Lecture 8: The Ising model

Introduction

- Up to now: Toy systems with interesting properties (random walkers, cluster growth, percolation)
- Common to them: No interactions
- Add interactions now, with significant role
- Immediate consequence: much richer structure in model, in particular: phase transitions
- Simulate interactions with RNG (Monte Carlo method)
- Include the impact of temperature: ideas from thermodynamics and statistical mechanics important
- Simple system as example: coupled spins (see below), will use the canonical ensemble for its description

The Ising model

- Intrinsically, magnetism is a quantum effect, triggered by the spins of particles aligning with each other

- Ising model a superb toy model to understand this dynamics
- Has been invented in the 1920's by E.Ising
- Ever since treated as a first, paradigmatic model

The model (in 2 dimensions)

- Consider a square lattice with spins at each lattice site
- Spins can have two values: $s_i = \pm 1$
- Take into account only nearest neighbour interactions (good approximation, dipole strength falls off as 1/r³)
- Energy of the system:

$$E = -J \sum_{\langle ij \rangle} s_i s_j$$

- ► Here: exchange constant J > 0 (for ferromagnets), and ⟨ij⟩ denotes pairs of nearest neighbours.
- (Micro-)states α characterised by the configuration of each spin, the more aligned the spins in a state α, the smaller the respective energy E_α.
- Emergence of spontaneous magnetisation (without external field): sufficiently many spins parallel

Adding temperature

- ► Without temperature *T*: Story over.
- ▶ With temperature: disordering effects, spins flip randomly.
- In the following assume system to be in contact with external heat bath - can use canonical ensemble (look it up, if you're interested).
- Effect: System will again "explore" all possibilities (like in the case of milk in tea, lecture 6)
- ► In contrast here: No uniform probability, but

$$\mathcal{P}_{lpha} \sim \exp\left[-rac{E_{lpha}}{k_B T}
ight]$$
 (Boltzmann factor)

for the system to be in a micro-state α .

► Consequence: Increasing temperatures open micro-states with larger energies → less alignment

Observables

- How to calculate macroscopic observables? Example: the magnetisation of the system M.
- First step: calculate the observable for a micro-state:

$$M_{\alpha} = \sum_{i} s_{i}$$

Sample over all micro-states:

$$M = \sum_{\alpha} M_{\alpha} \mathcal{P}_{\alpha}$$

- Therefore, name of the game: How to calculate the P_α/sample over the micro-states.
- Will present two solutions in the following

Analytic solution: Mean field theory (MFA)

- Mean field theory an extremely powerful approximation
- Will introduce it with the specific example of the Ising model at hand.
- However nice: It is not precise!
- ▶ Basic idea: Replace the individual spins s_i = ±1 with an average value ⟨s⟩ ∈ [−1, 1]. Then
 M = ∑_i s_i → ∑_i⟨s⟩ = N⟨s⟩ ≡ N⟨s_i⟩
- In other words: Deduce an average alignment (works for an infinitely large system - all spins equivalent).
- With the equation above we used that we can pick every spin as average spin. But how can we calculate without the micro-states?
- Answer: A trick (see below)

The trick for the solution

Add a magnetic field (seems a detour, but wait & see!):

$$E = -J\sum_{\langle ij \rangle} s_i s_j - \mu H \sum_i s_i$$

(Magnetic field H interacts with spins through their magnetic moment μ .)

- Consider a system made of one single spin: $E_{\pm} = \mp \mu H$.
- Two micro-states with $\mathcal{P}_{\pm} = C \exp \left[\pm \frac{\mu H}{k_B T} \right]$
- Normalisation *C* from $\mathcal{P}_+ + \mathcal{P}_- = 1$

$$\implies C = \frac{1}{\exp\left(\frac{\mu H}{k_B T}\right) + \exp\left(-\frac{\mu H}{k_B T}\right)} = \frac{1}{2\cosh\left(\frac{\mu H}{k_B T}\right)}$$

• Therefore thermal average of the single spin: $\langle s_i \rangle = \mathcal{P}_+ - \mathcal{P}_- = \tanh \frac{\mu H}{k_- T}$

