
The Euler method

The following discussion of the Euler method considers the case of an ordinary differential equation
of order one in one dimension,

dx

dt
= f(x, t) . (Euler Method.1)

A generalisation to an arbitrary number of dimensions n is straightforward, and the emerging
algorithm will be shown at the end.

Basic idea

The idea behind the Euler method consists of using the Taylor expansion of x(t) around t with
interval ∆t,
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dx(t)
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+ . . . . (Euler Method.2)

Assuming that the function and its derivative is sufficiently smooth and that ∆t is sufficiently
small, x(t) can be propagated to x(t+∆t) with sufficiently high precision. Ignoring terms of order
calO[(∆t)2] or higher, thus

x(ti+1) ≈ x(ti) +
dx(ti)

dt
∆t = x(ti) + f(x, t)∆t , (Euler Method.3)

where Eq. () has been used.

Error estimate

Comparing this equation, Eq. (), with the Taylor expansion shows that the Euler method essentially
constitutes a local first order approximation in each step. If, starting from some starting time tini

the solution at a later time tfin is to be calculated, then the Euler step must be repeated

nsteps =
|tfin − tini|

∆t
(Euler Method.4)

times. Since in each individual step the error is of order (∆t)2, the total error of this method scales
linearly with ∆t. Therefore, employing the proper terminology, the Euler method globally is said
to be a zeroth order approximation. Thus, in order to reduce the error at tfin, you would have to
reduce ∆t, but the compuational cost would rise linearly with the numerical accuracy.

It should also be noted here that choosing the time steps too large can lead to unstable or
meaningless results.

Implementation

The algorithm for the Euler method basically reads:

1. Initialise x(tini) = xini.

2. Use Eq. () to propagate from x(ti) to x(ti+1), where ti+1 = ti + ∆t.

3. Repeat step 2, until ti+1 ≥ tend.


