
Lecture 8: The Ising model



Introduction

I Up to now: Toy systems with interesting properties
(random walkers, cluster growth, percolation)

I Common to them: No interactions

I Add interactions now, with significant role

I Immediate consequence: much richer structure in model,
in particular: phase transitions

I Simulate interactions with RNG (Monte Carlo method)

I Include the impact of temperature: ideas from
thermodynamics and statistical mechanics important

I Simple system as example: coupled spins (see below),
will use the canonical ensemble for its description



The Ising model

I A very interesting model for understanding some
properties of magnetic materials, especially the
phase transition ferromagnetic ←→ paramagnetic

I Intrinsically, magnetism is a quantum effect,
triggered by the spins of particles aligning with each other

I Ising model a superb toy model to understand this
dynamics

I Has been invented in the 1920’s by E.Ising

I Ever since treated as a first, paradigmatic model



The model (in 2 dimensions)

I Consider a square lattice with spins at each lattice site

I Spins can have two values: si = ±1

I Take into account only nearest neighbour interactions
(good approximation, dipole strength falls off as 1/r 3)

I Energy of the system:
E = −J

∑
〈ij〉

sisj

I Here: exchange constant J > 0 (for ferromagnets),
and 〈ij〉 denotes pairs of nearest neighbours.

I (Micro-)states α characterised by the configuration of
each spin, the more aligned the spins in a state α, the
smaller the respective energy Eα.

I Emergence of spontaneous magnetisation (without
external field): sufficiently many spins parallel



Adding temperature

I Without temperature T : Story over.

I With temperature: disordering effects, spins flip randomly.

I In the following assume system to be in contact with
external heat bath - can use canonical ensemble (look it
up, if you’re interested).

I Effect: System will again “explore” all possibilities
(like in the case of milk in tea, lecture 6)

I In contrast here: No uniform probability, but

Pα ∼ exp

[
− Eα

kBT

]
(Boltzmann factor)

for the system to be in a micro-state α.

I Consequence: Increasing temperatures open micro-states
with larger energies ←→ less alignment



Observables

I How to calculate macroscopic observables?
Example: the magnetisation of the system M .

I First step: calculate the observable for a micro-state:
Mα =

∑
i

si

I Sample over all micro-states:
M =

∑
α

MαPα

I Therefore, name of the game:
How to calculate the Pα/sample over the micro-states.

I Will present two solutions in the following



Analytic solution: Mean field theory (MFA)

I Mean field theory an extremely powerful approximation

I Will introduce it with the specific example of the Ising
model at hand.

I However nice: It is not precise!

I Basic idea: Replace the individual spins si = ±1 with an
average value 〈s〉 ∈ [−1, 1]. Then

M =
∑
i

si −→
∑
i

〈s〉 = N〈s〉 ≡ N〈si〉

I In other words: Deduce an average alignment
(works for an infinitely large system - all spins equivalent).

I With the equation above we used that we can pick every
spin as average spin. But how can we calculate without
the micro-states?

I Answer: A trick (see below)



The trick for the solution

I Add a magnetic field (seems a detour, but wait & see!):
E = −J

∑
〈ij〉

sisj − µH
∑
i

si

(Magnetic field H interacts with spins through their magnetic moment µ.)

I Consider a system made of one single spin: E± = ∓µH .

I Two micro-states with P± = C exp
[
± µH

kBT

]
I Normalisation C from P+ + P− = 1

=⇒ C = 1

exp
“

µH
kBT

”
+exp

“
− µH

kBT

” =
1

2 cosh
(
µH
kBT

)
I Therefore thermal average of the single spin:

〈si〉 = P+ − P− = tanh µH
kBT



Rounding it off

I Having the solution for a single spin in a background field,
we replace the background field with the average spins!

E = −
∑
i

(∑
〈ij〉

sj + µH

)
si = −µHeff

∑
i

si

I The effective magnetic field is thus
Heff = J

µ

∑
〈ij〉

sj + H

I Mean field approximation then sets H = 0 and replaces
the actual sj with the average value:

Hmfa = jJ
µ
〈s〉

(Here j = 4 is number of nearest neighbours)

I This implies the following implicit equation:

〈s〉 = tanh
jJ〈s〉
kBT



Results: Schematic

I Notice two different regimes: either 1 or 3 solutions



True results

I Obtained from solving f (〈s〉) = 〈s〉 − tanh
4〈s〉
T

= 0



Discussion of results

I In plots use Mmax = N for normalisation and J = kB to
keep things simple.

