
Lecture 1:

A first numerical example:

Radioactive decays



Learning outcomes of course

I Scientific computing for complex (=realistic) problems

I Basic numerical methods and their implementation
I solving differential equations
I root finding: solutions for f (x) = 0
I numerical integration
I Monte Carlo methods & simulation

I Assignments in Python notebooks
https://dmaitre.phyip3.dur.ac.uk/notebooks/nm/

Material

I The course is entirely based on
Giordano & Nakanishi: “Computational physics”

I Course homepage at
https://www.ippp.dur.ac.uk/˜krauss/Lectures/NumericalMethods/index.html



Scientific computing:

I Start with a physical system/phenomenon,
typically isolated, self-contained =⇒ idealised

I Formulate a mathematical model, for example pendulum:

d2θ

dt2
= θ̈ = −g

l
sin θ .

I Sometimes must simplify further for analytical result
(here: small angle approximation, i.e. sin θ → θ)

I Computer enters to go beyond highly idealised cases:
no analytical solution → approximate numerically!

I Implement/code numerical solution,
but then the real work only begins:
I code verification (aka “debugging”)
I model validation/refinement (against “reality”)



Some vocabulary

I Solutions of mathematical models: typically functions
like, e.g., θ(t) for pendulum or similar.

I Functions are maps:

set of input points −→ set of output points
domain −→ range.

I Computations evaluate functions.

I An algorithm is a recipe to transform inputs to outputs.

I In the digital world (computers),
the domain and range are discrete, and
the algorithm terminates after a finite number of steps



Types of errors

I Truncation errors:
Many functions given as series
like, e.g., sin x = x − x3

3!
+ . . . or similar.

In their evaluation, computer must stop at some point.

I Accuracy errors:
Computer uses finite number of bits for representing a
number, therefore finite precision only. This leads to
round-off errors.
Example: 1030 + 1− 1030 = 0.

I Discretisation errors:
Representing smooth functions with discrete steps.
Should decrease with step-size.

These types of error can accumulate!
=⇒ Can lead to instabilities!

(Correct algorithm produces wrong solution - no issue here)



Starting with physics: Radioactive decays

I Simple differential equation (1st order):

dN

dt
= −N

τ
!

= f (N) ,

where N(t) is the number of atoms in the material at any
given time t, and τ is the time-constant of the decay.
It is linked to the half-life T1/2 like

T1/2 = τ · ln 2 .

I Analytical solution is equally straightforward:

N(t) = N(0) exp
(
− t

τ

)
.



Numerical solution: discretisation

I Basic idea: continuous time t ↔ discrete times ti i ∈ N .

I How does this work out?
I Remember definition of derivative:

dN

dt
= lim

∆t→0

N(t + ∆t)− N(t)

∆t

I Approximate ∆t → 0 with ∆t “small enough”:

dN

dt
≈ N(t + ∆t)− f (t)

∆t

I Therefore rewrite differential eqn as difference eqn:

dN

dt
= −N

τ
⇐⇒ N(t + ∆t)− N(t) = −N(t)∆t

τ
.



Numerical solution: discretisation (cont’d)

I With discrete times:

Ni+1 = N(ti+1) = N(ti)− N(ti)
∆t

τ
ti+1 = ti + ∆t

I Simple general solution for first order differential eqn’s:

Euler method

The first order differential equation dx
dt

= f (x , t) can be
solved numerically (vector form) by

x i+1 = x i + f (x i , t)∆t

ti+1 = ti + ∆t .



Error estimate (for discretisation error)

I To estimate error inherent in Euler method, start with
Taylor expansion of

x(t + ∆t) = x(t) +
dx(t)

dt
∆t +

d2x(t)

dt2

(∆t)2

2!
+ . . .

I Algorithm uses first two terms, but ignores all others
starting at the third one.

=⇒ Error per step: O[(∆t)2]

I But number of steps from t0 to tend ∼ 1/∆t!

=⇒ Overall error: O[(∆t)]



Pseudo-code for solution

Main program

I Input of initial conditions

I Initialise classes “Radioactive” and “DEq Solver”

I Calculate the trajectory.

I Print/plot the result.
Initialisation of physics problem (in “Radioactive”)

I Fix t0 = 0, tend, N0, τ

I δt part of the calculation, not the physics
Calculation (in “DEq Solver”)

I Iterate time steps until ti ≥ tend is reached:

ti+1 = ti + ∆t

x(ti+1) = x i+1 = x i + f (x i , ti )∆t .



Results



Summary

I Computer methods paramount when realistic physical
situations/phenomena to be described quantitatively.
There, typically, analytical solutions are not available,
enforcing the use of numerical approaches.

I Various types of error intrinsic to using computers:
truncation, accuracy, discretisation.

I A classical problem in physics: solving differential eqn’s.
Strategy (like nearly always): discretisation and rewriting
differential eqn’s as difference eqn’s.
First method: Euler method - accurate to first order.


