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In the following slides I’ll summarise things you should know, important
equations and give you links to example problems.

For the problems I use the format [Chapter.ProblemNumber] and for
equations I use (EqnNumber).

Also, I show some example exam questions as a combination of short
questions and parts of long questions of prior exams (in yellow boxes)
with example solutions (in green boxes). Use them as an indicator of
difficulty and expectations of what you are supposed to be able to do.
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Classical Field Theory I

how to derive Euler-Lagrange E.o.M. (89) [3.1, 3.3, 3.4, 3.5, 3.6],

0 ≡ ∂µ
∂L

∂(∂µϕ)
− ∂L
∂ϕ

for any field or field component ϕ;

how to deal with Lorentz-indices (19, 20) [3.3, 3.4, 3.5], e.g.

∂(∂µϕ)

∂(∂νϕ)
= gµν ,

∂(∂µϕ)

∂(∂νϕ)
= gν

µ = δνµ ,
∂(∂µAν)

∂(∂ρAσ)
= gµρgνσ ;

how to check for conserved currents and their link to conserved
charges [3.6, 3.8]
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Classical Field Theory II

Lagrangians for

real scalar field (96), its E.o.M., the Klein-Gordon Equation (91),
and its solutions (93);

complex scalars (104), E.o.M. (105), and the conserved current
(113) and charge (115);

electromagnetism in terms of fields (125) and of the vector
potential/field strength tensors (133)

and how to arrive at Hamiltonians
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Classical Field Theory (Typical Exam Question)

Short question 1a) (2022):
Consider the Lagrangian for a classical free complex scalar field ϕ,

L = (∂µϕ
∗)(∂µϕ) − m2

ϕ
∗
ϕ ,

and derive and solve the equations of motion for ϕ and ϕ∗ . [3 marks]
Calculate the quantity

Q = iq

∫
d
3x

(
ϕ
∗
ϕ̇ − ϕ̇∗ϕ

)
.

[3 marks]
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Classical Field Theory (Typical Exam Question)
Equations of motion:

0 = ∂µ
∂L

∂(∂µϕ
(∗))
−

∂L

∂ϕ(∗)
= (□ + m2)ϕ(∗) [Application, 2 marks]

with solutions

ϕ(x) =

∫ d3k

(2π)32k0

[
a(k)e−ik·x + b∗(k)eik·x

]

ϕ
∗(x) =

∫ d3k

(2π)32k0

[
b(k)e−ik·x + a∗(k)eik·x

]
[Application, 1 mark]

Q = iq

∫
d
3x

d3k

(2π)32k0

d3 l

(2π)32l0{ [
b(k)e−ik·x + a∗(k)eik·x

]
(−il0)

[
a(l)e−il·x − b∗(l)eil·x

]
. . .

}

= −q

∫ d3k

(2π)32k0

d3 l

(2π)32l0

(2π)3
{

b(k)a(l)(k0 − l0)e
−i(k+l)0x0 δ3(k + l) . . .

}

= q

∫ d3k

(2π)32k0

[
a∗(k)a(k) − b∗(k)b(k)

]
[Application, 3 marks]
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Classical Field Theory (Typical Exam Question)

Short question 1d) (2021):
Under dilatations, all coordinates and fields are transformed as

x −→ x′ = e−ρx , ϕ(x) −→ ϕ
′(x′) = eρϕ(x) ,

where ρ is a constant parameter. Show that the (transformed) derivative of the transformed field is given by

∂
′
µϕ
′(x′) =

∂ϕ′(x′)

∂x′µ
= e2ρ∂µϕ(x) .

Use that the space-time volume element transforms as

d
4x −→ d

4x′ = e−4ρ
d
4x

and calculate the change of action for the Klein-Gordon Lagrangian

L =
1

2
(∂µϕ)(∂

µ
ϕ) −

m2

2
ϕ
2

of a real scalar field in the limit ρ → 0. Comment on the conditions for the existence of a conserved current
under dilatations. [5 marks]
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Classical Field Theory (Typical Exam Question)
Change of field derivative:

∂ϕ′(x′)

∂x′µ
=
∂xν

∂x′µ
∂ϕ′(x′)

∂xν
=

∂xν

e−ρ∂xµ
eρ∂ϕ(x)

∂xν
= e2ρϕ(x)

[Comprehension, 2 marks]
Change of action:

