QCD & Monte Carlo Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

HiggsTools School, Pre Saint-Didier, 2015

《曰》 《圖》 《臣》 《臣》

PART I: Introduction

PART II: Monte Carlo for Perturbative QCD

Parton showers – the basics

(日) (同) (三) (三)

PART III: Precision Simulations

PART IV: Monte Carlo for Non-Perturbative QCD

Onderlying Event

- ▲ ロ ト ▲ 聞 ト ▲ 国 ト → 国 - ののの

PART I: INTRODUCTION

QCD BASICS

SCALES & KINEMATICS

F. Krauss QCD & Monte Carlo Event Generators IPPP

3

イロト イヨト イヨト イヨト

Contents

- 1.a) Factorisation: an electromagnetic analogy
- 1.c) QED Initial and Final State Radiation
- 1.b) DGLAP equations in QED
- 1.d) Running of α_s and bound states
- 1.e) Hadrons in initial state: DGLAP equations of QCD
- 1.f) Hadron production: Scales

イロト イポト イヨト イヨト

An electromagnetic analogy

• consider a charge Z moving at constant velocity v

- at v = 0: radial E field only
- at v = c: B field emerges: $\vec{E} \perp \vec{B}$, $\vec{B} \perp \vec{v}$, $\vec{E} \perp \vec{v}$,

energy flow \sim Poynting vector $\vec{S} \sim \vec{E} \times \vec{B}$, $\parallel \vec{v} \parallel$

• approximate classical fields by "equivalent quanta": photons

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• spectrum of photons:

(in dependence on energy ω and transverse distance b_{\perp})

$$\mathrm{d}\boldsymbol{n}_{\gamma} = \frac{Z^{2}\alpha}{\pi} \cdot \frac{\mathrm{d}\omega}{\omega} \cdot \frac{\mathrm{d}\boldsymbol{b}_{\perp}^{2}}{\boldsymbol{b}_{\perp}^{2}} \xrightarrow{\mathrm{electron}(Z=1)} \frac{\alpha}{\pi} \cdot \frac{\mathrm{d}\omega}{\omega} \cdot \frac{\mathrm{d}\boldsymbol{b}_{\perp}^{2}}{\boldsymbol{b}_{\perp}^{2}}$$

• Fourier transform to transverse momenta k_{\perp} :

$$\mathrm{d}\boldsymbol{n}_{\gamma} = \frac{\alpha}{\pi} \cdot \frac{\mathrm{d}\omega}{\omega} \cdot \frac{\mathrm{d}\boldsymbol{k}_{\perp}^2}{\boldsymbol{k}_{\perp}^2}$$

note: divergences for $k_{\perp} \rightarrow 0$ (collinear) and $\omega \rightarrow 0$ (soft) • therefore: Fock state for lepton = superposition (coherent):

$$|e\rangle_{\rm phys} = |e\rangle + |e\gamma\rangle + |e\gamma\gamma\rangle + |e\gamma\gamma\gamma\rangle + \dots$$

photon fluctuations will "recombine"

イロト イヨト イヨト イヨト

- lifetime of electron–photon fluctuations: $e(P) \rightarrow e(p) + \gamma(k)$
- first estimate: use uncertainty relation and Lorentz time dilation
 - $P^2 = (p + k)^2 = M_{\text{virt}}^2$ the virtual mass of the incident electron
 - life time = life time in rest frame \cdot time dilation

$$au \sim rac{1}{M_{
m virt}} \cdot rac{E}{M_{
m virt}} = rac{E}{(p+k)^2} \sim rac{E}{2Ek(1-\cos heta)} pprox rac{k}{k^2\sin^2 heta/2} pprox rac{\omega}{k_{\perp}^2}$$

- second estimate: use uncertainty relation and assume only photon off-shell
 - energy balance of photon

$$P^2 = 2p \cdot k + k^2$$
, therefore $k^2 \approx -k_\perp^2 \approx -2p \cdot k < 0$.

• assume photon momentum to be $k^{\mu} = (\omega, \vec{k}_{\perp}, k_{\parallel})$, shift in energy for photon going on-shell: $\delta \omega \sim k_{\perp}^2 / \omega$, therefore

$$\tau_{\gamma} \sim \frac{1}{\delta \omega} \approx \frac{\omega}{k_{\perp}^2} \approx \frac{\omega}{\omega^2 \sin^2 \theta} \approx \frac{1}{\omega \theta^2}$$

lifetime larger with smaller transverse momentum

(i.e. with larger transverse distance)

QED Initial and Final State Radiation

- physical interpretation:
 equivalent quanta = quantum manifestation of accompanying fields
- in absence of interaction: recombination enforced by coherence
- but: hard interaction possibly "kicks out" quantum
 - \longrightarrow coherence broken
 - \longrightarrow equivalent (virtual) quanta become real
 - \longrightarrow emission pattern unravels

alternative idea:

initial state radiation of photons off incident electron

イロト イ団ト イヨト イヨ

- consider final state radiation in $\gamma^* \to \ell \bar{\ell}$ (electron velocities/momenta labelled as v and v'/p and p')
- classical electromagnetic spectrum from radiation function:

(this is from Jackson or any other reasonable book on ED)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

$$\frac{\mathrm{d}^2 I}{\mathrm{d}\omega \mathrm{d}\Omega} \; = \; \frac{e^2}{4\pi^2} \left| \vec{\epsilon}^{\,*} \cdot \left(\frac{\vec{v}}{1-\vec{v}\cdot\vec{n}} - \frac{\vec{v}'}{1-\vec{v}'\cdot\vec{n}} \right) \right|^2 \, ,$$

with ϵ the polarisation vector and $\vec{n}(\Omega)$ the direction of the radiation • recast with four-momenta, equivalent photon spectrum:

$$dN = \frac{d^3k}{(2\pi)^3 2k_0} \frac{\alpha}{\pi} \left| \epsilon_{\mu}^* \left(\frac{p^{\mu}}{p \cdot k} - \frac{p'^{\mu}}{p' \cdot k} \right) \right|^2$$
$$= \frac{d^3k}{(2\pi)^3 2k_0} \frac{\alpha}{\pi} \left| W_{pp';k} \right|^2$$

with the eikonal $W_{pp';k}$

• repeat exercise in QFT, Feynman diagrams:

$$\mathcal{M}_{X \to e^+ e^- \gamma} = e \bar{u}(p) \left[\Gamma \frac{\not{p}' - \not{k}}{(p'-k)^2} \gamma^{\mu} - \gamma^{\mu} \frac{\not{p} + \not{k}}{(p+k)^2} \Gamma \right] u(p') \epsilon^*_{\mu}(k)$$

$$\xrightarrow{\text{soft}} e \epsilon^*_{\mu}(k) \left[\frac{p^{\mu}}{p \cdot k} - \frac{p'^{\mu}}{p' \cdot k} \right] \bar{u}(p') \Gamma u(p) = e \mathcal{M}_{X \to e^+ e^- \gamma} \cdot W_{pp';k}$$

 manifestation of Low's theorem: soft radiation independent of spin (→ classical)

(radiation decomposes into soft, classical part with logs - i.e. dominant - and hard collinear part)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

DGLAP equations for QED

(Dokshitser-Gribov-Lipatov-Altarelli-Parisi Equations)

イロト イポト イヨト イヨト

• define probability to find electron or photon in electron:

at LO in
$$\alpha$$
(noemission) : $\ell(x, k_{\perp}^2) = \delta(1-x)$
and $\gamma(x, k_{\perp}^2) = 0$

