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Exercise 6

1. One-loop diagrams in Ag¢? theory
Draw all distinct Feynman diagrams contributing to the four-point function
G (zy, 19,73, 74) at second order in the coupling constant \g. Show that in mo-

mentum space all the connected diagrams are proportional to
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with ¢? equal to either s = (p; + p2)?, t = (p1 — p3)? or u = (py — pa)*.
2. Feynman parameters
Convince yourself that
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Use Eq. (2) to prove that
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3. Revealing the infinities

(a) Use Eq. (2) to combine the two denominators in Eq. (1) and complete the
square of the resulting denominator by shifting to a new loop momentum.

Transform the integrand from Minkowski to Euclidean space-time defined by

PEu = p% = (pElapE2>pE3apE4) = (ﬁE,Pm) )

with pgy = —ipy being real, pr = p and therefore pg - pr = —p2 +p* > 0 Vp.
To accomplish this the py integration has been analyticly continuated from the

real to the complex axis, i.e. pg — ipg, beforehand.
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Do the resulting momentum integral by using four-dimensional spherical coor-
dinates !. For the k integral use a finite cut-off A as upper limit. The remaining

Feynman parameter integral can be solved using

1
4 Vita+1
drln |1+ —2(1 — =2 1 In | ——— h 0.
/:pn{ +a:p( x)] + v +an<\/1+_a_1), where a >
0

(b*) Go back to part (a). After combining the two denominators and shifting to

the new loop momentum, replace one of the resulting factors according to
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This procedure is known as Pauli-Villars regularization, and the introduced
parameter A% has to fulfill A2 > m?2. Introduce a second Feynman parame-
ter according to Eq. (3), transform to Euclidean space-time and evaluate the
resulting integrals. This time the momentum integral can be performed from

zero up to infinity:.

In four-dimensional Euclidean space we can introduce spherical coordinates as
k1 = ksindsingsiny, ko =ksindcospsiny, k3 =kcosd¥siny, k4 =kcosy.

Accordingly the four-dimensional volume integral reads
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When integrating functions, which depend on k2 only, this can be replaced by
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/d4k = H/d/%?l?.
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