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6.1 Some properties of derivatives of operators:
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6.1 Continue by now choosing α = 1 and α0 = 0 to write
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∞∑
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6.2 The commutators read
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Ŝy + . . .
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6.3 The integrals to perform are

〈p̂x〉|ψ〉 =
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where the symmetry of integrating an odd function over an even
interval has been used to deal with the term ∝ x/d2.
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6.3 and
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Together this yields the dispersion in Px as given in lecture 4.
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Hamiltonian operator

The Hamiltonian operator for the one-dimensional harmonic
oscillator reads

Ĥ =
1

2m
p̂2x +

k

2
x̂2 =

1

2m
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mω2

2
x̂2 , where ω2 =

k

m
.
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Creation and annihilation operators

Introducing creation/lowering (â+ = â†) and annihilation/raising
(â− = â) operators through

â± =
1√

2~mω
[mω x̂ ∓ i p̂x ]

Employing [x̂ , p̂x ] = i~, they fulfil
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]
+
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~
[x̂ , p̂x ] = ∓1 .
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Expressing the Hamiltonian through â±

Invert the definition to express x̂ and p̂x through â±:
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Ĥ = − 1

2m

~mω
2
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â+â− + â−â+
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,

where â−â+ = â+â− − [â+, â−] has been used, and where the
number operator N̂ = â+â− has been defined.
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Commutators

Calculate[
N̂, â+

]
= â+â−â+ − â+â+â− = â+ [â−, â+] = â+[

N̂, â−
]

= â+â−â− − â−â+â− = [â+, â−] â− = −â− .

and therefore
[
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]
= ±~ωâ±.
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Energy eigenstates: ground state

Denoting eigenstates |E 〉 of the Hamiltonian as energy eigenstates

Ĥ |E 〉 = E |E 〉

−→ Ĥâ± |E 〉 =
(
â±Ĥ ± ~ωâ±

)
|E 〉 = (E ± ~ω) â± |E 〉

Therefore, also state â± |E 〉 are eigenstates of the Hamiltonian, with
eigenvalues E ± ~ω, so these operators were rightly introduced as
raising and lowering operators, since this is what they do.

As the Hamiltonian only contains squares of Hermitean operators,
the energy eigenvalues must be non-negative.
This implies that if |E0〉 is the lowest energy eigenstate,

â− |E0〉
!

= 0

because otherwise (E0 − ~ω) would be a lower energy.
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Energy eigenstates: excited states

Lowest energy E0 given by multiplying â− |E 〉 = 0 from the left with
~ωâ+:

~ωâ+â− |E0〉 = ~ωN̂ |E0〉 =

(
Ĥ − ~ω

2

)
|E0〉 = 0
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2
.

Applying the raising operator â+ n-times on |E0〉 thus yields

ân+ |E0〉 = |En〉 and Ĥ |En〉 = En |En〉 =

(
n +

1

2

)
~ω |En〉
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Energy eigenstates: normalisation

Demanding that 〈En|En〉 = 1 yields normalisation constant Cn:

|En+1〉 = Cn+1â+ |En〉 ←→ 1 = 〈En+1|En+1〉 = |Cn+1|2 〈En |â−â+|En〉

Use â−â+ = Ĥ/(~ω) + 1/2 and remember that 〈En|En〉 = 1:

1 = |Cn+1|2 〈En |â−â+|En〉 = |Cn+1|2
(
n +

1

2
+

1

2

)
〈En|En〉

= |Cn+1|2 (n + 1) ←→ Cn+1 =
1√
n + 1

.

Therefore â+ |En〉 =
√
n + 1 |En+1〉 and

|En〉 =
1√
n!
ân+ |E0〉

F. Krauss

Theoretical Physics II B – Quantum Mechanics[1cm] Lectures 7 & 8



Solutions to previous control questions The harmonic oscillator, once more Learning outcomes & control questions

Calculating expectation values

By expressing x̂ and p̂x in terms of the creation and annihilation
operators, it is possible to calculate expectation values of various
operators with respect to the energy eigenstates. For example〈

E0

∣∣∣x̂4∣∣∣E0

〉
=

~2

4m2ω2

〈
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∣∣(â2−â2+ + â−â+â−â+
)∣∣E0

〉
=

~2

4m2ω2
〈E0 |(2 + 1)|E0〉 =

3~2

4m2ω2
,

where it has been used that, ultimately, in order to allow a
non-vanishing sandwich between the ground states, there must be
equal numbers of raising and lowering operators.
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Representing operators in the |En〉-base

Since the |En〉 are the eigenkets of both the Hamiltonian and the
number operator, both being Hermitean, they form an orthonormal
base with

〈Ek |En〉 = δkn .