(introduced x = energy fraction w.r.t. physical state)

- including emissions:
 - probabilities change
 - energy fraction ξ of lepton parton w.r.t. the physical lepton object reduced by some fraction $z = x/\xi$
 - reminder: differential of photon number w.r.t. k_{\perp}^2 :

$$\mathrm{d}n_{\gamma} = \frac{\alpha}{\pi} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \frac{\mathrm{d}\omega}{\omega} \iff \frac{\mathrm{d}n_{\gamma}}{\mathrm{d}\log k_{\perp}^2} = \frac{\alpha}{\pi} \frac{\mathrm{d}x}{x}$$

• evolution equations (trivialised)

$$\frac{\mathrm{d}\ell(x, k_{\perp}^{2})}{\mathrm{d}\log k_{\perp}^{2}} = \frac{\alpha(k_{\perp}^{2})}{2\pi} \int_{x}^{1} \frac{\mathrm{d}\xi}{\xi} \mathcal{P}_{\ell\ell}\left(\frac{x}{\xi}, \alpha(k_{\perp}^{2})\right) \ell(\xi, k_{\perp}^{2})$$
$$\frac{\mathrm{d}\gamma(x, k_{\perp}^{2})}{\mathrm{d}\log k_{\perp}^{2}} = \frac{\alpha(k_{\perp}^{2})}{2\pi} \int_{x}^{1} \frac{\mathrm{d}\xi}{\xi} \mathcal{P}_{\gamma\ell}\left(\frac{x}{\xi}, \alpha(k_{\perp}^{2})\right) \ell(\xi, k_{\perp}^{2}).$$

- k_{\perp}^2 plays the role of "resolution parameter"
- the $\mathcal{P}_{ab}(z)$ are the splitting functions, encoding quantum mechanics of the "splitting cross section", for example (at LO)

$$\mathcal{P}_{\ell\ell}(z) = \left(\frac{1+z^2}{1-z}\right)_+ + \frac{3}{2}\delta(1-z)$$

• if $\gamma \to \ell \bar{\ell}$ splittings included, have to add entries/splitting functions into evolution equations above

Running of $\alpha_{\rm s}$ and bound states

- quantum effect due to loops: couplings change with scale
- running driven by β -function

$$\beta(\alpha_{s}) = \mu_{R}^{2} \frac{\partial \alpha_{s}(\mu_{R}^{2})}{\partial \mu_{R}^{2}}$$
$$= \frac{\beta_{0}}{4\pi} \alpha_{s}^{2} + \frac{\beta_{1}}{(4\pi)^{2}} \alpha_{s}^{3} + \dots$$

with

$$\beta_0 = \frac{11}{3} C_A - \frac{4}{3} T_R n_f$$

$$\beta_1 = \frac{34}{3} C_A^2 - \frac{20}{3} C_A T_R n_f - 4 C_F T_R n_f$$

- ▲ ロ ト ▲ 聞 ト ▲ 国 ト ▲ 国 - ろくで

• Casimir operators in the fundamental and adjoint representation:

$$C_F = \frac{N_c^2 - 1}{2N_c}$$
 and $C_A = N_c$

with $N_c = 3$ colours and $T_R = 1/2$.

- n_f = the number of (quark) flavours
- the Casimirs correspond to quark and gluon colour charges
- explicit expression for strong coupling

$$\alpha_{\rm s}(\mu_R^2) \equiv \frac{g_{\rm s}^2(\mu_R^2)}{4\pi} = \frac{1}{\frac{\beta_0}{4\pi}\log\frac{\mu_R^2}{\Lambda_{\rm QCD}^2}}$$

with $\Lambda_{\rm QCD}$ the Landau pole of QCD, $\Lambda_{\rm QCD}\approx 250{\rm MeV}.$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Hadrons in initial state: DGLAP equations of QCD

similar to QED case:
 define probabilities (at LO) to find a parton q - quark or gluon - in hadron h at energy fraction x and resolution parameter/scale Q:
 parton distribution function (PDF) f_{q/h}(x, Q²)

• scale-evolution of PDFs: DGLAP equations

$$\begin{split} & \frac{\partial}{\partial \log Q^2} \begin{pmatrix} f_{q/h}(x, Q^2) \\ f_{g/h}(x, Q^2) \end{pmatrix} \\ & = \frac{\alpha_{\rm s}(Q^2)}{2\pi} \int_{x}^{1} \frac{\mathrm{d}z}{z} \begin{pmatrix} \mathcal{P}_{qq}\left(\frac{x}{z}\right) & \mathcal{P}_{qg}\left(\frac{x}{z}\right) \\ \mathcal{P}_{gq}\left(\frac{x}{z}\right) & \mathcal{P}_{gg}\left(\frac{x}{z}\right) \end{pmatrix} \begin{pmatrix} f_{q/h}(z, Q^2) \\ f_{g/h}(z, Q^2) \end{pmatrix}, \end{split}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

• QCD splitting functions:

$$\begin{aligned} \mathcal{P}_{qq}^{(1)}(x) &= C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \delta(1-x) \right] &= \left[P_{qq}^{(1)}(x) \right]_+ + \gamma_q^{(1)} \delta(1-x) \\ \mathcal{P}_{qg}^{(1)}(x) &= T_R \left[x^2 + (1-x)^2 \right] = P_{qg}^{(1)}(x) \\ \mathcal{P}_{gq}^{(1)}(x) &= C_F \left[\frac{1+(1-x)^2}{x} \right] = P_{gq}^{(1)}(x) \\ \mathcal{P}_{gg}^{(1)}(x) &= 2C_A \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right] \\ &+ \frac{11C_A - 4n_f T_R}{6} \delta(1-x) = \left[P_{gg}^{(1)}(x) \right]_+ + \gamma_g^{(1)} \delta(1-x). \end{aligned}$$

 remark: IR regularisation by +−prescription & terms ~ δ(1 − x) from physical conditions on splitting functions

(flavour conservation for $q\, \rightarrow\, qg$ and momentum conservation for $g\, \rightarrow\, gg,\, q\bar{q})$

<ロ> (日) (日) (日) (日) (日)

- simple idea: proton = $|uud\rangle$ (valence quarks) only
- naively: no interactions $\longrightarrow f_{u,d/p} \sim \delta\left(x - \frac{1}{3}\right)$
- elastic interactions \longrightarrow Gaussian smearing
- strong interactions: develop "sea" = soft partons will depend on resolution scale remember: $dn \propto \log \omega \log k_1^2$
 - ullet in fact, due to $g \to gg$, sea increases much faster,

$$f_{{\rm sea}/p}(x,\;Q^2)\sim x^{-\lambda}\;,\;\;\lambda\approx 1\,.$$

イロト イポト イヨト イヨト

э

(日) (四) (三) (三)

Hadron production: Scales

- consider QCD final state radiation
- pattern for $q \rightarrow qg$ similar to $\ell \rightarrow \ell \gamma$ in QED:

$$\begin{split} \mathrm{d}w^{q \to qg} &= \frac{\alpha_{\mathsf{s}}(k_{\perp}^2)}{2\pi} \, C_F \, \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \, \frac{\mathrm{d}\omega}{\omega} \, \left[1 + \left(1 - \frac{\omega}{E} \right)^2 \right] \\ &\stackrel{\omega = E(1-z)}{=} \, \frac{\alpha_{\mathsf{s}}(k_{\perp}^2)}{2\pi} \, C_F \, \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \, \mathrm{d}z \, \frac{1+z^2}{1-z} = \frac{\alpha_{\mathsf{s}}(k_{\perp}^2)}{2\pi} \, C_F \, \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \, \mathrm{d}z \, P_{qg}^{(1)}(z) \, . \end{split}$$

