
Lecture 9: Phase transitions



Introduction

I Discussed the Ising model in the last lecture

I Model exhibits a 2nd order phase transition at Tc ≈ 2.27

I Use spontaneous magnetisation as order parameter:
M ∼ |T − Tc |β, β = 1/8

I Mean field approximation yields Tc = 4, β = 1/2



Spontaneous magnetisation vs. temperature

I Consider a 10× 10 lattice



More observables

I Up to now only spontaneous magnetisation, extend to
more observables:

1. Energy: Calculate through

〈E 〉 = −J
∑
〈ij〉

sisj

=⇒ 〈E(T = 0)〉 = −NJj/2 with j = 4, N = number of spins, and factor 1/2 due pairs

=⇒ 〈E(T →∞)〉 → 0, because of random orientation of spins

2. Specific heat: C = d〈E 〉/dT
C ≈ 1

|T−Tc |α
, exhibits divergence at Tc due to inflection point in energy.

According to fluctuation-dissipation theorem:

C = 〈E2〉−〈E〉2
kBT

,

with 〈Em〉 from sampling Em during lattice sweeps.



More observables (cont’d)

3. Susceptibility: χ = d〈M〉/dH
this measures how much magnetisation 〈M〉 is induced by
a magnetic field H .
Again, according to fluctuation-dissipation theorem:

χ = 〈M2〉−〈M〉2
kBT

,

with 〈Mm〉 from sampling Mm during lattice sweeps.
χ diverges for T → Tc , another power law with critical
exponent γ.
Note: This allows to investigate the system would react
to an external field without ever applying one!

The power of the fluctuation-dissipation theorem!



Energy

I Results from a 10× 10 lattice



Specific Heat

I Results from a 10× 10 lattice



Correlations

I Consider again variation of energy with temperature

I Results suggest that even at T � Tc there is some
residual alignment of spins =⇒ correlations!

I Interpretation: disordering effect of temperature not
strong enough to induce a truly random alignment among
neighbouring spins.

I Quantifying it:
I Pick a random spin s0.
I Calculate f (i) = 〈s0si 〉 where si is i lattice sites away

from s0 (a.k.a. Manhattan distance)
I f (i) is called correlation function.
I Realisation in MC: Use every spin as s0 - go over all

pairs of spins and form suitable averages.



Correlations

I Results from a 20× 20 lattice



Discussion of correlations

I Strong & long-range correlations at low temperatures:
f (i) ≈ 1 for T ≈ 0, nearly independent of distance.
Spins quite well aligned over large distances.

I Around T = Tc : alignment significantly stronger at
smaller than at larger distances,
correlations decrease with distance, but remain visible.

I At T > Tc : Correlations only over small distances, die
out quickly after a few lattice sites.

I Parametrise this as f (i) = C1 + C2 exp (−riξ),
where ξ is known as correlation length.
For distance ri →∞, the spins decouple and therefore
f (i)→ 〈s0〉〈si〉 = 〈s〉2 = C1

I This allows to identify
f (i)− C1 = (s0 − 〈s〉)(si − 〈s〉) ∼ C2 exp(−ri/ξ)



Discussion of correlations (cont’d)

I Therefore ξ measure the range over which the correlations
of spin-fluctuations (s − langles〉) approach zero.

I From the results we see that ξ = ξ(T ).

I In the limit of large lattices, ξ ∼ 1

|T − Tc |ν
,

where ν is yet another critical exponent.

I At the critical point, ξ(Tc) =∞ for infinitely large
lattices, and the exponential is replaced by a power law
for the correlations.

I This implies that
at Tc spins become correlated all over the lattice.

Such a huge sensitivity is typical for phase transitions.

I Mean field approximation ignores such fluctuations,
explaining why it fails to describe the phase transition
quantitatively.



First-order phase transitions

I Up to now: Two-dimensional Ising model around its
critical point without external field.
Order parameter: Spontaneous magnetisation, exhibits a
2nd order phase transition.