S′ − S =

∫
d
4x′L′ −

∫
d
4xL

=

∫
d
4x′

 1

2
[∂′µϕ

′(x′)][∂′µϕ′(x′)] −
m2

2
ϕ
′2(x′)


−

∫
d
4x

 1

2
[∂µϕ(x)][∂

µ
ϕ(x)] −

m2

2
ϕ
2(x)


=

∫
d
4x

 e−4ρe4ρ − 1

2
(∂µϕ)(∂

µ
ϕ) −

(e−4ρe2ρ − 1)m2

2
ϕ
2


=

(1 − e−2ρ)m2

2

∫
d
4xϕ2(x)

ρ→0
−→

2ρm2

2

∫
d
4xϕ2(x)

[Application, 2 marks]
For a massless theory, i.e. m = 0, δS = 0, and a conserved current would exist. In contrast, if m ̸= 0, a
massive theory would not have a conserved current under dilatations. [Comprehension, 1 mark]
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Second Quantisation I
steps from Figure 1, p62 of lecture notes, in particular [4.3]

how to obtain conjugate momenta, for example (139, 165),
π = ∂L/∂ϕ̇;
the form of the equal-time commutators (141, 167),[

ϕ̂(t, x), π̂(t, y)
]
= iδ3(x − y) ;

the expansion of the field operators in plane waves and
creation/annihilation operators (142, 168),

ϕ̂ =

∫
d3k

(2π)32k0

[
â(k)e−ik·x + â†(k)e ik·x

]
;

and their commutators (149, 171)[
â(k), â†(q)

]
= 2k0(2π)

3δ3(k − q) .

F. Krauss

Particle Theory Relativistic Quantum MechanicsRevision Lecture



Second Quantisation II

some algebra to evaluate tricky expressions

four vectors and energy-momentum relation: m2 = p2 = p20 − p3

(and therefore quanta with same mass and same ± momentum have same energy)

creation/annihilation operators acting on vacuum (152):

â(k)|0⟩ = ⟨0|â†(k) = 0 ;

normal-ordering of operators

: ââ† : = : â†â : = â†â ;

representation of δ-function in one/three dimensions (5):∫
dxe−ix(k−q) = (2π)δ(k−q) ,

∫
d3xe−ix·(k−q) = (2π)3δ3(k−q) ;
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Second Quantisation III

some typical objects and calculations

construct states with one or more quanta and calculate their
properties [4.1, 4.2]

express (normal-ordered) Hamilton, momentum and charge
operators through creation and annihilation operators, for example
(151, 162, 172, 180) [4.3]

: Ĥ : =

∫
d3k

(2π)32k0

[
k0â

†(k)â(k)
]

for a free scalar field;

calculate commutators of these operators among themselves and
with field operators [4.3, 4.4, 4.5, 4.6, 4.7]
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Second Quantisation (Typical Exam Question)

Short question 1c) (2021):
Calculate ⟨p|ϕ̂(x)|0⟩, with ϕ̂ a quantised scalar field operator, and show that it satisfies the Klein-Gordon
equation. [5 marks]

To show that this is the case, we need to show that

0 = (∂µ∂µ + m2)⟨p|ϕ̂(x)|0⟩

= (∂µ∂µ + m2)

∫ d3k

(2π)32k0

〈
0
∣∣∣â(p) [â(k)e−ik·x + â†(k)eik·x

]∣∣∣ 0〉

= (∂µ∂µ + m2)

∫ d3k

(2π)32k0

〈
0
∣∣∣â(p)â†(k)eik·x ∣∣∣ 0〉

= (∂µ∂µ + m2)

∫ d3k

(2π)32k0

〈
0
∣∣∣[â(p), â†(k)

]
eik·x

∣∣∣ 0〉

= (∂µ∂µ + m2)

∫ d3k

(2π)32k0

〈
0
∣∣∣(2π)32k0δ

3(p − k)eik·x
∣∣∣ 0〉

= (∂µ∂µ + m2)eip·x ⟨0|0⟩ = (−p2 + m2)eip·x ⟨0|0⟩ = 0

[Application, 4 marks] because of the relativistic energy-momentum relation. [Application, 1 mark]
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Second Quantisation (Typical Exam Question)

Long question 2b) (2019):
Derive the conjugate momenta π(x) and π∗(x) of the fields and show that the Hamiltonian is given by

H =

∫
d3xH =

∫
d3x

[
π
∗
π + (∇ϕ∗)(∇ϕ) + m2

ϕ
∗
ϕ
]
.

