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Solutions to previous control questions

16.1 As a first step, rewrite the wave function ¥(6, ¢) through spherical

harmonics:
27 .27
VAT Y10 — 4/ ?(Yn = Yi1) —iy/ ?(Yn + Yi_1)

(a) The normalisation can be obtained by realising that the spherical
harmonics are normalised. Therefore

¥, ¢) =N

41

2w

1= /dgw — NP {4w+47] — |np2r
0

3 3

leading to N = /3/(207).
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(b) The expectation value of £? is given by
(|2 w) = w0 +1) = 212,

because the state 1 is a pure spin-/ = 1 state - the admixture of
different values of m does not change this.
(c) Similarly,
3h 3h
—1.m=0 = 1 2 = — |4 = — .
Pi=1,m=0 = |(10]2))| 2071_[ 7] 5
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16.2 (a) Orient the ring such that the z-axis goes through its centre and that
the ring lies in the x-y-plane. Then the remaining degree of freedom
is the angle ¢ around the z-axis, which yields the position of the
particle on the ring: x = rcos¢ and y = rsin¢
The classical Lagrange-function thus reads (with ¢ = d¢/dt):

2
L(¢7 ¢7 t) = %¢2 = §¢27

and the generalised momentum therefore is given by py, = % = Id).
This results in the classical Hamilton function for this system to read
2 2
i p(;/) Lz
H t) = —L====
(0, Py, t) = Ppo T
where the generalised momentum related to the angle ¢ has been
identified with the orbital angular momentum L.
The Hamilton operator emerges from the classical function by
making all dynamical quantities operators:
A~ ]2
H=2=.
2/
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(b) Since the Hamiltonian, being equal to the square of [, it commutes
with L,. Thus, naively, one would expect the energy eigenkets to be
the |/m). However, the extra condition, f = B, implies that the
angular momenta around the x and y-axes, L, and I:y, have been
measured to be equal to 0. This is in obvious contradiction with the
uncertainty principle, manifest by the observation that the
eigenvalues of [2 = m?h? and of f = I(I + 1)I? cannot be satisfied
at the same time with integer values for / and m. Therefore, the |/m)
cannot be the eigenkets of the Hamiltonian.

Instead, we can label the eigenkets with as |m) only. The

m?h?
21
the energy eigenfunctions read v,(¢) = €™, where m denotes any

integer, implying a two-fold degeneracy for non-zero energies:
En=E_n.

The correctness of the energy eigenfunctions can be checked by
realising that, with 1 (¢) = e™?,

corresponding energy eigenvalues then are given by E,, = and

_ L

Evm(9) = 5ii6(9) = 2 —0n0) "
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(c)

In lecture 9 we have seen that the time evolution of the expectation
value of an observable with no explicit time-dependence is governed
by its commutator with the Hamiltonian. Thus

d P

= (Loany state = (| A L]) =0,

dt (£2)any state any state
and therefore the angular momentum around the z-axis is a constant
of motion.
Time evolution operator:

- _ 72 _
O(t, 1) — exp _fHuhto)} oo [—L(éh,”] |

From lecture 10 we know that, in the Heisenberg picture,
L(t) = U'(¢, to)L.(to)U(t, to) = L.(to)x

because [, commutes with [2 and thus also with its exponential.
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Total angular momentum

@ Up to now we discussed two instances of angular momentum:
spin angular momentum, S, an internal degree of freedom, and
orbital angular momentum, L, an external degree of freedom.

@ The question arises, what happens if we have a system where
combinations of external and internal degrees of freedom matter.
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Simple example: State ket of a particle with spin

@ Up to now studied systems either with no spin or with spin, but with
all other quantum-mechanical degrees of freedom ignored.

o Example: spin—% particle in position space.

Base kets are direct products of position with spin base kets.

@ These kets live in a Hilbert space that is a product space of position
and spin space. Infinitely dimensional operators living in the space
by the |x) commute with the two dimensional operators spanned by
the |+).

@ The base kets can also be used, of course, to construct wave
functions related to a state ket |¢), which take a vector (or better:
spinor) form:

(Spinors because they have a slightly different transformation behaviour under rotations . . . .)
- (x)
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o In this case the rotation operator still has the form exp(—iJ - o/h),
but the angular momentum operator J now reads

I~>
[y

J=1L+

)

where the first term, the orbital angular momentum i acts on the
spatial components of the state ket only, while the second term, the
spin operator S, acts on the spin degrees of freedom. It therefore is
maybe more sensible to rewrite this, for the time being as

J=loii+1,®85,

where the identity operators in position and spin space are denoted
as 1, and 14, respectively.
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@ Assume now that the system exhibits discrete energy levels. Then it
may be sensible to replace the original position eigenket |x) with
[nim), where n labels the energy levels E, and / and m denote the

