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Solutions to previous control questions

16.1 As a first step, rewrite the wave function ψ(θ, φ) through spherical
harmonics:

ψ(θ, φ) = N

[
√

4π Y10 −
√

2π

3
(Y11 − Y1−1)− i

√
2π

3
(Y11 + Y1−1)

]

(a) The normalisation can be obtained by realising that the spherical
harmonics are normalised. Therefore

1 =

4π∫
0

dΩ|ψ|2 = |N|2
[

4π + 4
2π

3

]
= |N|2 20π

3

leading to N =
√

3/(20π).
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(b) The expectation value of L2 is given by〈
ψ
∣∣∣L̂2
∣∣∣ψ〉 = ~2l(l + 1) = 2~2 ,

because the state ψ is a pure spin-l = 1 state - the admixture of
different values of m does not change this.

(c) Similarly,

Pl=1,m=0 = |〈10|ψ〉|2 =
3~

20π
[4π] =

3~
5
.
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16.2 (a) Orient the ring such that the z-axis goes through its centre and that
the ring lies in the x-y -plane. Then the remaining degree of freedom
is the angle φ around the z-axis, which yields the position of the
particle on the ring: x = r cosφ and y = r sinφ
The classical Lagrange-function thus reads (with φ̇ = ∂φ/∂t):

L(φ̇, φ, t) =
mr 2

2
φ̇2 =

I

2
φ̇2 ,

and the generalised momentum therefore is given by pφ = ∂L

∂φ̇
= I φ̇.

This results in the classical Hamilton function for this system to read

H(φ, pφ, t) = φ̇pφ − L =
p2
φ

2I
=

L2
z

2I
,

where the generalised momentum related to the angle φ has been
identified with the orbital angular momentum Lz .
The Hamilton operator emerges from the classical function by
making all dynamical quantities operators:

Ĥ =
L̂2
z

2I
.
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(b) Since the Hamiltonian, being equal to the square of L̂z , it commutes
with L̂z . Thus, naively, one would expect the energy eigenkets to be

the |lm〉. However, the extra condition, L̂
2

= L̂2
z , implies that the

angular momenta around the x and y -axes, L̂x and L̂y , have been
measured to be equal to 0. This is in obvious contradiction with the
uncertainty principle, manifest by the observation that the

eigenvalues of L̂2
z = m2~2 and of L̂

2
= l(l + 1)~2 cannot be satisfied

at the same time with integer values for l and m. Therefore, the |lm〉
cannot be the eigenkets of the Hamiltonian.
Instead, we can label the eigenkets with as |m〉 only. The

corresponding energy eigenvalues then are given by Em = m2~2

2I
and

the energy eigenfunctions read ψm(φ) = e imφ, where m denotes any
integer, implying a two-fold degeneracy for non-zero energies:
Em = E−m.
The correctness of the energy eigenfunctions can be checked by
realising that, with ψ(φ) = e imφ,

Eψm(φ) =
L̂2
z

2I
ψ(φ) =

1

2I

−(i~∂)2

∂φ2
ψ(φ) =

~2m2

2I
ψ(φ) .
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(c) In lecture 9 we have seen that the time evolution of the expectation
value of an observable with no explicit time-dependence is governed
by its commutator with the Hamiltonian. Thus

d

dt
〈Lz〉any state =

〈[
Ĥ, L̂z

]〉
any state

= 0 ,

and therefore the angular momentum around the z-axis is a constant
of motion.

(d) Time evolution operator:

Û(t, t0) = exp

[
− i Ĥ(t − t0)

~

]
= exp

[
− i L̂2

z(t − t0)

2~I

]
.

From lecture 10 we know that, in the Heisenberg picture,

L̂z(t) = Û†(t, t0)L̂z(t0)Û(t, t0) = L̂z(t0)x

because L̂z commutes with L̂2
z and thus also with its exponential.