Rounding it off

Having the solution for a single spin in a background field, we replace the background field with the average spins!

$$E = -\sum_{i} \left(\sum_{\langle ij \rangle} s_{j} + \mu H \right) s_{i} = -\mu H_{\text{eff}} \sum_{i} s_{i}$$

The effective magnetic field is thus

$$H_{\mathrm{eff}} = rac{J}{\mu} \sum_{\langle ij
angle} s_j + H$$

Mean field approximation then sets H = 0 and replaces the actual s_j with the average value:

 $H_{\rm mfa} = \frac{jJ}{\mu} \langle s \rangle$

(Here j = 4 is number of nearest neighbours)

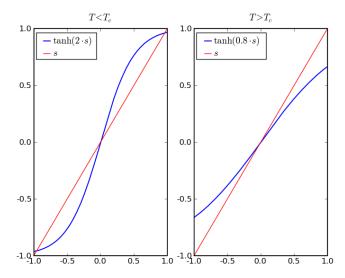
• This implies the following implicit equation:

$$\langle s
angle = anh rac{jJ\langle s
angle}{k_B T}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Results: Schematic

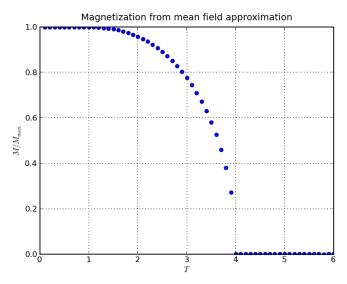
Notice two different regimes: either 1 or 3 solutions



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

True results

• Obtained from solving $f(\langle s \rangle) = \langle s \rangle - \tanh \frac{4 \langle s \rangle}{\tau} = 0$



◆□> ◆□> ◆三> ◆三> 三三 のへぐ

Discussion of results

- ▶ In plots use $M_{\text{max}} = N$ for normalisation and $J = k_B$ to keep things simple.
- Phase transition at T_c = 4 second order (1st derivative of order parameter magnetisation jumps)

• Around
$$T_c: dM/dT \to \infty$$
.

- Exact form of singularity from Taylor expansion of tanh: $tanh x = x - \frac{x^3}{3} + O(x^4)$
- Therefore, around $T = T_c$:

$$\langle s \rangle = \frac{jJ}{k_BT} \langle s \rangle - \frac{1}{3} \left(\frac{jJ}{k_BT} \right)^3 \langle s \rangle^3$$

Quantifying the phase transition

Non-trivial solution for:

$$\langle s \rangle = \sqrt{\frac{3}{T} \left(\frac{k_B T}{jJ}\right)^3} \left(\frac{jJ}{k_B} - T\right)^{1/2} \sim (T_c - T)^{\beta}$$

Critical temperature and exponent:

 $T_c = jJ/k_B, \ \beta = 1/2.$

But exact results (analytically known):

 $T_c=2/\ln(1+\sqrt{2})pprox 2.27$, eta=1/8

for a square lattice with j = 4 and $J = k_B$.

Will now turn numerical/simulation

Strategy of simulation

- Strategy very similar to what's been done before: Use the random number generator to evolve the system
- This time: RNG to describe interactions
- Necessary: Interactions in probabilistic language
- ► Algorithm will look like: Go over the spins, check whether they flip (compare P_{flip} with number from RNG), repeat to equilibrate.
- ► To calculate P_{flip}: Use energy of the two micro-states (before and after flip) and Boltzmann factors.
- While running, evaluate observables directly and take thermal average (average over many steps).