I Phase transition at Tc = 4 - second order
(1st derivative of order parameter magnetisation jumps)

I Around Tc : dM/dT →∞.

I Exact form of singularity from Taylor expansion of tanh:
tanh x = x − x3

3
+O(x4)

I Therefore, around T = Tc :

〈s〉 = jJ
kBT
〈s〉 − 1

3

(
jJ

kBT

)3

〈s〉3



Quantifying the phase transition

I Non-trivial solution for:

〈s〉 =

√
3
T

(
kBT
jJ

)3 (
jJ
kB
− T

)1/2

∼ (Tc − T )β

I Critical temperature and exponent:

Tc = jJ/kB , β = 1/2.

I But exact results (analytically known):

Tc = 2/ ln(1 +
√

2) ≈ 2.27, β = 1/8
for a square lattice with j = 4 and J = kB .

I Will now turn numerical/simulation



Strategy of simulation

I Strategy very similar to what’s been done before: Use the
random number generator to evolve the system

I This time: RNG to describe interactions

I Necessary: Interactions in probabilistic language

I Algorithm will look like: Go over the spins, check whether
they flip (compare Pflip with number from RNG), repeat
to equilibrate.

I To calculate Pflip: Use energy of the two micro-states
(before and after flip) and Boltzmann factors.

I While running, evaluate observables directly and take
thermal average (average over many steps).



Metropolis
A classical method for the program above

1. Initialise the lattice, i.e. fix all si
(either at random, or si = 1∀i , or similar)

2. In each time step go through the entire lattice.
For each spin decide whether it flips or not

I Calculate E = −J
∑

si sj for both configs
I Determine characteristic “energy gain by flip”

Eflip = Eafter − Ebefore

I if Eflip < 0, the spin is flipped
I if Eflip > 0, the spin is flipped with probability

Pflip = exp
(
−Eflip

kBT

)
3. Repeat with a huge number of time steps

=⇒ allow the system to equilibrate



Why Metropolis is correct: Detailed balance

I Consider one spin flip, connecting micro-states 1 and 2.

I Rate of transitions given by the transition probabilities W
I If E1 > E2 then W1→2 = 1 and W2→1 = exp

(
−E1−E2

kBT

)
I In thermal equilibrium, both transitions equally often:

P2W2→1 = P1W1→2

This takes into account that the respective states are
occupied according to the Boltzmann factors.

I In principle, all systems in thermal equilibrium can be
studied with Metropolis - just need to write transition
probabilities in accordance with detailed balance, as
above.

I Metropolis algorithm simulates the canonical ensemble,
summing over micro-states with a Monte Carlo method.



Some code specifics

Initialise the L× L lattice with spins si .
Take the spins either fixed (all si = 1) or at random (all si = ±1)

A single time-step: sweep through the lattice
Go systematically through the lattice, line by line,
spin by spin, and decide, whether the spin should flip
or not. Important here: boundary conditions
Boundary conditions (finite-size lattices)

We use periodic boundary conditions. This means
that the spins at the right edge of the lattice are
taken as neighbours of spins at the left edge. For 2-
D lattices this renders our lattice effectively a donut-
shaped object. Such a treatment reduces finite-size
effects, but one should keep in mind that correlations
with a length larger than

√
2L cannot be simulated.



Sweeping though the lattice

I Fix temperature, use a 10× 10 lattice



Discussion of the sweeps

I At low temperatures (T = 1): system quite stable, only
small fluctuations, relative magnetisation around 1.

I At larger temperatures, but below Tc (T=2): larger
fluctuations due to more favourable Boltzmann factor
(10% anti-aligned), average magnetisation around 0.9.

I At large temperatures (T = 4): system disordered, no
average magnetisation left.

I Around the critical temperature (T = 2.25): Huge
fluctuations, after periods of stability, system jumps from
sizable positive to negative magnetisation and vice versa.

I This is in agreement with fluctuation-dissipation theorem
(next lecture).



Phase transition - the MC look at things

I Still on a 10× 10 lattice



Some simulation nitty-gritty

I Results above after equilibrating the system, but

I critical slowdown around critical point:
The system’s time to equilibrate diverges.

I Independent of this: Monte Carlo results in agreement
with exact calculation and in disagreement with the
results from mean field approximation.



Summary

I First simulation of a system with interactions

I Used the Ising model as laboratory: well-defined,
well-studied system, analytical results known, a favourite
of the simulators

I A (simple) analytical approximation: mean field theory
gives qualitatively correct results: existence of a phase
transition, estimate of critical temperature

I Exact calculations (and simulation) agree and are
quantitatively different from MFA.
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