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Solutions to previous control questions

17.1 To answer the first questions, realise that the state vector can be
rewritten as

|ψ〉 = |↑〉(−) |↑〉(+)
= |m1m2; j1j2〉 =

∣

∣

∣

∣

1

2

1

2
;
1

2

1

2

〉

= |jm; j1j2〉 =
∣

∣

∣

∣

11;
1

2

1

2

〉

.

(ab) For the case A → 0, the Hamiltonian can be rewritten by the spin
operator Ŝz of the combined state:

Ĥ =
eB

mc

(

Ŝ
(−)
z + Ŝ

(+)
z

)

=
eB

mc

(

Ŝ1,z + Ŝ2,z

)

=
eB

mc
Ŝz ,

and |ψ〉 obviously is an eigenket of the Hamiltonian, with eigenvalue

(energy) E
(B)

|11〉 =
eB~

mc
.
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In contrast, for the case B → 0, the Hamiltonian is given by

Ĥ = AŜ1 · Ŝ2 =
A

2

(

Ŝ
2
− Ŝ

2

1 − Ŝ
2

2

)

.

|ψ〉 is also an eigenstate of this operator, with eigenvalue (i.e. energy)

E
(A)

|11〉 =
A~2

2

(

2−
3

4
−

3

4

)

=
A~2

4
.

Therefore the overall energy expectation value is just

E
(A)+(B)

|11〉 =
A~2

4
+

eB~

mc
.

(c) Following the reasoning up to now, the expectation values read

〈

Ŝ1 · Ŝ2

〉

S
= −

3~2

4
and

〈

Ŝ1 · Ŝ2

〉

T
=

~
2

4
.
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17.2 (a)
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17.2 (a)
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Addition of angular momenta

Assume two angular momentum operators Ĵ1 and Ĵ2 in two different
subspaces, which satisfy the usual commutation relations

[

Ĵ1i , Ĵ1j

]

= i~ǫijk Ĵ1k ,
[

Ĵ2i , Ĵ2j

]

= i~ǫijk Ĵ2k , and

[

Ĵ1i , Ĵ2j

]

= 0 .

The total angular momentum is given by

Ĵ = Ĵ1 ⊗ 1̂2 + 1̂1 ⊗ Ĵ2 = Ĵ1 + Ĵ2 .

Rotations R(n, φ) of the compound are described by

R̂(n, φ) = exp

(

− i Ĵ1 · nφ
~

)

⊗ exp

(

− i Ĵ2 · nφ
~

)

,

where it is important to use identical axes and angles in both
subspaces for a uniquely and sensibly defined rotation.
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Two bases

There are essentially two options to choose base kets:

A: Eigenkets of Ĵ
2

1, Ĵ
2

2, Ĵ1z , and Ĵ2z : |j1j2; m1m2〉:

Ĵ
2

i |j1j2; m1m2〉 = ji (ji + 1)~2 |j1j2; m1m2〉

Ĵiz |j1j2; m1m2〉 = mi~ |j1j2; m1m2〉 .

B: Eigenkets of Ĵ
2
, Ĵ

2

1, Ĵ
2

2, and Ĵz : |jm; j1j2〉. Noting that because off

Ĵ
2

= Ĵ
2

1 + Ĵ
2

2 + 2Ĵ1z Ĵ2z + Ĵ1+Ĵ2− + Ĵ1−Ĵ2+ −→
[

Ĵ
2
, Ĵ

2

i

]

= 0

Ĵ
2
|jm; j1j2〉 = j(j + 1)~2 |j1j2; j1j2〉

Ĵ
2

i |jm; j1j2〉 = ji (ji + 1)~2 |j1j2; j1j2〉

Ĵz |jm; j1j2〉 = m~ |jm; j1j2〉 .
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Base transformation

When going from one base to the other, it is important to realise
that although

[

Ĵi , Ĵj

]

= i~ǫijk Ĵk and

[

Ĵ
2
, Ĵz

]

= 0

we still have
[

Ĵ
2
, Ĵ1z

]

6= 0 and

[

Ĵ
2
, Ĵ2z

]

6= 0 ,

which implies that we can neither add Ĵ
2
to set A nor the Ĵiz to set

B. This means that these two sets indeed have the maximal number
of independent quantum numbers – eigenvalues of mutually
compatible operators – and thus serve as viable bases.
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Defining Clebsch-Gordan coefficients

When going from one base to another, we can write the identity

|jm; j1j2〉 =
∑

m1m2

|m1m2; j1j2〉 〈m1m2; j1j2|jm; j1j2〉

where we used to completeness of the states |m1m2; j1j2〉:

1̂ =
∑

m1m2

|m1m2; j1j2〉 〈m1m2; j1j2|

The matrix elements 〈m1m2; j1j2|jm; j1j2〉 are the Clebsch-Gordan

coefficients.
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Properties of Clebsch-Gordan coefficients

1 CG coefficients vanish if m 6= m1 +m2:

Since Ĵz = Ĵ1z + Ĵ2z ,
(

Ĵz − Ĵ1z − Ĵ2z

)

|jm; j1j2〉 = 0. Multiplying

from the left with 〈m1m2; j1j2| yields the desired result:

〈

m1m2; j1j2

∣

∣

∣

(

Ĵz − Ĵ1z − Ĵ2z

)∣

∣

∣
jm; j1j2

〉

= (m −m1 −m2)

〈

m1m2; j1j2|jm; j1j2

〉

= 0 .
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Properties of Clebsch-Gordan coefficients

2 CG coefficients vanish unless |j1 − j2| ≤ j ≤ j1 + j2:
You can check the plausibility of this by comparing the
dimensionalities of the spaces spanned in different notations, which
must be the same.
In m1m2-notation N = (2j1 + 1)(2j2 + 1). Compare this with the jm

notation; assuming without any loss of generality j1 ≥ j2, we find

j1+j2
∑

j=j1−j2

(2j + 1) =
1

2
{[2(j1 − j2) + 1] + [2(j1 + j2) + 1]} (2j2 + 1)

= (2j1 + 1)(2j2 + 1) = N .
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Properties of Clebsch-Gordan coefficients

3 CG coefficients form a unitary matrix, choosing the matrix elements
to be real by convention, means that the matrices in fact are
orthogonal. Therefore

∑

jm

〈m1m2; j1j2|jm; j1j2〉 〈j1j2;m′

1m
′

2|jm; j1j2〉 = δm1m
′

1
δm2m

′

2

∑

m1m2

〈m1m2; j1j2|jm; j1j2〉 〈m1m2; j1j2|j ′m′; j1j2〉 = δjj′δmm′ .

4 Setting j ′ = j and m = m1 +m2 = m′, we find

∑

m1m2

|〈m1m2; j1j2|j(m1 +m2); j1j2〉|2 = 1 ,

providing the normalisation condition for the |jm; j1j2〉
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Recursion relations for the Clebsch-Gordans

(Not examinable.)

Consider

Ĵ± |jm; j1j2〉 =
√

(j ∓m)(j ±m + 1) |j(m ± 1); j1j2〉
=

∑

m′

1m
′

2

[(

Ĵ1± + Ĵ2±

)

|j1j2;m′

1m
′

2〉 〈j1j2;m′

1m
′

2|jm; j1j2〉
]

and multiply it from the left with 〈m1m2; j1j2|. This means that the
right hand side vanishes unless m′

1 = m1 ± 1 and m′
2 = m2 or

m′
1 = m1 and m′

2 = m2 ± 1.

This shifting of the m-values by the ladder operators will result in a
new condition on the emerging CG coefficients:
For them, m ± 1 = m1 +m2 is neccessary to guarantee their
existence.
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This leads to the recursion relation

〈j1j2;m1m2|j(m ± 1); j1j2〉

=

√

(j1 ±m1)(j1 ∓m1 + 1)

(j ∓m)(j ±m + 1)
〈j1j2; (m1 ∓ 1)m2|jm; j1j2〉

+

√

(j2 ±m2)(j2 ∓m2 + 1)

(j ∓m)(j ±m + 1)
〈j1j2;m1(m2 ∓ 1)|jm; j1j2〉 .

To use them, realise that there are a number of “boundary”
conditions applying to the CGs in the m1m2 plane and hence to the
CGs enetering the recursion relations, namely

|m1| ≤ j1 , |m2| ≤ j2 , and − j ≤ |m1 +m2| ≤ j .

This allows to choose values where either the first or second term on
the r.h.s. vanish and navigate accordingly.
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Start at point A, with m1 = j1.

Use the Ĵ− relation, yielding
one term X with m1 → m1 + 1,
which is forbidden,
and one term B with
m2 → m2 − 1, which is allowed.

Therefore the CG for B can be
obtained from A alone.

Now form the Ĵ+ triangle
corresponding to A, B , and D,
which results in the CG for D.

This strategy can be repeaeted,
with triangles built by the
ladder operators, and using the
boundaries.

m1

m2

j1

j2

−j   2

−j  1

A

B

C

D

E

X

Y
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Concrete example: spin-12 particle

Consider a spin- 12 particle in a situation where orbital angular
momentum matters.

Then j1 = l and m1 = ml are integer numbers and j2 = s = 1
2 and

m2 = ± 1
2 . The allowed values of j are given by j = l ± 1

2 > 0.

Using the CG recursion relations allows to define two-component
spin-angular functions:

Y j=l± 1
2 ;m

l (θ, φ) =
1√

2l + 1





±
√

l ±m + 1
2 Yl(m−

1
2 )
(θ , φ)

√

l ∓m + 1
2 Yl(m+ 1

2 )
(θ , φ)





Note that, of course, m = ml +ms takes an half-integer value.

The functions above, are by construction, eigenfunctions of Ĵ
2
, L̂

2
,

Ŝ
2
and Ĵz . They are also eigenfunctions of the spin-orbital term

L̂ · Ŝ = 1
2 (Ĵ

2 − L̂
2 − Ŝ

2
).
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Explicit coefficients from the PDG
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Learning outcomes

Clebsch-Gordan coefficients and their properties.

Formal theory of spin addition.
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