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Solutions to previous control questions

4.1 Determine first the transformation matrix T̂ through

(T̂ )ij = 〈ψi |φj〉 =
1√
2

(
1 1
1 −1

)
Since all entries are real and because T̂ is symmetric, it is
self-adjoint: T̂ = T̂ †. Therefore

Â
∣∣∣
φ

= T̂ † Â
∣∣∣
ψ
T̂

=
1

2

(
1 1
1 −1

)(
1 ε
ε 1

)(
1 1
1 −1

)
=

(
1 + ε 0

0 1− ε

)
.

Note: Realising that the |φ1,2〉 are the eigenvectors of Â with
eigenvalues 1± ε would have yielded the same result.
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Solutions to previous control questions (cont’d)

4.2 Eigenvalues follow from characteristic equation,

det

(
H11 − λ H12

H12 H22 − λ

)
= 0

−→ λ1,2 =
H11 + H22

2
± H11 − H22

2

√
1 +

4H2
12

(H11 − H22)2
.

The eigenvectors are given by solutions of(
H11 H12

H12 H22

) (
λi1
λi2

)
= λi

(
λi1
λi2

)
−→ λi2 =

λi − H11

H12
λi1 −→ ~λi =

(
H12

λi − H11

)
.
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Postulates for measurements in Quantum Mechanics

Postulate 3: All viable quantum mechanical observables
can be represented as Hermitean operators.

Postulate 4: The only result of one precise measurement of
an observable A is one of the eigenvalues of the associated
Hermitean operator Â. The measurement will force the
state vector of the system to becomes one the corresponding
eigenvector.

Postulate 5: The result of a series of measurements of this
observable over an ensemble of systems in the same state
|Φ〉, the expectation value, is given by

〈A〉|Φ〉 =

〈
Φ
∣∣∣Â∣∣∣Φ

〉
〈Φ|Φ〉

.
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Expansion in eigenkets/eigenfunctions

In postulate 3, all observables in Quantum Mechanics were
connected with Hermitean operators, which have an orthonormal set
of eigenvectors, spanning the full vector space as a base.

This implies

Postulate 6: Every ket representing a state of a dynamical
system can be expressed as a linear combination of the nor-
malised eigenkets of a Hermitean operator Ô associated to
an observable O.
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Expansion in eigenkets/eigenfunctions and measurements

Using postulate 6 and writing

|ψ〉 =
∑
i

ci |λi 〉 with ci = 〈λi |ψ〉 and
∑
i

|ci |2 = 1

therefore yields (with postulate 4)

〈O〉ψ ≡
〈
ψ
∣∣∣Ô∣∣∣ψ〉 =

∑
i,k

c∗i ck
〈
λi

∣∣∣Ô∣∣∣λk〉
=

∑
i,k

c∗i ck λk 〈λi |λk〉 =
∑
i,k

c∗i ck λk δik =
∑
i

|ci |2 λi ,

which can be interpreted as an weighted average – the expectation
value – of the eigenvalues of Ô, with weights given by the

probabilities P |ψ〉i = |ci |2 of the system to be in the ith eigenstate,
described by |ψ〉.
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Expansion in eigenkets/eigenfunctions and measurements

The terms ci = 〈λi |ψ〉 are the probability amplitudes for the system
to be found in |λi 〉.
As a by-product of postulate 4, a single measurement of O will lead
to a collapse of the linear combination of |ψ〉 to a single eigenket
|λi 〉, which is chosen according to the probabilities |ci |2:

|ψ〉 =
∑
i

〈λi |ψ〉 |λi 〉
O−→ |λi 〉

A subsequent immediate measurement of the same observable, O, of
the system then yields λi with certainty. This can be used to prepare
a set of systems.
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Partially continuous spectrum

Now, assume a spectrum of Ô, that consists of some discrete
eigenvalues plus a range of continuous ones. Then:

|ψ〉 =
∑
i

ci |λi 〉+

∫
dl c(l) |λ(l)〉 ,

with ci = 〈λi |ψ〉 and, in a straightforward extension, c(l) = 〈λ(l)|ψ〉.
Using the orthonormality of the eigenvectors

〈λi |λj〉 = δij , 〈λi |λ(l)〉 = 0 , and 〈λ(k)|λ(l)〉 = δ(k − l)

therefore yields the expectation value for the observable O

〈O〉ψ =
∑
i

|ci |2 λi +

∫
dl |c(l)|2 λ(l) .
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Partially continuous spectrum - density of states

As before, for the discrete part of the spectrum, ci = 〈λi |ψ〉 denotes
the probability amplitude for finding the system in state |λi 〉, and
therefore |ci |2 is the corresponding probability.

