
Lecture 3: Harmonic Motion



The mathematical pendulum
I Simple system: mass m at a rigid

massless rod of length l , deflection angle
θ as relevant coordinate.

I Gravitational force:

Fθ = −mg sin θ ≈ −mgθ

in the small angle approximation.

I Equation of motion from Newton’s law:

mr̈ = ml θ̈ = −mgθ

=⇒ θ̈ = −g

l
θ .



Analytic solution

I Analytic solution straightforward: θ(t) = θ0 sin(Ωt + φ).

I Angular eigen-frequency Ω: Ω2 = g/l .

I Maximal amplitude: θ0
→ will serve as initial condition: θ(0) = θ0

I φ from initial velocity (will be set to 0)

I Check energy conservation:

E = Ekin + Epot =
ml2

2
ω2(t) +

mgl

2
θ2(t)

Using that ω = dθ/dt and the solution above:

E =
mgl

2
θ20 = const. .



Numerical solution: Euler method

I Differential eqn’s using the angle θ and angular velocity ω:

dθ

dt
= ω and

dω

dt
= −g

l
θ .

I Discretisation with ∆t:

θi+1 = θi + ωi∆t and ωi+1 = ωi −
g

l
θi∆t

I Problematic results (see next slide):

Euler method does not respect energy conservation!



Results with the Euler method

I Amplitude increases with time, independent of ∆t
(just need to run long enough . . . )



The source of the instability

I Increasing amplitude ⇐⇒ increasing energy.

I Check energy conservation. Write energy for step i + 1
and express through coordinates at i :

Ei+1 =
ml2

2

[
ω2
i+1 +

g

l
θ2i+1

]
=

ml2

2

[(
ωi −

g

l
θi∆t

)2
+

g

l
(θi + ωi∆t)2

]
= Ei +

mgl

2

(g
l
θ2i + ω2

i

)
(∆t)2 .

I Energy non-conservation exists independent of step-size.

I Euler method not good for harmonic motion!



Lessons

I Euler method not good for harmonic motion.

I Okay, fine, but why was it good before? Did we not have
also energy non-conservation there?
Answer: Yes, already there (cannon ball).
Euler/Runge-Kutta violate energy conservation, but not a
problem (small effect).

Remember the trajectory of the cannon ball: For larger step-
size higher peak in trajectory than for smaller step-size (with
roughly the same range).

But we could reach stability by making ∆t small.

I For harmonic motion, we want to simulate many cycles.
=⇒ small effects accumulate here.

I There is no single perfect method for all problems.



Improving the Euler method: Euler-Cromer

I Obvious alternative to Euler method: Runge-Kutta
methods.

I Here, we try a small change in the algorithm: Instead of

ωi+1 = ωi −
g

l
θi∆t and θi+1 = θi + ωi∆t

we use

ωi+1 = ωi −
g

l
θi∆t and θi+1 = θi + ωi+1∆t

I Simple calculation: This ensures energy conservation!



Results with Euler-Cromer

I Amplitude stable with time, independent of ∆t!



Adding dissipation

I To add dissipation, we take a linear term:

θ̈ = −qθ̇ − Ωθ .

I Can be solved analyticly (see textbooks for methods).
There are three regimes:

1. Under-damped regime: amplitude decays exponentially.

θ(t) = θ0 exp
(
−qt

2

)
sin
(√

Ω2 − q2/4 · t + φ
)

2. Over-damped regime: no oscillations

θ(t) = θ0 exp
[
−
(q

2
+
√
q2/4− Ω2

)
· t
]

3. Critically damped regime: Pendulum “crawls” to 0.

θ(t) = (θ0 + Ct) exp
(
−qt

2

)
.



Results

I Amplitude decreases with time



Adding a driving force

I Sinusoidal force, with amplitude FD and frequency ΩD :

θ̈ = −qθ̇ − Ωθ+FD sin(ΩDt) .

I Effect: Driving force pumps energy into the system, its
frequency competes with the eigen-frequency of the
pendulum and takes over. Can be solved analyticly.
After “swinging in”: θ(t) = θmax sin(ΩDt + φ).
The maximal amplitude is given by

θmax =
FD√

(Ω2 − Ω2
D)2 + (qΩD)2

.

I This leads to an interesting situation when q is small and
ΩD → Ω, called resonance.



Results

I Driving force with amplitude ΩD = 2Ω takes over!



Emerging resonance

I Driving force with amplitude ΩD → Ω resonates
−→ amplitude increases (catastrophic w/o dissipation)!



Adding non-linearity

I With a driving force, the pendulum does not necessarily
remain in a region of small amplitudes for the oscillations.
=⇒ So far, we discussed the mathematical pendulum, i.e.
approximation of small angles, replacing sin θ → θ.

I For the description of a realistic pendulum, we reinstate
the non-linearity, and we will use sin θ.

I This will have interesting consequences:
I In the non-driven, non-dissipative pendulum, the

eigen-frequency is not constant any more, but depends
on the initial amplitude.

I Adding a driving force opens the road to chaos.



Summary

I Harmonic motion a very important phenomenon in
physics, worthwhile to study in great detail. We chose a
pendulum here.

I The Euler method fails to describe harmonic motion
properly, due to non-conservation of energy. The
Euler-Cromer method rectifies the situation.

I Adding dissipation and driving force adds
new-phenomena: dampening and resonances.

I Adding non-linearity paves the road towards deterministic
chaos, the subject of next lecture.

I In the homework assignment you’ll be asked to implement
a full simulation of the pendulum in the Euler-Cromer
method, including dissipation, driving force, and
non-linearity.
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