The two operators are diagonal when expressed in this base:

Ĥ =
~ω
2


1 0 0 . . .
0 3 0 . . .
0 0 5 . . .
...

...
...

. . .

 and N̂ =


0 0 0 . . .
0 1 0 . . .
0 0 2 . . .
...

...
...

. . .


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In contrast the matrix elements of the ladder operators read

(â+)kn =
√
n + 1 δk(n+1) and (â−)kn =

√
k + 1 δ(k+1)n

or, explicitly,

â+ =


0 0 0 . . .√
1 0 0 . . .

0
√

2 0 . . .

0 0
√

3 . . .
...

...
...

. . .

 , â− =


0
√

1 0 0 . . .

0 0
√

2 0 . . .

0 0 0
√

3 . . .
...

...
...

...
. . .


This also allows to reconstruct the matrix representation of x̂ and p̂x
by summing the two operators above and multiplying with
appropriate factors.
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Going to position space

Identifying and using x −→ ζ =
√

mω/~ x :

0 = 〈x |â−|E0〉 =
1√

2~mω

〈
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)
ψ0(x) =

1√
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(
ζ +

d

dζ

)
ψ0(ζ) ,

The solution is given by

ψ0(x) = N0 exp

(
−m2ω2x2

2~

)
=
(mω
~π

) 1
4

exp

(
−m2ω2x2

2~

)
.
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The wave functions of higher excitation states are obtained by
repeatedly applying â+ in position space:

ψn(ζ) =
1√
n!

[
1√
2

(
ζ − d

dζ

)]n
ψ0(ζ)

=

(
mω

~π(2nn!)2

) 1
4

exp

(
−ζ

2

2

)
Hn(ζ) ,

where the Hn are Hermite’s polynomials of order n encountered in
last term’s lecture in the Foundations of Physics module. In fact,
returning from ζ to x , the result obtained there is found again here.
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Learning outcomes

Hamiltonian operator of an 1-dimensional harmonic oscillator
expressed by position and momentum operators and by raising and
lowering operators.

Raising and lowering operators and their algebra: their commutators
among themselves and with the Hamiltonian and the number
operator.

Energy eigenstates as obtained through multiple application of
raising and lowering operators, and their normalisation.

Operators represented in the energy base.

Calculating expectation values of operators.

Position space wave functions.
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Control questions

7.1 Consider a one-dimensional harmonic oscillator and calculate the
following expectation values:〈

E0

∣∣∣x̂2∣∣∣E0

〉
,
〈
E0

∣∣∣p̂2∣∣∣E0

〉
and check that the virial theorem holds true for the ground state of
the system (kinetic and potential energy identical).

7.2 Add a homogeneous electrical field E to the harmonic oscillator such
that its Hamiltonian reads

Ĥ =
1

2m
p̂2x +

mω2

2
x̂2 + eE x̂ ,

where e is the charge of the particle.
By completing the square, bring this Hamiltonian to a form
quadratic in generalised position and momentum operators plus
some constant terms. Transform to raising and lowering operators
and calculate the energy eigenvalues.
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7.3 The Hamiltonian of the fermionic harmonic oscillator is given by

Ĥ = εN̂ = εb̂†b̂ ,

with ε a positive number with units of energy and the creation and
annihilation operators satisfying{

b̂†, b̂
}

= 1 and b̂2 =
(
b̂†
)2

= 0 .

(a) Show that N̂ is Hermitian and N̂2 = N̂.
(b) What are therefore the eigenvalues of N̂ and Ĥ and the eigenstates?
(c) Construct the spectrum of Ĥ by calculating suitable commutators of

N̂, b̂ and b̂†, starting from a ground state |0〉.
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