- divergent structures for:
 - $z \rightarrow 1$ (soft divergence) \longleftrightarrow infrared/soft logarithms $k_{\perp}^2 \rightarrow 0$ (collinear/mass divergence) \longleftrightarrow collinear logarithms
- cut regularise with cut-off $k_{\perp,{
 m min}} \sim 1{
 m GeV} > \Lambda_{\sf QCD}$

・ロト ・聞 ト ・ ヨト ・ ヨトー

- find two perturbative regimes:
 - a regime of jet production, where $k_{\perp} \sim k_{\parallel} \sim \omega \gg k_{\perp,\min}$ and emission probabilities scale like $w \sim \alpha_{\rm s}(k_{\perp}) \ll 1$; and
 - a regime of jet evolution, where $k_{\perp,\min} \leq k_{\perp} \ll k_{\parallel} \leq \omega$ and therefore emission probabilities scale like $w \sim \alpha_s(k_{\perp}) \log^2 k_{\perp}^2 \stackrel{>}{\sim} 1$.
- in jet production: standard fixed-order perturbation theory
- in jet evolution regime, perturbative parameter not α_s any more but rather towers of exp [α_s log k₁² log k₁]
- induces counting of leading logarithms (LL), $\alpha_s L^{2n}$,

next-to leading logarithms (NLL), $\alpha_s L^{2n-1}$, etc.

イロト イヨト イヨト イヨト

- consider spatio-temporal structure in classical QED case
 - assume a charge comes into existence at t = 0 with v = 0: in its rest frame radial E spreads out in sphere r' ≤ t'
 - assume charge moves with $v \to 1$ and Lorentz factor E/m: then in lab frame field at radial distance r_{\perp} will arrive at $t = \gamma t' = Er_{\perp}/m$
- translate to classical QCD:
 - light quarks with constituent mass $m \approx \Lambda_{\rm QCD} \approx 1/R$ or $m = m_Q$ for heavy quarks

(assume here typical hadron radius R)

イロト イヨト イヨト

- identify r_{\perp} with typical hadronic size R
- then: hadronization time

$$t^{(\mathrm{had})} pprox \left\{ egin{array}{c} ER^2 & \mathrm{for \ light \ quarks} \ rac{ER}{m_Q} & \mathrm{for \ heavy \ quarks}. \end{array}
ight.$$

- repeat exercise in quantum mechanics
- confining forces associated with gluons with $k \approx k_{\perp} \approx k_{\parallel} \approx 1/R \approx m$ in hadronic rest frame
- demand hadronization time \geq formation time:

$$t^{(\mathrm{form})} \approx rac{k_{\parallel}}{k_{\perp}^2} \leq k_{\parallel} R^2 \approx t^{(\mathrm{had})}$$

- therefore $k_{\perp} \geq 1/R \,=\, \mathcal{O}\left(\mathrm{few}\, \Lambda_{\mathsf{QCD}}
 ight)$
- therefore: breakdown of perturbative picture at scales/transverse momenta $\mathcal{O}\left(\mathrm{few}\,\Lambda_{QCD}\right)$
- "gluers" replace gluons
- transition to bound states (phase transition)
- no first-principle understanding: \implies models

(日) (同) (三) (三)

Summary

GOING MONTE CARLO

GENERAL IDEAS & TECHNIQUES

▲ロト ▲理 ▼ ▲目 ▼ ▲目 ▼ ▲ ● ● ● ● ●

F. Krauss QCD & Monte Carlo Event Generators IPPP

Contents

- 2.a) Prelude: selecting from a distribution
- 2.b) Monte Carlo integration: basic idea
- 2.c) Traditional MC simulation

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Prelude: Selecting from a distribution

- a typical Monte Carlo/simulation problem:
 - wanted: random numbers x ∈ [x_{min}, x_{max}], distributed according to (probability) density f(x), i.e.

$$\mathcal{P}(x \in [x', x' + \mathrm{d}x']) = f(x')\mathrm{d}x'$$

- but: only "usual" random numbers # available: "flat" in [0, 1]
- exact solution:
 - must know integral F of density f and its inverse F^{-1}
 - x given by

$$\int_{x_{\min}}^{x} dx' f(x') = \# \int_{x_{\min}}^{x_{\max}} dx' f(x')$$

and therefore

$$x = F^{-1}[F(x_{\min}) + \#(F(x_{\max}) - F(x_{\min}))]$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Selecting from a distribution

• case above is very untypical – integral sometimes known, inverse practically never

need a work-around solution: "Hit-or-miss"

(solution, if exact case does not work.)

• construct good "over-estimator" g(x) (G and G^{-1} known):

 $g(x) > f(x) \quad \forall x \in [x_{\min}, x_{\max}]$

$$g(x) = \operatorname{Max}_{[x_{\min}, x_{\max}]} \{f(x)\}.$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Monte Carlo integration

• underlying idea: determination of π with random number generator

$$\frac{\text{Hits}}{\text{Misses + Hits}} \rightarrow \frac{\pi}{4}$$

Throw random points (x,y), with x, y in [0,1] For hits: $(x^2+y^2) < r^2 = 1$

・ロト ・同ト ・ヨト ・ヨ

• MC integration: estimate integral by N probes

$$\begin{split} I_{f}^{(a,b)} &= \int_{a}^{b} \mathrm{d}x f(x) \\ \longrightarrow \langle I_{f}^{(a,b)} \rangle &= \frac{b-a}{N} \sum_{i=1}^{N} f(x_{i}) = \langle f \rangle_{a,b} \end{split}$$

where x_i homogeneously distributed in [a, b]

• error estimate from statistical sample \implies standard deviation

$$\langle E_f^{(a,b)}(N) \rangle = \sigma = \left[\frac{\langle f^2 \rangle_{a,b} - \langle f \rangle_{a,b}^2}{N} \right]^{1/2}$$

independent of the number of integration dimensions!
 method of choice for high-dimensional integrals.

(日) (同) (三) (三)

Monte Carlo integration: refinements

- want to minimise number of potentially expensive function calls \implies need to improve convergence of MC integration.
- first basic idea: sample in regions, where f largest

(\implies corresponds to a Jacobean transformation of integral)

イロト イヨト イヨト

- alternative algorithm: minimise error by "smoothing" integrand ("importance sampling")
 - assume a function g(x) similar to f(x).
 - f(x)/g(x) smooth $\Longrightarrow \langle E(f/g) \rangle$ small
 - must sample according to dx g(x) rather than dx: g(x) plays role of probability distribution; we know already how to deal with this!
- works, if f(x) is well-known, but hard to generalise.

- importance sampling
- consider $f(x) = \cos \frac{\pi x}{2}$ and $g(x) = 1 x^2$:

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ● ●
• yet another idea: decompose integral in M sub-integrals

$$\langle I(f) \rangle = \sum_{j=1}^{M} \langle I_j(f) \rangle$$

 $\langle E(f) \rangle^2 = \sum_{j=1}^{M} \langle E_j(f) \rangle^2$

• overall variance smallest, if "equally distributed".

 $(\implies$ sample, where the fluctuations are.)

