Lecture 3: Harmonic Motion

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

The mathematical pendulum

- Simple system: mass *m* at a rigid massless rod of length *l*, deflection angle θ as relevant coordinate.
- Gravitational force:

$$F_{\theta} = -mg\sin\theta \approx -mg\theta$$

in the small angle approximation.

Equation of motion from Newton's law:

$$m\ddot{r} = ml\ddot{\theta} = -mg\theta$$
$$\implies \ddot{\theta} = -\frac{g}{l}\theta.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analytic solution

- Analytic solution straightforward: $\theta(t) = \theta_0 \sin(\Omega t + \phi)$.
- Angular eigen-frequency Ω : $\Omega^2 = g/I$.
- Maximal amplitude: θ_0

 \rightarrow will serve as initial condition: $\theta(0) = \theta_0$

- ϕ from initial velocity (will be set to 0)
- Check energy conservation:

$$E=E_{
m kin}+E_{
m pot}=rac{ml^2}{2}\omega^2(t)+rac{mgl}{2} heta^2(t)$$

Using that $\omega = \mathrm{d}\theta/\mathrm{d}t$ and the solution above:

$$E = \frac{mgl}{2}\theta_0^2 = \text{const.}.$$

Numerical solution: Euler method

• Differential eqn's using the angle θ and angular velocity ω :

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega \quad \text{and} \quad \frac{\mathrm{d}\omega}{\mathrm{d}t} = -\frac{g}{I}\theta$$

Discretisation with Δt :

$$\theta_{i+1} = \theta_i + \omega_i \Delta t$$
 and $\omega_{i+1} = \omega_i - \frac{g}{l} \theta_i \Delta t$

Problematic results (see next slide):
 Euler method does not respect energy conservation!

Results with the Euler method

• Amplitude increases with time, independent of Δt

(just need to run long enough . . .)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The source of the instability

- ► Increasing amplitude ⇐⇒ increasing energy.
- Check energy conservation. Write energy for step i + 1 and express through coordinates at i:

$$\begin{split} E_{i+1} &= \frac{ml^2}{2} \left[\omega_{i+1}^2 + \frac{g}{l} \theta_{i+1}^2 \right] \\ &= \frac{ml^2}{2} \left[\left(\omega_i - \frac{g}{l} \theta_i \Delta t \right)^2 + \frac{g}{l} \left(\theta_i + \omega_i \Delta t \right)^2 \right] \\ &= E_i + \frac{mgl}{2} \left(\frac{g}{l} \theta_i^2 + \omega_i^2 \right) (\Delta t)^2 \,. \end{split}$$

Energy non-conservation exists independent of step-size.Euler method not good for harmonic motion!

Lessons

- Euler method not good for harmonic motion.
- Okay, fine, but why was it good before? Did we not have also energy non-conservation there? Answer: Yes, already there (cannon ball). Euler/Runge-Kutta violate energy conservation, but not a problem (small effect).

Remember the trajectory of the cannon ball: For larger stepsize higher peak in trajectory than for smaller step-size (with roughly the same range).

But we could reach stability by making Δt small.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► For harmonic motion, we want to simulate many cycles. ⇒ small effects accumulate here.
- There is no single perfect method for all problems.

Improving the Euler method: Euler-Cromer

- Obvious alternative to Euler method: Runge-Kutta methods.
- Here, we try a small change in the algorithm: Instead of

$$\omega_{i+1} = \omega_i - \frac{g}{l} \theta_i \Delta t$$
 and $\theta_{i+1} = \theta_i + \omega_i \Delta t$

we use

$$\omega_{i+1} = \omega_i - \frac{g}{l} \theta_i \Delta t$$
 and $\theta_{i+1} = \theta_i + \frac{\omega_{i+1}}{\Delta t} \Delta t$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Simple calculation: This ensures energy conservation!

Results with Euler-Cromer

• Amplitude stable with time, independent of $\Delta t!$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Adding dissipation

▶ To add dissipation, we take a linear term:

$$\ddot{ heta} = -oldsymbol{q}\dot{ heta} - \Omega heta$$
 .

- Can be solved analyticly (see textbooks for methods). There are three regimes:
 - 1. Under-damped regime: amplitude decays exponentially.

$$\theta(t) = \theta_0 \exp\left(-\frac{qt}{2}\right) \sin\left(\sqrt{\Omega^2 - q^2/4} \cdot t + \phi\right)$$

2. Over-damped regime: no oscillations

$$heta(t) = heta_0 \exp\left[-\left(rac{q}{2} + \sqrt{q^2/4 - \Omega^2}
ight) \cdot t
ight]$$

3. Critically damped regime: Pendulum "crawls" to 0.

$$heta(t) = (heta_0 + Ct) \exp\left(-rac{qt}{2}
ight)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results

Amplitude decreases with time

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Adding a driving force

Sinusoidal force, with amplitude F_D and frequency Ω_D :

$$\ddot{\theta} = -q\dot{\theta} - \Omega\theta + F_D \sin(\Omega_D t)$$
.

Effect: Driving force pumps energy into the system, its frequency competes with the eigen-frequency of the pendulum and takes over. Can be solved analyticly. After "swinging in": θ(t) = θ_{max} sin(Ω_Dt + φ). The maximal amplitude is given by

$$heta_{\max} = rac{F_D}{\sqrt{(\Omega^2 - \Omega_D^2)^2 + (q\Omega_D)^2}}\,.$$

• This leads to an interesting situation when q is small and $\Omega_D \rightarrow \Omega$, called resonance.

Results

• Driving force with amplitude $\Omega_D = 2\Omega$ takes over!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Emerging resonance

• Driving force with amplitude $\Omega_D \rightarrow \Omega$ resonates \longrightarrow amplitude increases (catastrophic w/o dissipation)!

≜। ≣ *'*0.२.२

Adding non-linearity

- With a driving force, the pendulum does not necessarily remain in a region of small amplitudes for the oscillations.
 ⇒ So far, we discussed the mathematical pendulum, i.e. approximation of small angles, replacing sin θ → θ.
- For the description of a realistic pendulum, we reinstate the non-linearity, and we will use sin θ.
- This will have interesting consequences:
 - In the non-driven, non-dissipative pendulum, the eigen-frequency is not constant any more, but depends on the initial amplitude.
 - Adding a driving force opens the road to chaos.

Summary

- Harmonic motion a very important phenomenon in physics, worthwhile to study in great detail. We chose a pendulum here.
- The Euler method fails to describe harmonic motion properly, due to non-conservation of energy. The Euler-Cromer method rectifies the situation.
- Adding dissipation and driving force adds new-phenomena: dampening and resonances.
- Adding non-linearity paves the road towards deterministic chaos, the subject of next lecture.
- In the homework assignment you'll be asked to implement a full simulation of the pendulum in the Euler-Cromer method, including dissipation, driving force, and non-linearity.