7 } — 8,38, —3,3,3_ —a.[d, 4] =2,
[N, a,} = 3,33 -3 8,3 =[4, 4]a = —a_.

and therefore [I:I7 a}} = hw [N, a}] = +hwag.
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The harmonic oscillator, once more

Energy eigenstates: ground state

@ Denoting eigenstates |E) of the Hamiltonian as energy eigenstates

HIEY = E|E)
— Hai\a:(aiﬁinwai)|5>:(5inw) 3, |E)

@ Therefore, also state 44 |E) are eigenstates of the Hamiltonian, with
eigenvalues E + hw, so these operators were rightly introduced as
raising and lowering operators, since this is what they do.

@ As the Hamiltonian only contains squares of Hermitean operators,
the energy eigenvalues must be non-negative.
This implies that if |Ep) is the lowest energy eigenstate,

5_|E) =0

because otherwise (Eyg — iw) would be a lower energy.
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The harmonic oscillator, once more

Energy eigenstates: excited states

o Lowest energy Ey given by multiplying 4_ |E) = 0 from the left with

h&}é.}r:
R o A hw
FLOJ3+3_ |E0> = hwN |E0> =H- 7 |E0> =0
~ hw hw
— H|Eo>:Eo|Eo>:7|Eo> — 5027-

@ Applying the raising operator 4, n-times on |Ep) thus yields

N 1
3% |Ey) =|E,) and HEn>:En|En):(n+2>M|En>
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The harmonic oscillator, once more

Energy eigenstates: normalisation

e Demanding that (E,|E,) = 1 yields normalisation constant C,:
|En+1> = Cn+1§+ |En> +— 1= <En+1|En+1> = |Cn+1|2 <En ‘§—§+| En>

o Use 5.3, = H/(hw) + 1/2 and remember that (E,|E,) = 1:

n 1 1
1 = (CoaP (En 234 En) = | Cora (n+ 4 2) (EE)

1
NS

= |GCuilP(n+1) +— Coa=

@ Therefore a; |E,) = v/n+1|Ept1) and

L,
|En) = ﬁa+|E0>
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The harmonic oscillator, once more

Calculating expectation values

@ By expressing X and p, in terms of the creation and annihilation
operators, it is possible to calculate expectation values of various
operators with respect to the energy eigenstates. For example

N K2
<E0 ‘X4’ E0> = W <E0 ’éi + 313, + ... | E0>

X - . 2
- 1) =0, (£s]3:=0 JW (Eo| (3222 +2.2,3_2,)| Eo)

where it has been used that, ultimately, in order to allow a
non-vanishing sandwich between the ground states, there must be
equal numbers of raising and lowering operators.
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The harmonic oscillator, once more

Representing operators in the |E,)-base

@ Since the |E,) are the eigenkets of both the Hamiltonian and the
number operator, both being Hermitean, they form an orthonormal
base with

(Ek|E,) = Okn -
The two operators are diagonal when expressed in this base:

and N =

1 00 000
|l 030 01 0
H=7005 00 2
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The harmonic oscillator, once more

@ In contrast the matrix elements of the ladder operators read
(§+)kn = \/mék(n+1) and (éf)kn =vk+1 6(k+1)n

or, explicitly,

§+:

0 0 0
Vi 0 0
0 V2 0
0 0 V3

@ This also allows to reconstruct the matrix representation of X and py
by summing the two operators above and multiplying with
appropriate factors.
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The harmonic oscillator, once more

Going to position space

@ Identifying and using x — ¢ = v/ mw/h x:

R 1
0= (x|a"| E) = S <X

= o (mox g ) v = 5 (¢ ) 0.

@ The solution is given by

m2(JJ2X2 mw % IT)2(4)2X2
tho(x) = No exp ( 2h )‘(m) &P ( 2h )
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The harmonic oscillator, once more

@ The wave functions of higher excitation states are obtained by
repeatedly applying 3, in position space:

o = [\2 (C-i)]niﬁo(@

= (i) == (%) mo

where the H, are Hermite's polynomials of order n encountered in
last term’s lecture in the Foundations of Physics module. In fact,
returning from ( to x, the result obtained there is found again here.
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Learning outcomes & control questions

Learning outcomes

@ Hamiltonian operator of an 1-dimensional harmonic oscillator
expressed by position and momentum operators and by raising and
lowering operators.

@ Raising and lowering operators and their algebra: their commutators
among themselves and with the Hamiltonian and the number
operator.

@ Energy eigenstates as obtained through multiple application of
raising and lowering operators, and their normalisation.

@ Operators represented in the energy base.
o Calculating expectation values of operators.

@ Position space wave functions.
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Learning outcomes & control questions

Control questions

7.1

7.2

Consider a one-dimensional harmonic oscillator and calculate the
following expectation values:

(& 2| &), (60| &)
and check that the virial theorem holds true for the ground state of
the system (kinetic and potential energy identical).

Add a homogeneous electrical field E to the harmonic oscillator such
that its Hamiltonian reads

A 1 mw?

H=_—p2+——%°+eEX

5 Px 5 5

where e is the charge of the particle.
By completing the square, bring this Hamiltonian to a form
quadratic in generalised position and momentum operators plus
some constant terms. Transform to raising and lowering operators
and calculate the energy eigenvalues.

F. Krauss
Theoretical Physics Il B — Quantum Mechanics[lcm] Lectures 7 & 8



Learning outcomes & control questions

7.3 The Hamiltonian of the fermionic harmonic oscillator is given by
i = et = ebib,

with € a positive number with units of energy and the creation and
annihilation operators satisfying

{515} =1 ana 52:(fsf)2:o.

(a) Show that N is Hermitian and A2 = N; .
(b) What are therefore the eigenvalues of N and H and the eigenstates?

(c) Construct the spectrum of A by calculating suitable commutators of
N, b and b', starting from a ground state |0).
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