~2
quantum numbers of the orbital angular momentum operators L
and L, with /(/ + 1)h? and mh, respectively. The eigenkets |£) of

the spin-operators in this case would be %hz for Sz and j:%h for 5,.
@ In this case, our base kets would read |nlm;sms).
@ Instead, as will be seen in the next example, we could also use the
eigenvalues of the total angular momentum operators f = (i + 5)2
and jz = ZZ + 32 and either ZZ and _A§Z or Lz and 52.
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Simple example: Two spin—% particles
o Consider a system of, say, two electrons with their relative orbital
angular momentum being suppressed. Usually, the spin is written as
S(1+2) = §1 + 32

with gi{x,y,z} = géx,},,z for each of the two particles i = 1, 2.

@ The expression above is understood as each of the two spin
operators S; acting on particle i alone (acting in the Hilbert space of
particle i alone) and ignoring the other particle:

3(1+2) = §1®ig +i1 ®§2.

Here, obviously the 1; stand for the identity operator in the Hilbert
(spin) space of particle /.
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@ This notion of two separate Hilbert spaces - one for each particle -
of course implies that the respective operators commute:

{31,’, gzj:| =0 with {l'7 j} S {X7 v, Z}.

@ Within each Hilbert space, however, the original commutators are
still valid:

{31,‘, Slj] = I.he,'jkglk and [32,', SQJ':| = I-he,'jkgzk .

@ This implies that for the summed spin operator, the same
commutation relations also hold true:

{3(1+2);7 §(1+2)j} = ih6;jk§(1+2)k
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@ Therefore, the eigenvalues of various spin operators are given by

a2 A a2
St = (§1 + §2) o s(s+1)R?

A(1+2)z = 312 + 322 : mh = (m+ m)h
S,z si(si+1)p? = 2p?

5i Dom; = j:%

@ The natural question now arises on how to go from one set of
quantum numbers to another set; in our case at hand we can ask
how the state characterised by |mymy) relates to states characterised
by |sm).

In general,of course, we may want to write these states as
Ljij2; mimy) and |jm; mymy).
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@ In the |mymy) representation we have

myms) € { T w}

while in the |sm) representation the kets are

|sm) e{|11), 110 , |1 - 1), oo>}.

@ Since there are three s = 1 but only one s = 0 state, they are also
denoted as triplet and singlet states.
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@ To connect the two representations, first realise that the only way to
combine two spin—% systems such that they deliver a combinedspin
of +1 in in z-direction is to have both of them in the m = +% state.
Therefore

1) = [t1) and [1—1) = [1)

@ Now, define ladder operators

Sai2)t = S1t + Sox = <§1x + §2x) = <§1y + §2y) .
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@ Acting with §(1+2)— on |11) then yields (with s = m =1)

Saio)- |11) = /(1 +1)(1 — 1 + 1) [10) = V2 |10)
(+3)(G-31) ID) + hy/(3+3)(3-312) 1)) = R + [T1)]
= (317 oh+lie 327) 1) .

This results in

L
V2

@ The only configuration of the two spin—% left that is orthogonal to
all others therefore is

10) = == 1)+ 141

00) = [m - M -
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o Taken together, thus

o o=
1
0) - ﬂ[mmm}
1-1) = )
1
0) = ﬁ[mwm}.

@ The coefficients on the left hand side are the Clebsch-Gordan
coefficients, which will be discussed in more detail and for the
general case in the next lecture.
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Learning outcomes

@ Some examples for combined state kets, including spin.

o First trivial example, addition of two spin—% systems.
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Control questions

17.1 The spin-dependent Hamiltonian of an electron-positron system in
the presence of an uniform magnetic field B in the z-direction is

given by

fr=na87.55 (68> (A§‘) + §§+)) ;
mc
where A is a real number.
Suppose the spin ket of the system is given by [¢)) = |T>(_) |T>(+).
(a) Is this an eigenket of the system, when A — 0 and eB/(mc) # 07 Is
it an eigenket in the opposite case, i.e. A# 0, B — 07

(b) What is the expectation value of the energy in this state?

(c) Find the expectation values of the spin operator S(f) -SH) for the
triplet and the singlet states of the electron and positron spin.

(Hint: Realise that 3(—) . 8(+) = (82 _ 3(1)2 _ 5(=)2))
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17.2 Consider a system containing three spin—% particles. By combining

the first two particles into triplet and singlet kets, and adding the
third spin by hand, construct the Clebsch-Gordon coefficients for the
sum of a spin-1 and a spin—% system.
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