[2 marks]

Application: Conjugate momenta:

π =
∂L

∂ϕ̇
= ϕ̇∗ and π =

∂L

∂ϕ̇
= ϕ̇∗

[1 mark]
Hamiltonian:

H = πϕ̇ + π∗ϕ̇∗ − L

= 2ϕ̇∗ϕ̇ − ϕ̇∗ϕ̇ +∇ϕ∗ · ∇ϕ + m2
ϕ
∗
ϕ

= ϕ̇
∗
ϕ̇ +∇ϕ∗ · ∇ϕ + m2

ϕ
∗
ϕ

[1 mark]
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Second Quantisation (Typical Exam Question)

Short question 1d) (2020):
The (normal-ordered) Hamilton and charge operators for a complex scalar theory are given by

:Ĥ: =

∫ d3k

(2π)32k0

k0

[
a†(k)a(k) + b†(k)b(k)

]

:Q̂: =

∫ d3k

(2π)32k0

[
a†(k)a(k) − b†(k)b(k)

]
.

Calculate the comutator [:Ĥ:, :Q̂:] ad interpret the result. [5 marks]
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Second Quantisation (Typical Exam Question)

[:Ĥ:, :Q̂:]

=

∫ d3kk0

(2π)32k0

d3q

(2π)32q0

[
a†(k)a(k) + b†(k)b(k), a†(k)a(k) − b†(k)b(k)

]

=

∫ d3kk0

(2π)32k0

d3q

(2π)32q0

{[
a†(k)a(k), a†(k)a(k)

]
−

[
b†(k)b(k), b†(k)b(k)

]}

=

∫ d3kk0

(2π)32k0

d3q

(2π)32q0

{
a†(k)a(k)a†(q)a(q) − a†(q)a(q)a†(k)a(k)

−b†(k)b(k)b†(q)b(q) + b†(q)b(q)b†(k)b(k)
}

=

∫ d3kk0

(2π)32k0

d3q

(2π)32q0

(2q0)(2π)3δ(k − q)

×
{[

a†(k)a(q) − a†(q)a(k)
]
−

[
b†(k)b(q) − b†(q)b(k)

]}
= 0 ,

[Application, 3 marks]
which shows that the charge is a conserved quantity. [Comprehension, 2 marks]
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Fermions I

Dirac equation:

free Dirac equation with αi , β-matrices (184) and with γ-matrices
(191)

the commutation relations of the matrices (186, 190) [5.1, 5.2, 5.5,
5.8a)];

Dirac equation (E.o.M.) for the spinor and its conjugate (191, 194)
[5.7];

how to “bar” a spinor: ψ̄ = ψ†γ0;

the conserved current (199);

expansion of the Dirac fields in plane waves and u and v spinors and
the form of the u and v spinors at rest (204) and with
momentum(208);

completenss relations of u and v spinors (213, 214) [5.4].
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Fermions II

Quantisation of the Dirac Equation:

conjugate momenta (215),

expansion of the fields (219), e.g.

ψ(x) =

∫
d3p

(2π)32p0

2∑
i=1

[
e−ip·x b̂i (p)u

(i)(p) + e ip·x d̂†
i (p)v

(i)(p)
]

ani-commutation relations of the field operators (217) and of the
creation/annihilation operators (220){

b̂i (p), b̂
†
j (q)

}
=

{
d̂i (p), d̂

†
j (q)

}
= 2p0(2π)

3δ3(p − q)δij
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Fermions III

States and Operators of the Dirac Equation:

anti-commutator of creation/annihilation operators encodes Pauli
principle (222-224);

how to derive the (normal-ordered) Hamilton operator (229) [5.6]
and charge operator (233)
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Fermions (Typical Exam Question)

Short question 1b) (2021):
Prove that

ū(p′)σµν (p + p′)ν u(p) = i ū(p′)(p − p′)µu(p) ,

where σµν = i
2
[γµ, γν ] is the commutator of two gamma matrices and the spinors have identical mass

m. [5 marks]

Evaluate by using, repeatedly, the equation of motion for spinors, (p/ − m)u(p) = 0 and the anti-commutator
relation for the γ-matrices,

ū(p′)σµν (p + p′)ν u(p) = i ū(p′)
(
γ
µ
γ
ν − γνγµ

)
(p + p′)ν u(p)

=
i

2
ū(p′)

[
γ
µ(p/ + p′/) − (p/ + p′/)γµ

]
u(p) [Application, 1 mark]

=
i

2
ū(p′)

[
γ
µm + γµp′/ − p/γµ − mγµ

]
u(p)

=
i

2
ū(p′)

[
2p′µ − p′/γµ − 2pµ + γµp/

]
u(p)

=
i

2
ū(p′)

[
2p′µ − m/γµ − 2pµ + γµm

]
u(p) = i ū(p′)(p′ − p)µu(p) .