イロト イヨト イヨト イヨト

("stratified sampling")

- algorithm:
 - divide interval in bins (variable bin-size or weight);
 - adjust such that variance identical in all bins.

- stratified sampling
- consider $f(x) = \cos \frac{\pi x}{2}$ and $g(x) = 1 x^2$:

イロト イヨト イヨト イヨト

- a hybrid of stratified and importance sampling: replace independent bins of stratified sampling with independent functions of importance sampling
- "bins" with weight α_i of "eigenfunctions" $g_i(x)$: $\implies g(\vec{x}) = \sum_{i=1}^{N} \alpha_i g_i(\vec{x}).$
- in particle physics, this is the method of choice for parton level event generation:
 - translate each Feynman diagram into one or more channels
 - optimise interplay of channels, cuts, etc. through weights α_i
 - optional: add VEGAS to "best" channels

イロト イヨト イヨト イヨト

Traditional MC simulation

• a classical example: two-dimensional Ising model:

(spins s_i fixed on 2-D lattice with nearest neighbour interactions.)

イロト イポト イヨト イヨト

$$\mathcal{H} = -J\sum_{\langle ij
angle} s_i s_j$$

• evaluation of observable ${\mathcal O}$ by summing over all micro states $\phi_{\{i\}},$ given as spin ensembles (similar to path integral in QFT.)

$$\langle \mathcal{O} \rangle = \int \mathcal{D}\phi_{\{i\}} \operatorname{Tr} \left\{ \mathcal{O}(\phi_{\{i\}}) \exp\left[-\frac{\mathcal{H}(\phi_{\{i\}})}{k_B T}\right] \right\}$$

 typical problem in such calculations (integrations!): phase space too large ⇒ need to sample.

- Metropolis algorithm simulates the canonical ensemble, summing/integrating over micro-states with MC method.
- necessary ingredient: interactions among spins in probabilistic language (this will come back to us!)
- algorithm:
 - go over the spins,
 - o check whether they flip:
 - compare $\mathcal{P}_{\mathrm{flip}}$ with random number
 - $\mathcal{P}_{\rm flip}$ from energies of the two micro-states (before and after flip) and Boltzmann factors
 - repeat to equilibrium.
 - evaluate observables directly during run &take thermal average

(average over many steps).

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- why does this work? detailed balance!
 - consider one spin flip, connecting micro-states 1 and 2.
 - $\bullet\,$ rate of transitions given by the transition probabilities ${\cal W}$

• if
$$E_1 > E_2$$
 then $\mathcal{W}_{1 \to 2} = 1$ and $\mathcal{W}_{2 \to 1} = \exp\left(-\frac{E_1 - E_2}{k_B T}\right)$

• in thermal equilibrium, both transitions equally often:

$$\mathcal{P}_2\mathcal{W}_{2\to 1}=\mathcal{P}_1\mathcal{W}_{1\to 2}$$

takes into account that the respective states are occupied according to their Boltzmann factors.

```
(\mathcal{P}_i \sim \exp(-E_i/k_BT))
```

イロト イポト イヨト イヨト

 in principle, all systems in thermal equilibrium can be studied with Metropolis - just need to write transition probabilities in accordance with detailed balance, as above ⇒ general simulation strategy in thermodynamics.

$\bullet\,$ example results on a 10 $\times\,$ 10 lattice

PART II: MONTE CARLO

FOR PERTURBATIVE QCD

F. Krauss QCD & Monte Carlo Event Generators IPPP

э

イロト イヨト イヨト イヨト

MONTE CARLO FOR

PARTON LEVEL

▲ロ▶ ▲母▶ ▲臣▶ ▲臣▶ 三臣 めんの

F. Krauss QCD & Monte Carlo Event Generators IPPP

Contents

- 3.a) Calculating matrix elements efficiently
- 3.b) Phase spacing for professionals
- 3.c) Including higher order corrections
- 3.d) Cancellation of IR divergences
- 3.e) Tools for LHC physics

< ロ > < 同 > < 三 > < 三 :

Simulating hard processes (signals & backgrounds)

• Simple example: $t \to bW^+ \to b\bar{l}\nu_l$:

$$|\mathcal{M}|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2\theta_W}\right)^2 \frac{p_t \cdot p_\nu p_b \cdot p_l}{(p_W^2 - M_W^2)^2 + \Gamma_W^2 M_W^2}$$

(日) (同) (三) (三)

• Phase space integration (5-dim):

$$\Gamma = rac{1}{2m_t}rac{1}{128\pi^3}\int\mathrm{d}p_W^2rac{\mathrm{d}^2\Omega_W}{4\pi}rac{\mathrm{d}^2\Omega}{4\pi}\left(1-rac{p_W^2}{m_t^2}
ight)|\mathcal{M}|^2$$

- 5 random numbers \implies four-momenta \implies "events".
- Apply smearing and/or arbitrary cuts.
- Simply histogram any quantity of interest no new calculation for each observable

Calculating matrix elements efficiently

- stating the problem(s):
 - multi-particle final states for signals & backgrounds.
 - need to evaluate $d\sigma_N$:

$$\int_{\text{cuts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^{3} q_{i}}{(2\pi)^{3} 2 E_{i}} \right] \delta^{4} \left(p_{1} + p_{2} - \sum_{i} q_{i} \right) \left| \mathcal{M}_{p_{1} p_{2} \rightarrow N} \right|^{2}.$$

- problem 1: factorial growth of number of amplitudes.
- problem 2: complicated phase-space structure.
- solutions: numerical methods.

• example for factorial growth: $e^+e^- o qar q + ng$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

• obvious: traditional textbook methods (squaring, completeness relations, traces) fail

 \implies result in proliferation of terms $(\mathcal{M}_i \mathcal{M}_i^*)$

• better ideas of efficient ME calculation:

 \implies realise: amplitudes just are complex numbers,

 \implies add them before squaring!

- remember: spinors, gamma matrices have explicit form could be evaluated numerically (brute force) but: Rough method, lack of elegance, CPU-expensive
- can do better with smart basis for spinors (see next slide)
- this is still on the base of traditional Feynman diagrams!

・ロト ・同ト ・ヨト ・ヨ

• helicity method:

- introduce basic helicity spinors (needs to "gauge"-vectors)
- write everything as spinor products, e.g.

 $\bar{u}(p_1, h_1)u(p_2, h_2) = \text{complex numbers.}$

• have completeness relations such as

$$egin{aligned} & (\not p+m) \implies rac{1}{2} \sum_h \left[\left(1+rac{m^2}{p^2}
ight) ar u(p,\,h) u(p,\,h) \ & + \left(1-rac{m^2}{p^2}
ight) ar v(p,\,h) v(p,\,h)
ight] \end{aligned}$$

- there are other genuine expressions ...
- translate Feynman diagrams into "helicity amplitudes": complex-valued functions of momenta & helicities.
- spin-correlations etc. nearly come for free.

・ロト ・同ト ・ヨト ・ヨ

- taming the factorial growth in the helicity method
 - by reusing pieces: calculate only once!
 - factoring out: reduce number of multiplications!

can be implemented as a-posteriori manipulations of amplitudes.

• better method: recursion relations (recycling built in). best candidate so far: off-shell recursions

(Dyson-Schwinger, Berends-Giele etc.)