Metropolis

A classical method for the program above

- 1. Initialise the lattice, i.e. fix all s_i (either at random, or $s_i = 1 \forall i$, or similar)
- 2. In each time step go through the entire lattice. For each spin decide whether it flips or not
 - Calculate $E = -J \sum s_i s_j$ for both configs
 - Determine characteristic "energy gain by flip"

$$L_{\text{flip}} - L_{\text{after}} - L_{\text{before}}$$

- if $E_{\rm flip} < 0$, the spin is flipped
- if $E_{\rm flip} > 0$, the spin is flipped with probability

$$\mathcal{P}_{\mathrm{flip}} = \exp\left(-rac{\mathcal{E}_{\mathrm{flip}}}{k_B T}
ight)$$

3. Repeat with a huge number of time steps \implies allow the system to equilibrate

Why Metropolis is correct: Detailed balance

- Consider one spin flip, connecting micro-states 1 and 2.
- \blacktriangleright Rate of transitions given by the transition probabilities ${\cal W}$
- If $E_1 > E_2$ then $\mathcal{W}_{1 \rightarrow 2} = 1$ and $\mathcal{W}_{2 \rightarrow 1} = \exp\left(-\frac{E_1 E_2}{k_B T}\right)$
- In thermal equilibrium, both transitions equally often:

 $\mathcal{P}_2\mathcal{W}_{2\to 1}=\mathcal{P}_1\mathcal{W}_{1\to 2}$

This takes into account that the respective states are occupied according to the Boltzmann factors.

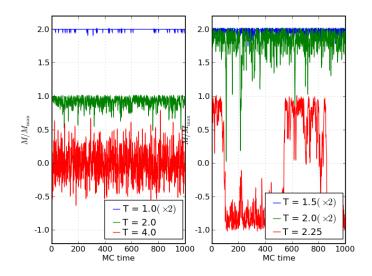
- In principle, all systems in thermal equilibrium can be studied with Metropolis - just need to write transition probabilities in accordance with detailed balance, as above.
- Metropolis algorithm simulates the canonical ensemble, summing over micro-states with a Monte Carlo method.

Some code specifics

Initialise the $L \times L$ lattice with spins s_i .
Take the spins either fixed (all $s_i = 1$) or at random (all $s_i = \pm 1$)
A single time-step: sweep through the lattice
Go systematically through the lattice, line by line,
spin by spin, and decide, whether the spin should flip
or not. Important here: boundary conditions
Boundary conditions (finite-size lattices)
We use periodic boundary conditions. This means
that the spins at the right edge of the lattice are
taken as neighbours of spins at the left edge. For 2-
D lattices this renders our lattice effectively a donut-
shaped object. Such a treatment reduces finite-size
effects, but one should keep in mind that correlations
with a length larger than $\sqrt{2L}$ cannot be simulated.

Sweeping though the lattice

 \blacktriangleright Fix temperature, use a 10 \times 10 lattice



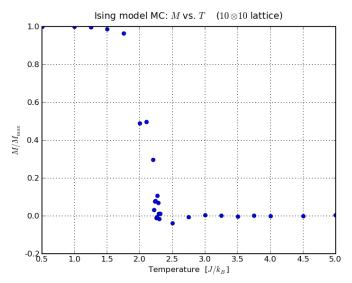
▲ロト ▲圖ト ▲画ト ▲画ト 三直 …のへ(で)

Discussion of the sweeps

- ► At low temperatures (T = 1): system quite stable, only small fluctuations, relative magnetisation around 1.
- At larger temperatures, but below T_c (T=2): larger fluctuations due to more favourable Boltzmann factor (10% anti-aligned), average magnetisation around 0.9.
- At large temperatures (T = 4): system disordered, no average magnetisation left.
- Around the critical temperature (T = 2.25): Huge fluctuations, after periods of stability, system jumps from sizable positive to negative magnetisation and vice versa.
- This is in agreement with fluctuation-dissipation theorem (next lecture).

Phase transition - the MC look at things

• Still on a 10×10 lattice



◆□> ◆□> ◆三> ◆三> 三三 のへぐ

Some simulation nitty-gritty

- Results above after equilibrating the system, but
- critical slowdown around critical point: The system's time to equilibrate diverges.
- Independent of this: Monte Carlo results in agreement with exact calculation and in disagreement with the results from mean field approximation.

Summary

- First simulation of a system with interactions
- Used the Ising model as laboratory: well-defined, well-studied system, analytical results known, a favourite of the simulators
- A (simple) analytical approximation: mean field theory gives qualitatively correct results: existence of a phase transition, estimate of critical temperature

 Exact calculations (and simulation) agree and are quantitatively different from MFA.