F. Krauss

Theoretical Physics II B – Quantum Mechanics[1cm] Lecture 17



Total angular momentum

Up to now we discussed two instances of angular momentum:
spin angular momentum, Ŝ , an internal degree of freedom, and
orbital angular momentum, L̂, an external degree of freedom.

The question arises, what happens if we have a system where
combinations of external and internal degrees of freedom matter.
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Simple example: State ket of a particle with spin

Up to now studied systems either with no spin or with spin, but with
all other quantum-mechanical degrees of freedom ignored.

Example: spin- 1
2 particle in position space.

Base kets are direct products of position with spin base kets.

These kets live in a Hilbert space that is a product space of position
and spin space. Infinitely dimensional operators living in the space
by the |x〉 commute with the two dimensional operators spanned by
the |±〉.
The base kets can also be used, of course, to construct wave
functions related to a state ket |ψ〉, which take a vector (or better:
spinor) form:

(Spinors because they have a slightly different transformation behaviour under rotations . . . .)

|x ; ±〉 = |x〉 ⊗ |±〉 and 〈x ; ±|ψ〉 =

(
ψ+(x)
ψ−(x)

)
.
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In this case the rotation operator still has the form exp(−i Ĵ · φ/~),

but the angular momentum operator Ĵ now reads

Ĵ = L̂ + Ŝ ,

where the first term, the orbital angular momentum L̂, acts on the
spatial components of the state ket only, while the second term, the
spin operator Ŝ , acts on the spin degrees of freedom. It therefore is
maybe more sensible to rewrite this, for the time being as

Ĵ = L̂⊗ 1̂± + 1̂x ⊗ Ŝ ,

where the identity operators in position and spin space are denoted
as 1̂x and 1̂±, respectively.
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Assume now that the system exhibits discrete energy levels. Then it
may be sensible to replace the original position eigenket |x〉 with
|nlm〉, where n labels the energy levels En and l and m denote the

quantum numbers of the orbital angular momentum operators L̂
2

and L̂z with l(l + 1)~2 and m~, respectively. The eigenkets |±〉 of

the spin-operators in this case would be 3
4~

2 for Ŝ
2

and ± 1
2~ for Ŝz .

In this case, our base kets would read |nlml sms〉.
Instead, as will be seen in the next example, we could also use the

eigenvalues of the total angular momentum operators Ĵ
2

= (L̂ + Ŝ)2

and Ĵz = L̂z + Ŝz and either L̂z and Ŝz or L̂
2

and Ŝ
2
.
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Simple example: Two spin-1
2 particles

Consider a system of, say, two electrons with their relative orbital
angular momentum being suppressed. Usually, the spin is written as

Ŝ(1+2) = Ŝ1 + Ŝ2

with Ŝi{x,y ,z} = ~
2 σ̂x,y ,z for each of the two particles i = 1, 2.

The expression above is understood as each of the two spin
operators Ŝi acting on particle i alone (acting in the Hilbert space of
particle i alone) and ignoring the other particle:

Ŝ(1+2) = Ŝ1 ⊗ 1̂2 + 1̂1 ⊗ Ŝ2 .

Here, obviously the 1̂i stand for the identity operator in the Hilbert
(spin) space of particle i .
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This notion of two separate Hilbert spaces - one for each particle -
of course implies that the respective operators commute:[

Ŝ1i , Ŝ2j

]
= 0 with {i , j} ∈ {x , y , z} .

Within each Hilbert space, however, the original commutators are
still valid:[

Ŝ1i , Ŝ1j

]
= i~εijk Ŝ1k and

[
Ŝ2i , Ŝ2j

]
= i~εijk Ŝ2k .