• □ ▶ • • • • • • • • •

- improvement: off-shell recursion relations
- general idea: recursively construct generalised currents $\mathcal{J}_{\alpha}(\pi)$ for a set π of external particles on their mass shell plus one internal one

$$\mathcal{J}_{\alpha}(\pi) = \mathcal{P}_{\alpha}(\pi) \left\{ \sum_{\mathcal{P}_{2}(\pi)} \sum_{\mathcal{V}_{\alpha}^{\alpha_{1}\alpha_{2}}} \left[S(\pi_{1}, \pi_{2}) \mathcal{V}_{\alpha}^{\alpha_{1}\alpha_{2}} \mathcal{J}_{\alpha_{1}}(\pi_{1}) \mathcal{J}_{\alpha_{2}}(\pi_{2}) \right] \right.$$

$$+\sum_{\mathcal{P}_{3}(\pi)}\sum_{\mathcal{V}_{\alpha}^{\alpha_{1}\alpha_{2}\alpha_{3}}}\left[\mathcal{S}(\pi_{1},\pi_{2},\pi_{3})\mathcal{V}_{\alpha}^{\alpha_{1}\alpha_{2}\alpha_{3}}\mathcal{J}_{\alpha_{1}}(\pi_{1})\mathcal{J}_{\alpha_{2}}(\pi_{2})\mathcal{J}_{\alpha_{3}}(\pi_{3})\right]$$

イロト イポト イヨト イヨト

- $P_{lpha}(\pi)$ denotes the propagator denominator
- $S(\pi_1, \pi_2)$ and $S(\pi_1, \pi_2, \pi_3)$ for symmetry factors
- \mathcal{V}_{α} for three– and four–particle vertices
- go over all permutations of external particles π

- recursion relations particularly powerful due to massive recycling as integral part of structure \longrightarrow bookkeeping problem only
- there are sub-classes of particularly simple amplitudes: maximally helicity violating (MHV) amplitudes
- all-gluon amplitudes with helicities given

(Parke-Taylor/Berends-Giele amplitudes)

イロト イヨト イヨト

$$\mathcal{A}(1^+, 2^+, \dots, i^-, \dots, j^-, \dots, n^+) = ig_s^{n-2} \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle (n-1)n \rangle \langle n1 \rangle}$$

$$\mathcal{A}(1^-, 2^-, \dots, i^+, \dots, j^+, \dots, n^-) = ig_s^{n-2} \frac{[ij]^4}{[12][23] \dots [(n-1)n][n1]}.$$

- terms [*ij*] etc. are products of two-component left- and right-handed Weyl spinors (particularly simple)
- note: all-sign identical amplitudes vanish due to the conservation of angular momentum

- in principle also factorial growth with number of colours
- sampling over colours improves situation.

(but still, e.g. naively $\simeq (n-1)!$ permutations/colour-ordering for n external gluons).

• improved scheme: colour dressing

$$T^{a}_{i\bar{j}}T^{a}_{k\bar{l}} = \delta_{i\bar{l}}\delta_{k\bar{j}} - \frac{1}{N_{c}}\delta_{i\bar{j}}\delta_{k\bar{l}} \longleftrightarrow \overset{i}{\underset{\bar{j}}{\longrightarrow}} \overset{l}{\underset{k}{\longrightarrow}} - \frac{1}{N_{c}}\overset{i}{\underset{\bar{j}}{\longrightarrow}} \overset{l}{\underset{k}{\longrightarrow}}$$

• works very well with Berends-Giele recursions

Final	BG		BCF		CSW	
State	CO	CD	CO	CD	CO	CD
2g	0.24	0.28	0.28	0.33	0.31	0.26
3g	0.45	0.48	0.42	0.51	0.57	0.55
4g	1.20	1.04	0.84	1.32	1.63	1.75
5g	3.78	2.69	2.59	7.26	5.95	5.96
6g	14.2	7.19	11.9	59.1	27.8	30.6
7q	58.5	23.7	73.6	646	146	195
89	276	82.1	597	8690	919	1890
9q	1450	270	5900	127000	6310	29700
10g	7960	864	64000		48900	-

Time [s] for the evaluation of 10^4 phase space points, sampled over helicities & colour.

- ∢ ∃ →

Phase spacing for professionals

("Amateurs study strategy, professionals study logistics")

- democratic, process-blind integration methods:
 - Rambo/Mambo: Flat & isotropic

R.Kleiss, W.J.Stirling & S.D.Ellis, Comput. Phys. Commun. 40 (1986) 359;

• HAAG/Sarge: Follows QCD antenna pattern

A.van Hameren & C.G.Papadopoulos, Eur. Phys. J. C 25 (2002) 563.

 multi-channelling: each Feynman diagram related to a phase space mapping (= "channel"), optimise their relative weights

R.Kleiss & R.Pittau, Comput. Phys. Commun. 83 (1994) 141.

(日) (同) (三) (三)

- main problem: practical only up to $\mathcal{O}(10k)$ channels.
- some improvement by building phase space mappings recursively: more channels feasible, efficiency drops a bit.

basic idea of multichannel sampling (again): use a sum of functions $g_i(\vec{x})$ as Jacobean $g(\vec{x})$. $\implies g(\vec{x}) = \sum_{i=1}^{N} \alpha_i g_i(\vec{x});$ \implies condition on weights like stratified sampling; ("combination" of importance & stratified sampling).

algorithm for one iteration:

- select g_i with probability α_i → x_j.
- calculate total weight g(x_i) and partial weights g_i(x_i)
- add f(x_j)/g(x_j) to total result and f(x_j)/g_i(x_j) to partial (channel-) results.
- after N sampling steps, update a-priori weights.

・ロト ・同ト ・ヨト ・ヨ

this is the method of choice for parton level event generation!

- quality measure for integration performance: unweighting efficiency
- want to generate events "as in nature".
- basic idea: use hit-or-miss method;
 - generate \vec{x} with integration method,
 - compare actual $f(\vec{x})$ with maximal value during sampling
 - \implies "Unweighted events".
- comments:
 - unweighting efficiency, $w_{\rm eff} = \langle f(\vec{x}_j)/f_{\rm max} \rangle$ = number of trials for each event.
 - expect $\log_{10} w_{\rm eff} \approx 3-5$ for good integration of multi-particle final states at tree-level.
 - maybe acceptable to use $f_{\max,\text{eff}} = K f_{\max}$ with K < 1. problem: what to do with events where $f(\vec{x}_j)/f_{\max,\text{eff}} > 1$? answer: Add $\inf[f(\vec{x}_j)/f_{\max,\text{eff}}] = k$ events and perform hit-or-miss on $f(\vec{x}_j)/f_{\max,\text{eff}} - k$.

イロト イ理ト イヨト イヨト

Including higher order corrections

- effect: reducing the dependence on $\mu_R \& \mu_F$ NLO allows for meaningful estimate of uncertainties
- additional difficulties when going NLO:

ultraviolet divergences in virtual correction infrared divergences in real and virtual correction

enforce

UV regularisation & renormalisation IR regularisation & cancellation

(Kinoshita-Lee-Nauenberg-Theorem)

イロト イ伺ト イヨト イヨト

- traditional bottleneck of higher-order calculations: virtual parts
- algorithm before about 2005:
 - Passarino-Veltman reduction of tensors in numerator

(replace
$$2p \cdot k = (p+k)^2 - p^2 - k^2$$
)

イロト イポト イヨト イヨト

• reduce to scalar master integrals of the form

$$\int \frac{\mathrm{d}^D k}{[(p_1+k)^2(p_2+k)^2\dots]}$$

• further reduce to integrals with up to four propagators only (but careful: introduces instabilities through "Gram determinants")

- about 2005: begin of "NLO revolution"
- basic idea: reduce to master integrals numerically by cutting

• coefficients of master integrals emerge as solutions of linear equations

(日) (同) (三) (三)

Cancellation of infrared divergences

- need a mechanism to cancel IR divergences for higher multiplicities in final states
- toy model in one dimension:

$$|\mathcal{M}_{m+1}^R|^2 = \frac{1}{x} R(x) \text{ and } |\mathcal{M}_m^V|^2 = \frac{1}{\epsilon} V,$$

where x = gluon energy & regularised in $d = 4 - 2\epsilon$ dimensions. Cross section in d dimensions with jet measure F^{J} :

$$\sigma = \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) + \frac{1}{\epsilon} V F_{0}^{J}$$

- KLN theorem: R(0) = V.

