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Solutions to previous control questions

17.1 To answer the first questions, realise that the state vector can be
rewritten as

_ 111
9 =MW = Immiik = [3357)

11
= im: 1/ = 1177 .
Um; juja) ‘ 5 2>

(ab) For the case A — 0, the Hamiltonian can be rewritten by the spin
operator S, of the combined state:

A= (301 80) = B (5, 15,.) = s,

and |¢) obviously is an eigenket of the Hamiltonian, with eigenvalue

B
(energy) E‘(H)> = b,
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In contrast, for the case B — 0, the Hamiltonian is given by

e A /a2 s A
fi=n3,-8,=2(8-5-5).
|1} is also an eigenstate of this operator, with eigenvalue (i.e. energy)

gw _ AR (3 3\ _ AR
= 2 4 4) 4
Therefore the overall energy expectation value is just

2
(A)+(B) _ AR eBh
By =+ e
(c) Following the reasoning up to now, the expectation values read
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Addition of angular momenta

@ Assume two angular momentum operators ll and 22 in two different
subspaces, which satisfy the usual commutation relations

[31,', -711} = ihejdik Pzi, -72j] = ihejpdox , and [31,‘, -72j} =0.
@ The total angular momentum is given by
2221®i2+il®gz :Ql +22-

@ Rotations R(n, ¢) of the compound are described by

/A?(ﬂ, @) = exp (_lef;ngb) @ exp <_iJ2f'Ln¢> ’

where it is important to use identical axes and angles in both
subspaces for a uniquely and sensibly defined rotation.
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Two bases
@ There are essentially two options to choose base kets:
A: Eigenkets of Qi Qz Jizy and Doyt |jija; mums):

~2 L . L.
Ji Ve; mmp) = ji(ji—!-l)h2 ljij2; myimo)

Js. ljuj2: mum2) = mihlji; mim) .

B: Eigenkets of 22, Qi Qi and J,: |jm; jij2). Noting that because off

f = z +Q§ + 20D+ i + Doy — [f, 2,2] =0
A2 . .. . .. ..
I ljm; jup) = U+ DR s jije)
~2 . A
Jilim; g2y = Gl + V)R Ljaj2s o)
L lim; j2) = mhiljm; jup)
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Base transformation

@ When going from one base to the other, it is important to realise
that although

5 3] = inepd and [T, 3] =0
we still have
{f, jlz} #0 and [f, :]22:| #0,

which implies that we can neither add f to set A nor the 3,-2 to set
B. This means that these two sets indeed have the maximal number
of independent quantum numbers — eigenvalues of mutually
compatible operators — and thus serve as viable bases.
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Defining Clebsch-Gordan coefficients

@ When going from one base to another, we can write the identity
mijuz) = > lmyma; juja) (mymy; jujaljm jua)
mipmy

where we used to completeness of the states |mymy; jij2):

i= Z [mimo; jijo) (myimo; jjo|

mymg

@ The matrix elements {mymo; jij>|jm; jij») are the Clebsch-Gordan
coefficients.
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Properties of Clebsch-Gordan coefficients

@ CG coefficients vanish if m # my + my:
Since J, = Jiy + Jhs, (32 - 322) im; juj2) = 0. Multiplying
from the left with (mymy; jij>| yields the desired result:

<m1m2;jlj2 ‘ (jz —Jhy — j2z)

jm jui2)

= (m—m1—m2)<m1m2;j]j2jm;j]j2> :0
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Properties of Clebsch-Gordan coefficients

Q CG coefficients vanish unless |1 — jo| < j < ji + jo
You can check the plausibility of this by comparing the
dimensionalities of the spaces spanned in different notations, which
must be the same.
In mymy-notation N = (2j; + 1)(2j> + 1). Compare this with the jm
notation; assuming without any loss of generality j; > j,, we find

hth

> (2i+1)

J=ih—)2

% {201 = j2) + 1] + 201 +42) + 1]} (2)2 + 1)

Qi +1)(2+1)=N.
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Properties of Clebsch-Gordan coefficients

© CG coefficients form a unitary matrix, choosing the matrix elements
to be real by convention, means that the matrices in fact are
orthogonal. Therefore

> (mumy; jujalim; jujz) Gizs mymG LM jija) = Oy Oomyms
Jjm
>~ Amuma; jujoljm; jujo) (mumos jupli'm's juja) = S
myinmy

Q Setting /' = and m= my + my = m’, we find

S lmma jujalimy + ma)i )P =1,

mymy

providing the normalisation condition for the |jm; ji>)
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Recursion relations for the Clebsch-Gordans

(Not examinable.)

o Consider

Ji lim i) = /G F MG = m 1) im £ 1))
= Z |:<-71i + -72i> injo; mymby) (jz; miymb|jm; jij2)

/ /
mymy

and multiply it from the left with (mymy; jij2|. This means that the
right hand side vanishes unless m; = my £1 and mj = m; or
my =my and my) = my £ 1.