This implies that for the summed spin operator, the same
commutation relations also hold true:[

Ŝ(1+2)i , Ŝ(1+2)j

]
= i~εijk Ŝ(1+2)k
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Therefore, the eigenvalues of various spin operators are given by

Ŝ
2

(1+2) =
(
Ŝ1 + Ŝ2

)2

: s(s + 1)~2

Ŝ(1+2)z = Ŝ1z + Ŝ2z : m~ = (m1 + m2)~

Ŝ
2

i : si (si + 1)~2 = 3
4~

2

Ŝiz : mi = ± 1
2

The natural question now arises on how to go from one set of
quantum numbers to another set; in our case at hand we can ask
how the state characterised by |m1m2〉 relates to states characterised
by |sm〉.
In general,of course, we may want to write these states as
|j1j2;m1m2〉 and |jm;m1m2〉.
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In the |m1m2〉 representation we have

|m1m2〉 ∈
{
|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉

}
while in the |sm〉 representation the kets are

|sm〉 ∈
{
|11〉 , |10〉 , |1− 1〉 , |00〉

}
.

Since there are three s = 1 but only one s = 0 state, they are also
denoted as triplet and singlet states.
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To connect the two representations, first realise that the only way to
combine two spin- 1

2 systems such that they deliver a combinedspin
of +1 in in z-direction is to have both of them in the m = + 1

2 state.
Therefore

|11〉 = |↑↑〉 and |1− 1〉 = |↓↓〉

Now, define ladder operators

Ŝ(1+2)± = Ŝ1± + Ŝ2± =
(
Ŝ1x + Ŝ2x

)
± i
(
Ŝ1y + Ŝ2y

)
.
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Acting with Ŝ(1+2)− on |11〉 then yields (with s = m = 1)

Ŝ(1+2)− |11〉 = ~
√

(1 + 1)(1− 1 + 1) |10〉 = ~
√

2 |10〉
= ~

√
( 1

2 + 1
2 )( 1

2−
1
2 +1) |↓↑〉+ ~

√
( 1

2 + 1
2 )( 1

2−
1
2 +1) |↑↓〉 = ~ [|↓↑〉+ |↑↓〉]

=
(
Ŝ1− ⊗ 1̂2 + 1̂1 ⊗ Ŝ2−

)
|↑↑〉 .

This results in

|10〉 =
1√
2

[
|↑↓〉+ |↓↑〉

]
The only configuration of the two spin- 1

2 left that is orthogonal to
all others therefore is

|00〉 =
1√
2

[
|↑↓〉 − |↓↑〉

]
.

F. Krauss

Theoretical Physics II B – Quantum Mechanics[1cm] Lecture 17



Taken together, thus

|11〉 = |↑↑〉

|10〉 =
1√
2

[
|↑↓〉+ |↓↑〉

]
|1− 1〉 = |↓↓〉

|00〉 =
1√
2

[
|↑↓〉 − |↓↑〉

]
.

The coefficients on the left hand side are the Clebsch-Gordan
coefficients, which will be discussed in more detail and for the
general case in the next lecture.
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Learning outcomes

Some examples for combined state kets, including spin.

First trivial example, addition of two spin- 1
2 systems.
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Control questions

17.1 The spin-dependent Hamiltonian of an electron-positron system in
the presence of an uniform magnetic field B in the z-direction is
given by

Ĥ = AŜ
(−)
· Ŝ

(+)
+

(
eB

mc

)(
Ŝ (−)
z + Ŝ (+)

z

)
,

where A is a real number.
Suppose the spin ket of the system is given by |ψ〉 = |↑〉(−) |↑〉(+).

(a) Is this an eigenket of the system, when A→ 0 and eB/(mc) 6= 0? Is
it an eigenket in the opposite case, i.e. A 6= 0, B → 0?

(b) What is the expectation value of the energy in this state?

(c) Find the expectation values of the spin operator Ŝ
(−) · Ŝ (+)

for the
triplet and the singlet states of the electron and positron spin.

(Hint: Realise that Ŝ(−) · Ŝ(+) = 1
2

(Ŝ2 − Ŝ(+)2 − Ŝ(−)2).)
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17.2 Consider a system containing three spin- 1
2 particles. By combining

the first two particles into triplet and singlet kets, and adding the
third spin by hand, construct the Clebsch-Gordon coefficients for the
sum of a spin-1 and a spin- 1

2 system.
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