(ロ) (部) (目) (日) (日)

• rewrite toy-model cross section as

$$\sigma = \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) - \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_{0}^{J} + \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_{0}^{J} + \frac{1}{\epsilon} V F_{0}^{J}$$
$$= \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} \left(R(x) F_{1}^{J}(x) - V F_{0}^{J} \right) + \mathcal{O}(1) V F_{0}^{J}.$$

- two separately finite integrals, with no large numbers to be added/subtracted.
- subtraction terms are universal (analytic bit can be calculated once and for all).
- this has been automated in two schemes: Catani-Seymour and Frixione-Kunszt-Signer

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

• general structure of NLO calculation for N-body production

$$\begin{split} \mathrm{d}\sigma &= \mathrm{d}\Phi_{\mathcal{B}}\mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{B}}\mathcal{V}_{\mathcal{N}}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{R}}\mathcal{R}_{\mathcal{N}}(\Phi_{\mathcal{R}}) \\ &= \mathrm{d}\Phi_{\mathcal{B}}\left(\mathcal{B}_{\mathcal{N}} + \mathcal{V}_{\mathcal{N}} + \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}\right) + \mathrm{d}\Phi_{\mathcal{R}}\left(\mathcal{R}_{\mathcal{N}} - \mathcal{S}_{\mathcal{N}}\right) \end{split}$$

 \bullet phase space factorisation assumed here $\left(\Phi_{\mathcal{R}}=\Phi_{\mathcal{B}}\otimes\Phi_{1}\right)$

$$\int \mathrm{d} \Phi_1 \mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}} \otimes \Phi_1) \, = \, \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}})$$

process independent subtraction kernels

$$\begin{aligned} \mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) &= \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \,\,\otimes\,\, \mathcal{S}_{1}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) \\ \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) &= \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \,\,\otimes\,\, \mathcal{I}_{1}^{(\mathcal{S})}(\Phi_{\mathcal{B}}) \end{aligned}$$

with universal $\mathcal{S}_1(\Phi_\mathcal{B}\otimes\Phi_1)$ and $\mathcal{I}_1^{(\mathcal{S})}(\Phi_\mathcal{B})$

• in Catani-Seymour invertible phase space mapping

$$\Phi_{\mathcal{R}} \ \longleftrightarrow \ \Phi_{\mathcal{B}} \otimes \Phi_1$$

イロト イヨト イヨト イヨト

Aside: choices ...

- common lore: NLO calculations reduce scale uncertainties
- this is, in general, true. however: unphysical scale choices will yield unphysical results

• so maybe we have to be a bit smarter than just running NLO code

Availability of exact calculations (hadron colliders)

- fixed order matrix elements ("parton level") are exact to a given perturbative order. (and often quite a pain!)
- important to understand limitations: only tree-level and one-loop level fully automated, beyond: prototyping

Survey of existing parton-level tools @ tree-level

	Models	$2 \rightarrow n$	Ampl.	Integ.	public?	lang.
ALPGEN	SM	n = 8	rec.	Multi	yes	Fortran
AMEGIC++	SM, UFO	n = 6	hel.	Multi	yes	C++
Соміх	SM, UFO	n = 8	rec.	Multi	yes	C++
COMPHEP	SM, LANHEP	n = 4	trace	1Channel	yes	С
HELAC	SM	n = 8	rec.	Multi	yes	Fortran
MADEVENT	SM, UFO	n = 6	hel.	Multi	yes	Python/Fortran
WHIZARD	SM, UFO	n = 8	rec.	Multi	yes	O'Caml

Survey of existing parton-level tools @ NLO

	type	technology
		dependencies on other codes
LOOPTOOLS	integrals	
ONELOOP	integrals	
QCDLOOP	integrals	
COLLIER	reduction	
CUTTOOLS	reduction	OPP
FORMCALC	reduction	PV
Ninja	reduction	Laurent expansion
SAMURAI	reduction	
BLACKHAT	library (amplitudes)	OPP (unitarity)
McFм	library (full calculation)	PV & OPP
MJET	library (amplitudes)	OPP
GOSAM	generator (amplitudes)	OPP
		Samurai +Ninja +
MADLOOP	generator (full calculation)	OL+OPP
		CUTTOOLS +
OPENLOOPS	generator (amplitudes)	OL+OPP
		COLLIER +CUTTOOLS +
RECOLA	generator (amplitudes)	TR
		COLLIER +CUTTOOLS +
HELAC-NLO	generator (full calculation)	OPP
		CUTTOOLS +

GOING MONTE CARLO

PARTON SHOWERS – THE BASICS

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

F. Krauss QCD & Monte Carlo Event Generators

Contents

- 4.a) An analogy: radioactive decays
- 4.b) The pattern of QCD radiation
- 4.c) Quantum improvements
- 4.d) Compact notation

An analogy: Radioactive decays

 \bullet consider radioactive decay of an unstable isotope with half-life $\tau.$

(and ignore factors of ln 2.)

• "survival" probability after time t is given by

$$\mathcal{S}(t) = \mathcal{P}_{ ext{nodec}}(t) = \exp[-t/ au]$$

(note "unitarity relation": $\mathcal{P}_{\mathrm{dec}}(t) = 1 - \mathcal{P}_{\mathrm{nodec}}(t)$.)

<ロ> (日) (日) (日) (日) (日)

• probability for an isotope to decay at time t:

$$rac{\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)}{\mathrm{d}t} = -rac{\mathrm{d}\mathcal{P}_{\mathrm{nodec}}(t)}{\mathrm{d}t} = rac{1}{ au} \exp(-t/ au)$$

- now: connect half-life with width $\Gamma = 1/\tau$.
- probability for the isotope to decay at any fixed time t determined by Γ .

• spice things up now: add time-dependence, $\Gamma = \Gamma(t')$

• rewrite

$$\Gamma t \longrightarrow \int_{0}^{t} \mathrm{d}t' \Gamma$$

• decay-probability at a given time t is given by

$$\frac{\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)}{\mathrm{d}t} = \Gamma(t) \exp\left[-\int_{0}^{t} \mathrm{d}t' \Gamma(t')\right] = \Gamma(t) \mathcal{P}_{\mathrm{nodec}}(t)$$

(unitarity strikes again: $d\mathcal{P}_{dec}(t)/dt = -d\mathcal{P}_{nodec}(t)/dt$.)

