
Lecture 7: Percolation



Cluster growth models

I Last lecture: Random walkers and diffusion

I Related process: Cluster growth
I Start from a small seed
I Add cluster sites according to different rules
I Larger structures emerge

I Examples: Growth of tumors, snowflakes, etc..

I In the following: two different models/operational
descriptions of the modalities of cluster growth, main
difference in “how do new sites dock to the cluster”

I N.B.: only two-dimensional clusters on a square lattice



Eden clusters: Tumors

I Start with a seed at x , y = (0, 0).

I Any unoccupied nearest neighbour eligible for added site -
pick one of these “perimeter sites” at random.

I Repeat until cluster is finished (predefined size, number of
sites included or similar)

I Note: As the cluster grows, perimeter sites could also be
“inside” the cluster, surrounded by four occupied sites at
the nearest neighbours.

I Resulting cluster roughly circular (spherical), with a
somewhat “fuzzy” edge and, eventually, some holes in it.

I Model also known as “cancer model”.



An example Eden cluster



DLA clusters: Snowflakes
I Diffusion-limited aggregation (DLA) adds sites from the

outside:
I Again, start with a seed at (0, 0)
I Initialise a random walker at a large enough distance and

let it walk. As soon as it hits a perimeter site, it sticks.
I For efficient implementation: discard random walkers

moving too far away or “direct” the walk toward the
cluster.

I Resulting cluster much more “airy”:
A fluffy object of irregular shape with large holes in it.



An example DLA cluster



Fractal dimensions: An operational definition

I Quantify the difference between Eden and DLA clusters
=⇒ need a quantitative measure for fluffiness.

I Basic idea: How to measure the dimension of an object
(at first sight a silly idea - both clusters are 2D)

I Start with a disk in xy -plane; mass m depends on radius r
through m(r) = σπr 2, if σ is the area density.

I In contrast, a straight line has length-dependent mass
m(r) = 2λr , if l = 2r and λ is the length density.

I Masses scale as r 2 and r 1, respectively, giving another
effective measure of dimension through the scaling.

I Therefore, for a more general definition, try m(r) ∼ rdf

I The effective dimension df known as fractal dimension.



Fractal dimensions: An operational definition
(cont’d)

I Using m(r) ∼ rdf for a definition of fractal dimension:

df = 2 for a (massive) circle
df = 1 for a (massive) line

I In general: ln m(r) ∼ df ln r .

I Can be applied to our clusters:

df ≈ 1.99 for an Eden cluster
df ≈ 1.65 for a DLA cluster



Fractal dimension of clusters



Percolation

I Percolation as a physical phenomenon:
for example the motion of ground water through soil, oil
oozing through a porous rock, or burning of a forest.

I Random processes where cells with a finite size within an
area or volume are filled or activated

I An interesting field of research, a large number of
applications

I Many surprising results: phase transitions etc..

I Simple example: Lattice of finite size, the sites are filled
randomly, with probability p (see below).



Simple results

I Lattice of dimension 40× 40.



Analysis of model above

I Introduce concept of a cluster: connected sites (nearest
neighbours).

I At p = 0.2 most clusters consist of 1-2 sites.

I At p = 0.4 cluster size increased, typically 8-10 sites.

I At p = 0.8 more or less one large structure

I Most interesting at p = 0.6:
I Typically at this value the first spanning cluster emerges:

connecting all four edges of the lattice.
I Emergence of a spanning cluster indicates percolation.
I Usually cluster decays when removing individual sites.
I Stated differently: Occupancy of single sites determines

average cluster size =⇒ a phase transition



More on percolating clusters

I Analyse emergence of percolating cluster as function of p.

I Transition between two regimes (no percolating cluster,
or existence of such a cluster) is sharp and depends on
size of lattice d .

I In the limit of d →∞ the critical density for appearance
of a percolating cluster is pc ≈ 0.593.
=⇒ a posteriori explanation, why p = 0.6 was interesting.

I How to calculate the critical value? Need to check the
configuration of lattice sites.

I Simple algorithm: Successively choose sites at random,
stop when percolating cluster appears. Repeat a couple of
times and sample over the respective densities. Tricky bit:
Check for spanning cluster (solution see below).



Cluster labelling - pseudo-code

Main routine:

1. Begin with an empty lattice, all sites labelled by ’0’

2. Pick a site at random, label it with ’1’
(its the first site hence the first cluster - label clusters
consecutively)

3. Repeat step 2 until a spanning cluster has emerged.

Pick a site at random. Check for occupied neighbours:

I If no, open a new cluster with new integer label.
I If yes, call it a bridging site and deal with it.

4. If a spanning cluster has emerged keep track of pc ,
given by the fraction of occupied sites.



Cluster labelling - pseudo-code (cont’d)

Bridging sites:

1. For every bridging site BS, check number of occupied
neighbours:

2. One occupied neighbour: BS inherits number of
neighbouring cluster.

3. Two or more occupied neighbour:

I Find minimum of neighbour numbers.
I BS inherits this number
I All clusters belonging to this site are relabelled

=⇒merged cluster has unique number

Check for spanning cluster:

1. For each cluster keep track of sites at each edge -
need four bools, switched to “true” on the flight.



Percolation in 2 D

I Lattice with dimension L, sampled over 50L runs.

I Statistical fluctuations, linear fit in agreement with 0.593.



Phase transition in percolation

I Study the behaviour near the percolation threshold pc

I Second order phase transition (first derivative jumps).
Examples for this: transitions between the paramagnetic
and ferromagnetic phases of a metal or melting of
materials

I Here: transition between macroscopically connected and
disconnected phases.

I Typical for phase transitions: Singular behaviour of some
observables, often described by power laws.

I Obvious observable here: fraction of spanning clusters.



Phase transition: Results

I Results for 25× 25 lattices



Phase transition in percolation

I Number of percolating clusters and their relative
occupancy drops very steeply at around 0.6.

I Write this as F = F0(p − p0)β and N = N0(p − p0)γ

I β, γ known as critical exponents (more in lecture 8)

I Guess: d{F ,N}/dp →∞ for p → p0.

I For infinitely large lattices, finite size effects are
unimportant, and p0 → pc as d →∞.

I Also for d →∞: for all two-dimensional lattices
β = 5/36.

I Also: F → 0 for d →∞
⇐⇒ percolating cluster has infinite size but zero volume -

a fractal!



Summary

I More on simulation:
Another set of simple random processes (closely related):

I Cluster growth models
I Percolation

I A new way of classifying objects: fractal dimension

I First exposure to a phase transition

I Interesting feature:
I Simplistic tools may model complicated physics
I Typical problem: Map results from toy model to reality.


	Percolation