@ This shifting of the m-values by the ladder operators will result in a
new condition on the emerging CG coefficients:
For them, m+ 1 = m; 4+ my is neccessary to guarantee their
existence.
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@ This leads to the recursion relation

(1j2; myma|j(m £ 1); jijo)
\/(Jliml (h Fm+1)

1j2; (my F 1)ma|jm; juj2)

GFmUEm+1)

\/(J2:|:m2)(Jz:Fm2 +1)
)

12, m(m Djm; jijo) .

@ To use them, realise that there are a number of "“boundary”
conditions applying to the CGs in the m;m, plane and hence to the
CGs enetering the recursion relations, namely

Imi| <ji, |mo| <jp, and —j<|m+mp| <.

This allows to choose values where either the first or second term on
the r.h.s. vanish and navigate accordingly.
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Start at point A, with my = j;.

©

@ Use the J_ relation, yielding
one term X with m; — m; + 1,
which is forbidden,
and one term B with

my — my — 1, which is allowed. OX
@ Therefore the CG for B can be

obtained from A alone. Tn
@ Now form the .7+ triangle '

corresponding to A, B, and D, O

which results in the CG for D.

@ This strategy can be repeaeted,
with triangles built by the
ladder operators, and using the
boundaries.
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Concrete example: spin—% particle

@ Consider a spin—% particle in a situation where orbital angular

momentum matters.

) Then 1 =1 and m; = my are integer numbers and j, = s = 5 and

:I:1 The allowed values of j are given by j = I:I: > 0.

° Usmg the CG recursion relations allows to define two—component
spin-angular functions:

Y, 6) = ——— £y m 43 Vi) (0,9)
/ VAR flEmt Y (0.0)

Note that, of course, m = m; + ms takes an half-integer value.

. . . . ~2 A2
@ The functions above, are by construction, eigenfunctions of J , L,

~2 A~
S and J;. They are also eigenfunctions of the spin-orbital term

1.5=10-1"-3%

F. Krauss
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Explicit coefficients from the PDG

J J
Note: A square-root sign is to be understood over every coefficient, e.g., for —8/15 read —\/8]T5,  Notation: | |\

1/2x1/2| ! 3 my
1 1 of Y =\/—cost 572
[F7z7z[ 1] o o Vi 23172 i sm my My | Coefficients
72 17272 1721 ) = [z 72 1|-3/2+3/2 .
172 +1/2[1/2-1/2}1 Yi=- jgsmfh—’” 2 172| 175 a/5| 572 32
—1/2-1/2] 1] 414172 4/5-1/5]+1/2 +172
yo— 1) T1-172| 2/5 3/5| 572 372
27y 3 0+1/2| 3/5 -2/5|-1/2-1/2
Tx1/2 | 34 0-1/2| 3/5 2/5| 572 372
/2[ 372 172 =
172 1f1r2+1/2 Yi=- sinfcosf e - 1+1/2] 2/5-8/5)-3/2 -3/2
i “1-172| a/5 1/5| s7z
1
wEnAmy o, veaell— [LER AT
o-172| 23 13| 37z] Y2 = 7\ 55 sl 2] 1]
12| 13 -23l3r +3/2-1/2[1/4 374 2 1
25113 e +1/2 +1/2[3/4=174] 0 0|
il 'fa 3 2 [z 3280 | = =12z 12| 2
w241 1]|+2 +2 T3 32 432 I R
2z o3 3l 3 oz 1 372 0| 2/5 3/5| 52 372 172 “1/2-1/2| 34 1/4] 2
A1 4123 1/8) 1 41 4 +1/2 41| 3/5 ~2/5|+1/2 +1/2 +1/2 -3/2 +1/2| 1/4-3/4|-2
+2-111415 1/3 3/5 +3/2-1(1/10 2/5 172 3r2-12[ 1
1x1 +1 0815 1/6-3/10[ 3 2z 1 +1/2 0| 3/5 1715 -1/3| s/2 372 172
2 2 : 0+1| 2/5-1/2 1710 0 0 0 ~1/241]3/10-8/15_1/6|-172 -1/2 -1/2|
L o 111|175 172 3710 +1/2-1[3/10 8/15 1/6
1 opiz 72| 2 1 0 0035 o-25 3 2 1 -1/2 o| 3/5 -115 -173| 5/2 372
0+1/1/2-1/2| 0 0 0 -141[1/5-1/2 3/10) -1 -1 -1 3/2+1[1/10 -2/5 1/2)-3/2 -3/2
+1-1|1/6 172 1/3] 0-1| 2/5 1/2 1710 ~172-1(3/5 2/5] 572
0 023 o0-1/3[ 2 1 -1 ofg/1s-1/6-3/10[ 3 2 -3/2 0| 2/5 -3/5}-5/2
RSV v | B ~2+1|1/15-1/3_3/5| -2 -2 e 1
o-1Q12 1/2| 2 —1-1[23 13| 3
Yo = (-Lmye 1 ofizz-1r2|-2 -2 _o[1/3-2/3]-3 {jriamyma]jijo.J M)
I Y emime | ST 17770792 oy mamy | i J M)
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Learning outcomes

@ Clebsch-Gordan coefficients and their properties.
@ Formal theory of spin addition.
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