For the continuous part, the states λ(l) are lying dense, and one
may introduce a density of states

ρ(l) =
di

dl
,

the number of states in a unit interval of l .

This density can be used to normalise the eigenkets |λ(l)〉.

F. Krauss

Theoretical Physics II B – Quantum Mechanics[1cm] Lecture 5



Operator functions
Defining monomials of an operator L̂ as L̂n = L̂L̂ · · · · · L̂︸ ︷︷ ︸

n factors
allows to define operator functions F(L̂) through their
Taylor-expansion

F(L̂) = f01̂ + f1L̂
1 + f2L̂

2 + . . .
and in particular

e L̂ = exp(L̂) =
∞∑
n=0

1

n!
L̂n.

Differentiation of such functions with respect to operators is a bit
cumbersome to define, but straightforward to exercise:

∂

∂L̂
(F + G) =

∂F
∂L̂

+
∂G
∂L̂

,
∂

∂L̂
(FG) =

∂F
∂L̂
G + G ∂G

∂L̂
,

∂L̂n

∂L̂
= nL̂n−1 ,

∂e L̂

∂L̂
= e L̂ .
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Commutators

The difference L̂M̂ − M̂L̂ ≡
[
L̂, M̂

]
≡
[
L̂, M̂

]
−

is called the commutator

of the two operators and it has the following properties:[
L̂, M̂

]
= −

[
M̂, L̂

]
and, as a consequence,

[
L̂, L̂

]
= 0;[

L̂, c 1̂
]

= 0 ∀c ∈ C;[
L̂, cM̂

]
= c

[
L̂, M̂

]
;[

L̂1 + L̂2, M̂
]

=
[
L̂1, M̂

]
+
[
L̂2, M̂

]
;[

L̂1L̂2, M̂
]

=
[
L̂1, M̂

]
L̂2 + L̂1

[
L̂2, M̂

]
;[

M̂, L̂1L̂2

]
=
[
M̂, L̂1

]
L̂2 + L̂1

[
M̂, L̂2

]
;[

L̂1,
[
L̂2, L̂3

]]
+
[
L̂2,
[
L̂3, L̂1

]]
+
[
L̂3,
[
L̂1, L̂2

]]
= 0.
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Learning outcomes

Results of measurements in Quantum Mechanics:
Eigenvalue vs. expectation value.

Operator functions

Commutatorsand their basic properties
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Control questions
5.1 The Hamilton operator Ĥ of a system and an operator Ô related to

a measured quantity are given by

Ĥ = ~ω
(

1 0
0 2

)
and Ô = µ

(
0 1
1 0

)
.

The system is described by a normalised state vector

|ψ〉 =
2∑

i=1

ci |vi 〉 , where |v1〉 =

(
1
0

)
and |v2〉 =

(
0
1

)
.

(a) What is the relation of the (potentially complex) quantities c1 and c2

to maintain 〈ψ|ψ〉 = 1?
(b) What are possible energies that can be found when measuring the

energy related to the state |ψ〉?
(c) What are the expectation values of Ĥ and Ô, if the system is in a

state |ψ〉?
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Control questions

5.2 The Pauli matrices σ̂x,y ,z are given by

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
.

Prove by direct calculation that

[σ̂i , σ̂j ] = 2iεijk σ̂k for {i , j , k} = {1, 2, 3, } = {x , y , z} ,

where εijk is the Levi-Civita tensor (totally anti-symmetric tensor of
rank 3) with ε123 = 1.
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