[Application, 4 marks]
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Fermions (Typical Exam Question)

Short question 1b) (2022):
The Dirac Hamiltonian can be expressed by the α and β matrices as

Ĥ = α · p + βm

with
{
αi , αj

}
= 2δij ,

{
αi , β

}
= 0, and α2

i = β2 = 1. Calculate the commutators [Ĥ, Σ̂i ] and

[Ĥ,
Σ̂·p
|p| ], where the spin operator is given by

Σ̂ =
i

2
γ × γ ←→ Σ̂i =

i

2
ϵijkαjαk .

[4 marks]
Interpret the results. [2 marks]
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Fermions (Typical Exam Question)

Direct calculation yields

[Ĥ, Σ̂i ] =
i

2
ϵijk

(
pl [αl , αjαk ] + m[β, αjαk ]

)
=

iϵijk pl

2

[
αlαjαk − αjαkαl

]
+

iϵijkm

2

[
βαjαk − αjαkβ

]
=

iϵijk pl

2

[
(2δlj + αjαl )αk − αj (2δkl + αlαk )

]
+

iϵijkm

2

[
−αjβαk + αjβαk

]
=

iϵijk

2

[
2αk pj − 2αj pk

]
= iϵijk

[
αk pj − αj pk

]
= −2i(α × p)i

[Application, 2 marks]
and

Ĥ,
Σ̂ · p

|p|

 =
iϵijk pi

|p|

[
αk pj − αj pk

]
=

iϵijk pi pjαk

|p|
= 0

[Application, 2 marks]

While the spin operator does not commute with the Hamiltonian, and spin therefore is not a conserved quantity,
the helicity Σ · p is. [Synthesis, 2 marks]
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Fermions (Typical Exam Question)

Long question 2c) (2021):
Consider the two-particle state

|p
1
, s1; p2

, s2⟩ = b̂†s1
(p

1
)b̂†s2

(p
2
)|0⟩

and calculate its energy and charge. [4 marks]
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Fermions (Typical Exam Question)
To calculate the energy we have to evaluate

: Ĥ : |p
1
, s1; p2

, s2⟩

=

∫ d3q

(2π)32q0

q0

2∑
s=1

[
b̂†s (q)b̂s (q) + d̂†s (q)d̂s (q)

]
b̂†s1

(p
1
)b̂†s2

(p
2
)|0⟩

=

∫ d3q

(2π)32q0

q0

2∑
r=1

[
b̂†r (q)b̂r (q)b̂

†
s1

(p
1
)b̂†s2

(p
2
)
]
|0⟩

=

∫ d3q

(2π)32q0

q0

2∑
r=1

b̂†r (q)
[
{b̂r (q), b̂†s1

(p
1
)} − b̂†s1

(p
1
)b̂r (q)

]
b̂†s2

(p
2
)|0⟩

=

∫ d3q

(2π)32q0

q0

2∑
r=1

[
(2π)32q0δ

3(q − p
1
)δrs1

b̂†r (q)b̂†s2
(p

2
)

−b̂†r (q)b̂†s1
(p

1
)
(
{b̂r (q), b̂†s2

(p
2
)} − b̂†s2

(p
2
)b̂r (q)

)]
|0⟩

=

∫ d3q

(2π)32q0

q0

2∑
r=1

[
(2π)32q0δ

3(q − p
1
)δrs1

b̂†r (q)b̂†s2
(p

2
)

−(2π)32q0δ
3(q − p

2
)δrs2

b̂†r (q)b̂†s1
(p

1
)
]
|0⟩

=
[
E1 b̂
†
s1

(p
1
)b̂†s2

(p
2
) − E2 b̂

†
s2

(p
2
)b̂†s1

(p
1
)
]
|0⟩ = (E1 + E2)|p1, s1; p2, s2⟩

[3 marks]
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Fermions (Typical Exam Question)

Long question 2d) (2021):
Assume you had quantised the Dirac field with commutators instead of anti-commutators, i.e. demanding