イロト イヨト イヨト イヨト

- interpretation of l.h.s.:
 - first term is for the actual decay to happen.
 - second term is to ensure that no decay before t

 \implies conservation of probabilities.

the exponential is - of course - called the Sudakov form factor.
The pattern of QCD radiation

- a detour: Altarelli-Parisi equation, once more
- AP describes the scaling behaviour of the parton distribution function

(which depends on Bjorken-parameter and scale Q^2)

$$\frac{\mathrm{d}q(x, Q^2)}{\mathrm{d}\ln Q^2} = \int_x^1 \frac{\mathrm{d}y}{y} \left[\alpha_s(Q^2) P_q(x/y) \right] q(y, Q^2)$$

• term in square brackets determines the probability that the parton emits another parton at scale Q^2 and Bjorken-parameter y

(after the splitting, $x \rightarrow yx + (1 - y)x$.)

< ロト < 同ト < ヨト < ヨト

 driving term: Splitting function P_q(x) important property: universal, process independent ullet differential cross section for gluon emission in $e^+e^-
ightarrow$ jets

$$\frac{\mathrm{d}\sigma_{ee\to 3j}}{\mathrm{d}x_1\mathrm{d}x_2} = \sigma_{ee\to 2j}\frac{C_F\alpha_s}{\pi}\frac{x_1^2 + x_2^2}{(1-x_1)(1-x_2)}$$

singular for $x_{1,2} \rightarrow 1$.

• rewrite with opening angle θ_{qg} and gluon energy fraction $x_3 = 2E_g/E_{\rm c.m.}$:

$$\frac{\mathrm{d}\sigma_{ee\to 3j}}{\mathrm{d}\cos\theta_{qg}\mathrm{d}x_3} = \sigma_{ee\to 2j}\frac{C_F\alpha_s}{\pi}\left[\frac{2}{\sin^2\theta_{qg}}\frac{1+(1-x_3)^2}{x_3} - x_3\right]$$

singular for $x_3 \rightarrow 0$ ("soft"), sin $\theta_{qg} \rightarrow 0$ ("collinear").

The pattern of QCD radiation

• re-express collinear singularities

$$\frac{2\mathrm{d}\cos\theta_{qg}}{\sin^2\theta_{qg}} = \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{qg}}{1+\cos\theta_{qg}}$$
$$= \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{\bar{q}g}}{1-\cos\theta_{\bar{q}g}} \approx \frac{\mathrm{d}\theta_{qg}^2}{\theta_{qg}^2} + \frac{\mathrm{d}\theta_{\bar{q}g}^2}{\theta_{\bar{q}g}^2}$$

 \bullet independent evolution of two jets $(q \mbox{ and } \bar{q})$

$$\mathrm{d}\sigma_{ee\to 3j} \approx \sigma_{ee\to 2j} \sum_{j\in\{q,\bar{q}\}} \frac{C_F \alpha_s}{2\pi} \frac{\mathrm{d}\theta_{jg}^2}{\theta_{jg}^2} P(z) \; ,$$

э

イロト イヨト イヨト イヨト

• note: same form for any $t \propto \theta^2$:

- transverse momentum $k_{\perp}^2 pprox z^2 (1-z)^2 E^2 heta^2$
- invariant mass $q^2 pprox z(1-z)E^2 heta^2$

$$rac{\mathrm{d} heta^2}{ heta^2}pprox rac{\mathrm{d}k_\perp^2}{k_\perp^2}pprox rac{\mathrm{d}q^2}{q^2}$$

- parametrisation-independent observation: (logarithmically) divergent expression for $t \rightarrow 0$.
- practical solution: cut-off Q_0^2 .
 - \implies divergence will manifest itself as log Q_0^2 .
- similar for P(z): divergence for $z \rightarrow 0$ cured by cut-off.

イロト イヨト イヨト イヨト

- what is a parton? collinear pair/soft parton recombine!
- introduce resolution criterion $k_{\perp} > Q_0$.

・ロト ・同ト ・ヨト ・ヨ

• combine virtual contributions with unresolvable emissions: cancels infrared divergences \implies finite at $\mathcal{O}(\alpha_s)$

(Kinoshita-Lee-Nauenberg, Bloch-Nordsieck theorems)

• unitarity: probabilities add up to one $\mathcal{P}(\text{resolved}) + \mathcal{P}(\text{unresolved}) = 1.$

- the Sudakov form factor, once more
- differential probability for emission between q^2 and $q^2 + dq^2$:

$$\mathrm{d}\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{\mathrm{d}q^2}{q^2} \int_{z_{\min}}^{z_{\max}} \mathrm{d}z P(z) =: \mathrm{d}q^2 \, \Gamma(q^2)$$

 \bullet from radioactive example: evolution equation for Δ

$$-\frac{\mathrm{d}\Delta(Q^2, q^2)}{\mathrm{d}q^2} = \Delta(Q^2, q^2)\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}q^2} = \Delta(Q^2, q^2)\Gamma(q^2)$$
$$\implies \Delta(Q^2, q^2) = \exp\left[-\int_{q^2}^{Q^2} \mathrm{d}k^2\Gamma(k^2)\right]$$

- maximal logs if emissions ordered
- impacts on radiation pattern: in each emission t becomes smaller

Quantum improvements

- improvement: inclusion of various quantum effects
- trivial: effect of summing up higher orders (loops) $\alpha_s \rightarrow \alpha_s(k_\perp^2)$

• much faster parton proliferation, especially for small k_{\perp}^2 .

• avoid Landau pole: $k_{\perp}^2 > Q_0^2 \gg \Lambda_{\rm QCD}^2 \Longrightarrow Q_0^2 =$ physical parameter.

《曰》《聞》《臣》《臣》

- soft limit for single emission also universal
- problem: soft gluons come from all over (not collinear!) quantum interference? still independent evolution?
- answer: not quite independent.
- consider case in QED

- assume photon into e^+e^- at θ_{ee} and photon off electron at θ photon momentum denoted as k
- energy imbalance at vertex: $k_{\perp}^{\gamma} \sim k_{\parallel} \theta$, hence $\Delta E \sim k_{\perp}^2 / k_{\parallel} \sim k_{\parallel} \theta^2$.
- formation time for photon emission: $\Delta t \sim 1/\Delta E \sim k_{\parallel}/k_{\perp}^2 \sim 1/(k_{\parallel}\theta^2)$.
- *ee*-separation: $\Delta b \sim \theta_{ee} \Delta t$
- must be larger than transverse wavelength of photon: $\theta_{ee}/(k_{\parallel}\theta^2)>1/k_{\perp}=1/(k_{\parallel}\theta)$
- \bullet thus: $\theta_{ee} > \theta$ must be satisfied for photon to form
- angular ordering as manifestation of quantum coherence

・ロト ・聞 ト ・ヨト ・ヨト

• pictorially:

gluons at large angle from combined colour charge!