I Logical question(s): What is a 1st order phase transition?
Can we convince the model to have one?

1st order phase transitions quite common in nature, e.g., water to ice!

I Have a 1st order phase transition in the Ising model with
an external field switched on. Simple to include into
simulation: Just add a term ∼ µH to the spin-flip
probability.

I Now: two independent external parameters T and H
=⇒ larger phase diagram to explore.



Magnetisation M vs. external field H at different T

I Consider a 10× 10 lattice



Discussion of results

I Start with maximal negative H and ramp up the field.

I At low temperatures (T = 1) spins perfectly align with H ,
abrupt change (M = −1→ M = 1) when H flips sign.
discontinuous “jump”: 1st order phase transition.

I But: hysteresis at T = 1 for H around 0.
Reason: small field, meta-stable state of the system
(M < 0, H > 0)

I Above Tc no more spontaneous magnetisation, therefore
no more competition with H =⇒ smooth transitions

I Size of jump below Tc : twice the spontaneous
magnetisation from the simulation with H = 0.

I Suggest close relation between 1st order phase transition
as function of H and 2nd order as a function of T .

I Difference: “Explosion” of correlation lengths in 2nd
order, very abrupt in 1st order (no prior “warning”).



Hysteresis loops



Phase diagrams

I Compare Ising model and water: critical points

I Can go from one phase to another “around” critical point
=⇒ difference between phases vanishes
=⇒ line of 1st order phase transition terminates



Scaling

I Assumption:
Critical exponents and behaviour are universal.

I Can we prove this? We should elaborate.

I Key concept there: Scaling
Idea: Can suitably normalise observables etc.: h = µH/J ,
t = T/Tc − 1 etc. and write equations in terms of these
scaled objects. Then we can relate factors in one to
factors in others in a natural way.
Will discuss this with the example of the Ising model.



Scaling in mean field approximation

I Go back to implicit equation for 〈s〉:
〈s〉 = tanh

[
zJ〈s〉+µH

kBT

]
≈ zJ〈s〉+µH

kBT
− 1

3

(
zJ〈s〉
kBT

)3

I Rewrite this dimensionless as equation of state (E.o.S.)

h = btm + um3

with h = µH
zJ

, m = 〈s〉 and t = 1− kBT
J

= 1− T
Tc

.
(b and u just positive constants).

I Realise that this can be cast into
m(λ1/2t, λ3/4h) = λ1/4m(t, h)

I Example: choose λ = 16 and plug into E.o.S.:

λ3/4h = 8h = 8btm + 8um3 = bλ1/2tλ1/4m + u(λ1/4m)3



Scaling in mean field approximation (cont’d)

I Function of two parameters like the kind encountered
before in m(t, h), which exhibit this scaling property can
be expressed by a single variable:

m(t, h) = |t|1/2m
(
±1, h

|t|3/2

)
= |t|1/2f±

(
h
|t|3/2

)
I In the equation above f± refer to temperatures t > 0 and

t < 0, i.e. T > Tc and T < Tc , respectively.

I But we already know that mean field theory is not correct
around the critical point, so we use a more general form,
namely

m(t, h) = |t|βf±
(

h
|t|βδ

)
with β = 1/2 and δ = 3 in mean field theory.



Scaling: An appraisal

I Scaling provides an interesting and insightful way of
describing the behaviour of systems around critical points
and the corresponding critical exponents of the power
laws.

I Equation like the one above connect different such laws
and their exponents.

I This was not fully understood for some time, by now, the
concept of the renormalisation group has shed light onto
this issue. The renormalisation group describes how
systems behave under general scale transformations.



Results



Summary

I Continued discussion of phase transitions

I More observables

I Included a 1st order phase transition in the 2D Ising
model by adding an external field

I Phase diagrams and critical points

I Fascinating property: Scaling
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