[ψ̂α(t, x), π̂β (t, y)] = iδαβδ
3(x − y)

as the only non-vanishing equal-time commutator. What would be the energy of the field? Comment on the
result. [6 marks]
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Fermions (Typical Exam Question)

First we have to determine the Hamiltonian, using the commutators instead of the anti-communtators. Inspecting
the calculation of the non-normal-orderned Hamiltonian in (a) it becomes obvious that commutator relations
have not been invoked, and therefore

Ĥ =

∫ d3q

(2π)32q0

q0

2∑
i=1

[
b̂
†
i
(q)b̂i (q) − d̂i (q)d̂

†
i
(q)

]
.

[Comprehension, 2 marks]
In the absence of Fermi-Dirac statistics, normal-ordering of the creation and annihilation operators does nor
involve a sign change,

: d̂i (q)d̂
†
i
(q) := d̂

†
i
(q)d̂i (q)

and therefore

Ĥ =

∫ d3q

(2π)32q0

q0

2∑
i=1

[
b̂
†
i
(q)b̂i (q) − d̂

†
i
(q)d̂i (q)

]
.

[Comprehension, 2 marks]
As a result, the energy of the field would not be bound from below, a physically unacceptable situation.
[Comprehension, 2 marks]
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Electrodynamics

know and be able to calculate

classical Lagrangian (125, 133) and gauge invariance (120, 235)

fixing the gauge: Coulomb vs. Lorentz (240, 241)

polarisation vectors and their properties (243-245) [6.1]

creation/annihilation operators in Coulomb (249, 254-255) [6.2] and
Lorentz gauge (263, 275-276) [6.3]

combining polarisation vectors and creation/annihiliation operators
for more complicated operators (259-260, 273, 277) [6.2, 6.3]

physical states based on transverse polarisations [e.g. 6.3]

be able to describe

why canonical quantisation is tricky and the logic of quantisation in
Coulomb or Lorentz gauge
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Electrodynamics (Typical Exam Question)

Short question 1c) (2019):
Write down the Lagrangian for free electromagnetic fields, as expressed by the vector potential Aµ . Sketch
the process of quantizing the electromagnetic field and explain why naively following the standard procedure of
canonical quantization fails. [5 marks]

Knowledge: Lagrangian

L = −
1

4
FµνFµν = −

1

4

(
∂
µAν − ∂νAµ

) (
∂µAν − ∂νAµ

)

The standard procedure of determining conjugate momenta and demanding commutation relations fails because

1 the conjugate momentum to A0, π0 = 0. Therefore the equal-time commutator relation

[A0(x, t), π0(y, t)] = δ3(x − y) cannot be satisfied. [2 marks]

2 gauge invariance eliminates another dynamic d.o.f., implying that also the equal-time commutators
for the space-like components cannot all be satisfied. In effect, the physical photon field has two
degrees of freedom, but the vector potential naively seems to have four degrees of freedom; so two of
these d.o.f. cannot be quantized consistently. [3 marks]
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Electrodynamics (Typical Exam Question)

Long question 2a) (2022):
The spatial components of the (normal-ordered) spin operator of the electromagnetic field are given by

: Ŝ i := ϵilm
∫

d
3x :∂t Â

m(x)Âl (x) :

Show that in Coulomb gauge

: Ŝ i : =
iϵilm

2

∑
λ,κ

∫ d3k

(2π)32k0

{
ϵ
m(λ, k)ϵl (κ, k)

[
â†(λ, k)â(κ, k) − â†(κ, k)â(λ, k)

] }

The polarisation vectors are orthonormal w.r.t. each other and orthogonal to the momentum, ϵ(1, k) ×
ϵ(2, k) = −ϵ(2, k) × ϵ(1, k) = k/|k|. Use this to confirm that

: Ŝ := i

∫ d3k

(2π)32k0

k

|k|

[
â†(2, k)â(1, k) − â†(1, k)â(2, k)

]

[8 marks]
Hint: You may assume that the polarisation vectors in Coulomb gauge have real components only.
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Electrodynamics (Typical Exam Question)

∫
d
3x :∂t Â

m(x)Âl (x) := . . . [Application, 3 marks]

=
i

2

∑
λ, κ

∫ d3k

(2π32k0)
:
[
− e−2ik0·x0 ϵm(λ, k)ϵl (κ, −k)â(λ, k)â(κ, −k) + . . .

