Lecture 3: Harmonic Motion



The mathematical pendulum

» Simple system: mass m at a rigid
massless rod of length /, deflection angle
6 as relevant coordinate.

» Gravitational force:
Fo = —mgsinf ~ —mgf

in the small angle approximation.

» Equation of motion from Newton's law:

mi = mlf = —mg6

— 0 = —294.



Analytic solution

» Analytic solution straightforward: 0(t) = 6y sin(Qt + ¢).
» Angular eigen-frequency Q: Q2 = g/I.
» Maximal amplitude: 6
— will serve as initial condition: 0(0) = 6,
» ¢ from initial velocity (will be set to 0)

» Check energy conservation:

/2 |
E = Exn + Epot = mTWZ(t) n %em)

Using that w = df/dt and the solution above:

/
E = %93 = const. .



Numerical solution: Euler method

» Differential eqn’s using the angle 6 and angular velocity w:

=w and — = —2=0.

dt dt /

» Discretisation with At:

6,’+1 = 9,‘ + W;At and Wit1 = Wi — %HiAt

» Problematic results (see next slide):

Euler method does not respect energy conservation!



Results with the Euler method

» Amplitude increases with time, independent of At

(just need to run long enough .. .)
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The source of the instability

» Increasing amplitude <= increasing energy.

» Check energy conservation. Write energy for step 7 + 1
and express through coordinates at i:

ml?

Ern = o [wha + 562
- ’"7’2 [(M—%Q,At) + 8.6, +wty
= E+ ng/ (%9? +w,-2> (At)?.

» Energy non-conservation exists independent of step-size.

» Euler method not good for harmonic motion!



Lessons

» Euler method not good for harmonic motion.

» Okay, fine, but why was it good before? Did we not have
also energy non-conservation there?
Answer: Yes, already there (cannon ball).
Euler/Runge-Kutta violate energy conservation, but not a
problem (small effect).
Remember the trajectory of the cannon ball: For larger step-
size higher peak in trajectory than for smaller step-size (with
roughly the same range).
But we could reach stability by making At small.
» For harmonic motion, we want to simulate many cycles.
=—> small effects accumulate here.

» There is no single perfect method for all problems.



Improving the Euler method: Euler-Cromer

» Obvious alternative to Euler method: Runge-Kutta
methods.

» Here, we try a small change in the algorithm: Instead of
_ g _
Wit1 = Wi — 79,‘At and 9;+1 = 9,‘ + w;At

we use

_ 8

/«9,-At and 9;+1 =0; +w; 1At

Wit1 = Wi

» Simple calculation: This ensures energy conservation!



Results with Euler-Cromer
» Amplitude stable with time, independent of At!

Simple pendulum, | = 1m, Euler-Cromer method
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Adding dissipation

» To add dissipation, we take a linear term:

6=—qb—Q0.

» Can be solved analyticly (see textbooks for methods).
There are three regimes:
1. Under-damped regime: amplitude decays exponentially.

t
0(t) = Oy exp (—%) sin (\/Q2 —q%/4-t+ gb)
2. Over-damped regime: no oscillations
_ _(9 70— 02) .
9(t)_90exp[ (2 +VR/A—Q ) t]
3. Critically damped regime: Pendulum “crawls” to 0.

8(t) = (6o + Ct)exp (_%t) .



Results

» Amplitude decreases with time

Damped pendulum, | = 1m, varying damping factors
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Adding a driving force

» Sinusoidal force, with amplitude Fp and frequency Qp:

0 = —q0 — QO+Fpsin(Qpt).

» Effect: Driving force pumps energy into the system, its
frequency competes with the eigen-frequency of the
pendulum and takes over. Can be solved analyticly.
After “swinging in": 0(t) = Oax Sin(Qpt + ).

The maximal amplitude is given by

Fp
V@ =7 + (@)

» This leads to an interesting situation when ¢ is small and
Qp — Q, called resonance.

Qmax -



Results
» Driving force with amplitude Q2p = 212 takes over!

Driven pendulum, | = 1m
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Emerging resonance

» Driving force with amplitude Qp — € resonates
— amplitude increases (catastrophic w/o dissipation)!

Driven pendulum, | = 1m, q=0.1, varying driving frequencies
T T

0.6

— q=05,Q, =09-Q

— q=050p =110

theta [radians]

N ] I i
0'60 5 10 15 20
time [s]



Adding non-linearity

» With a driving force, the pendulum does not necessarily
remain in a region of small amplitudes for the oscillations.
— So far, we discussed the mathematical pendulum, i.e.
approximation of small angles, replacing sinf — 6.

» For the description of a realistic pendulum, we reinstate
the non-linearity, and we will use sin 6.
» This will have interesting consequences:

» In the non-driven, non-dissipative pendulum, the
eigen-frequency is not constant any more, but depends
on the initial amplitude.

» Adding a driving force opens the road to chaos.



Summary

» Harmonic motion a very important phenomenon in
physics, worthwhile to study in great detail. We chose a
pendulum here.

» The Euler method fails to describe harmonic motion
properly, due to non-conservation of energy. The
Euler-Cromer method rectifies the situation.

» Adding dissipation and driving force adds
new-phenomena: dampening and resonances.

» Adding non-linearity paves the road towards deterministic
chaos, the subject of next lecture.

» In the homework assignment you'll be asked to implement
a full simulation of the pendulum in the Euler-Cromer
method, including dissipation, driving force, and
non-linearity.
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