]
:

The first and last lines are symmetric in l and m under the integration, so when multipliying with the Levi-Civita
tensor they will vanish. Therefore [Application, 2 marks]

: Ŝ i : =
iϵilm

2

∑
λ, κ

∫ d3k

(2π32k0)

{
ϵ
m(λ, k)ϵl (κ, k)

[
â†(λ, k)â(κ, k) − â†(κ, k)â(λ, k)

] }

In a first step we realise that we must have λ ̸= κ, and therefore

: Ŝ i := · · · = i

∫ d3k

(2π32k0)

{ ki

|k|

[
â†(2, k)â(1, k) − â†(1, k)â(2, k)

] }

[Application, 3 marks]
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Electrodynamics (Typical Exam Question)

Long question 2b) (2022):
Defining (complex) circular polarisations as

ϵ(±, k) =
1
√

2

[
ϵ(1, k) ± iϵ(2, k)

]

show that the spin operator becomes diagonal,

: Ŝ :=

∫ d3k

(2π)32k0

k

|k|

[
â†(+, k)â(+, k) − â†(−, k)â(−, k)

]
.

We define the helicity operator as

: Λ̂ :=

∫ d3k

(2π)32k0

[
â†(+, k)â(+, k) − â†(−, k)â(−, k)

]
.

Calculate the helicity of single photon states with polarisations ± and momentum q, â†(±, q)|0⟩, and
interpret the result. [6 marks]
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Electrodynamics (Typical Exam Question)
Inverting the definitions of the circular polarisations, we have

{â(1, k) , â(2, k)} =
â(±, k) ± â(∓, k)

√
2

and simple replacements of â(1, 2) and â†(1, 2) yields the desired result. [Application, 1 mark]
In a first step we have to calculate the commutators of the â(±): [Comprehension, 1 marks]

[
â(±, k), â†(±, q)

]
= · · · = (2π)22k0δ

3(k − q)[
â(±, k), â†(∓, q)

]
= 0 .

Therefore

Λ̂â†(±, q)|0⟩

=

∫ d3k

(2π)32k0

[
â†(+, k)â(+, k) − â†(−, k)â(−, k)

]
â†(±, q)|0⟩

= ±
∫ d3k

(2π)32k0

â†(±, k)
[
â(±, k), â†(±, q)

]
|0⟩

= ±â†(±, q)|0⟩

The circular polarised states are eigenstates of helicity with eigenvalue ±. [Comprehension, 4 marks]
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Propagators

propagators/Greens functions as solutions to free E.o.M.’s and their
definition through δ-functions (286, 300, 307, 314)

construction of propagators through Fourier transformation of the
E.o.M. (291-292, 301, 308, 315-318) [7.2, 7.3]
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Propagators (Typical Exam Question)

Short question 1c) (2020):
Consider the Lagrangian for a free massive vector field Vµ . given by

L = −
1

4
VµνVµν −

m2

2
VµVµ ,

with the field strength tensor Vµν = ∂µVν − ∂νVµ . Derive the equation of motion for Vµ and use it to
construct the propagator for the vector field in momentum space. [5 marks]

Hint: Remember the case of the photon field in Lorentz gauge where we made an ansatz
for the two tensors in the propagator numerator. Use a similar logic here and write the

numerator as Ak2gµν + Bkµkν .
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Propagators (Typical Exam Question)
Equations of motion: [Application, 2 marks]

0 = ∂µ
∂L

∂(∂µVν )
−

∂L

∂Vν
= · · · = −□Vν + ∂ν (∂ · V ) − m2Vν

Propagator/Green’s function in position space from kernel of E.o.M.:

[
□gµν − ∂µ∂ν + m2gµν

]
G
νρ
0

(x, y) = iδ4(x − y)gρµ

and therefore in momentum space [Application, 1 mark]

[
(k2 − m2)gµν − kµkν

]
G̃
νρ
0

(k) = −igρµ

Use the ansatz [Comprehension, 1 mark] G̃
νρ
0

(k) = i
Ak2gνρ−Bkν kρ

k2−m2 and solve for A and B.

−igρµ
!
=

[
(k2 − m2)gµν − kµkν

] iAk2gνρ − iBkν kρ

k2 − m2

=
iAk2(k2 − m2)g

ρ
µ + i(Bm2 − Ak2)kµkρ

k2 − m2

and therefore A = − 1
k2

and B = − 1
m2 .
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