• experimental manifestation:

 ΔR of 2nd & 3rd jetinmulti – jeteventsinpp – collisions

Parton showers, compact notation

• Sudakov form factor (no-decay probability)

$$\Delta_{ij,k}^{(\mathcal{K})}(t,t_0) = \exp\left[-\int_{t_0}^t \frac{\mathrm{d}t}{t} \frac{\alpha_{\mathsf{s}}}{2\pi} \int \mathrm{d}z \frac{\mathrm{d}\phi}{2\pi} - \underbrace{\mathcal{K}_{ij,k}(t,z,\phi)}_{t_0,t_0}\right]$$

splitting kernel for (*ij*) \rightarrow *ij* (spectator *k*)

• evolution parameter t defined by kinematics

generalised angle (HERWIG ++) or transverse momentum (PYTHIA, SHERPA)

- will replace $\frac{\mathrm{d}t}{t}\mathrm{d}z\frac{\mathrm{d}\phi}{2\pi}\longrightarrow\mathrm{d}\Phi_1$
- scale choice for strong coupling: $\alpha_{s}(k_{\perp}^{2})$
- regularisation through cut-off t_0

resums classes of higher logarithms

イロト イヨト イヨト イヨト

"compound" splitting kernels K_n and Sudakov form factors Δ^(K)_n for emission off *n*-particle final state:

$$\mathcal{K}_n(\Phi_1) = \frac{\alpha_{\mathsf{s}}}{2\pi} \sum_{\mathsf{all}\,\{ij,k\}} \mathcal{K}_{ij,k}(\Phi_{ij,k}), \quad \Delta_n^{(\mathcal{K})}(t,t_0) = \exp\left[-\int_{t_0}^{t} \mathrm{d}\Phi_1 \, \mathcal{K}_n(\Phi_1)\right]$$

• consider first emission only off Born configuration

$$d\sigma_{B} = d\Phi_{N} \mathcal{B}_{N}(\Phi_{N})$$

$$\cdot \underbrace{\left\{ \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \Big[\mathcal{K}_{N}(\Phi_{1}) \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t(\Phi_{1})) \Big] \right\}}_{\text{integrates to unity} \longrightarrow \text{"unitarity" of parton shower}}$$

• further emissions by recursion with $Q^2 = t$ of previous emission

(日) (同) (三) (三)

- analyse connection to Q_T resummation formalism
- consider standard Collins-Soper-Sterman formalism (CSS):

$$\frac{\mathrm{d}\sigma_{AB\to X}}{\mathrm{d}y\mathrm{d}Q_{\perp}^{2}} = \mathrm{d}\Phi_{X} \mathcal{B}_{ij}(\Phi_{X}) \cdot \underbrace{\int \frac{\mathrm{d}^{2}b_{\perp}}{(2\pi)^{2}} \exp(i\vec{b}_{\perp}\cdot\vec{Q}_{\perp})\tilde{W}_{ij}(b;\Phi_{X})}_{\text{guarantee 4-mom conservation higher orders}}$$

with

$$\tilde{W}_{ij}(b; \Phi_X) = \underbrace{C_i(b; \Phi_X, \alpha_s) C_j(b; \Phi_X, \alpha_s) H_{ij}(\alpha_s)}_{\text{exp} \left[-\int\limits_{1/b_{\perp}^2}^{Q_X^2} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \left(A(\alpha_s(k_{\perp}^2)) \log \frac{Q_X^2}{k_{\perp}^2} + B(\alpha_s(k_{\perp}^2)) \right) \right]}_{\text{Sudakov form factor, } A, B \text{ expanded in powers of } \alpha_s}$$

- analyse structure of emissions above
 logarithmic accuracy in log μN/k⊥ (a la CSS) possibly up to next-to leading log,
 if evolution parameter ~ transverse momentum,
 if argument in αs is ∝ k⊥ of splitting,
 if Kij,k → terms A1,2 and B1 upon integration (OK, if soft gluon correction is included, and if Kij,k → AP splitting kernels)
- in CSS k_⊥ typically is the transverse momentum of produced system, in parton shower of course related to the cumulative effect of explicit multiple emissions
- resummation scale μ_N ≈ μ_F given by (Born) kinematics simple for cases like qq̄' → V, gg → H, ... tricky for more complicated cases

イロト イポト イヨト イヨト

Aultijet merging

ROUND III: PRECISION MONTE CARLO

F. Krauss QCD & Monte Carlo Event Generators IPPP

Vlatching 00000000000000

FIRST IMPROVEMENTS:

ME CORRECTIONS

▲ロト ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへの

F. Krauss QCD & Monte Carlo Event Generators IPPP

Contents

- 5.a) Improving event generators
- 5.b) Matrix-element corrections

Improving event generators

The inner working of event generators ... simulation: divide et impera

• hard process: fixed order perturbation theory

traditionally: Born-approximation

- bremsstrahlung: resummed perturbation theory
- hadronisation: phenomenological models
- hadron decays: effective theories, data
- "underlying event": phenomenological models

< = > < = > < = >

... and possible improvements possible strategies:

- improving the phenomenological models:
 - "tuning" (fitting parameters to data)
 - replacing by better models, based on more physics

(my hot candidate: "minimum bias" and "underlying event" simulation)

- improving the perturbative description:
 - inclusion of higher order exact matrix elements and correct connection to resummation in the parton shower:

"NLO-Matching" & "Multijet-Merging"

• systematic improvement of the parton shower: next-to leading (or higher) logs & colours

First improvements OOOOO Improving event generators

• remember structure of NLO calculation for *N*-body production

$$\begin{split} \mathrm{d}\sigma &= \mathrm{d}\Phi_{\mathcal{B}}\mathcal{B}_{N}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{B}}\mathcal{V}_{N}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{R}}\mathcal{R}_{N}(\Phi_{\mathcal{R}}) \\ &= \mathrm{d}\Phi_{\mathcal{B}}\left(\mathcal{B}_{N} + \mathcal{V}_{N} + \mathcal{I}_{N}^{(\mathcal{S})}\right) + \mathrm{d}\Phi_{\mathcal{R}}\left(\mathcal{R}_{N} - \mathcal{S}_{N}\right) \end{split}$$

 \bullet phase space factorisation assumed here $(\Phi_{\mathcal{R}}=\Phi_{\mathcal{B}}\otimes\Phi_1)$

$$\int \mathrm{d} \Phi_1 \mathcal{S}_{\mathcal{N}} (\Phi_{\mathcal{B}} \otimes \Phi_1) \, = \, \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})} (\Phi_{\mathcal{B}})$$

process independent subtraction kernels

$$egin{array}{lll} \mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}}\otimes\Phi_1) &= \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}})\,\otimes\,\mathcal{S}_1(\Phi_{\mathcal{B}}\otimes\Phi_1) \ \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}}\otimes\Phi_1) &= \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}})\,\otimes\,\mathcal{I}_1^{(\mathcal{S})}(\Phi_{\mathcal{B}}) \end{array}$$

with universal $\mathcal{S}_1(\Phi_\mathcal{B}\otimes\Phi_1)$ and $\mathcal{I}_1^{(\mathcal{S})}(\Phi_\mathcal{B})$

• in Catani-Seymour invertible phase space mapping

$$\Phi_{\mathcal{R}} \longleftrightarrow \Phi_{\mathcal{B}} \otimes \Phi_1$$

イロト イヨト イヨト イヨト

Matrix element corrections

- parton shower ignores interferences typically present in matrix elements
- pictorially

イロト イヨト イヨト イヨト

- form many processes $\mathcal{R}_{\textit{N}} < \mathcal{B}_{\textit{N}} \times \mathcal{K}_{\textit{N}}$
- typical processes: q ar q' o V, $e^- e^+ o q ar q$, t o b W
- practical implementation: shower with usual algorithm, but reject first/hardest emissions with probability $\mathcal{P} = \mathcal{R}_N / (\mathcal{B}_N \times \mathcal{K}_N)$

First improvements	Matching	Multijet merging
00000		
Matrix element corrections		

• analyse **first** emission, given by

$$d\sigma_{B} = d\Phi_{N} \mathcal{B}_{N}(\Phi_{N})$$

$$\cdot \left\{ \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \left[\frac{\mathcal{R}_{N}(\Phi_{N} \times \Phi_{1})}{\mathcal{B}_{N}(\Phi_{N})} \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t(\Phi_{1})) \right] \right\}$$

once more: integrates to unity \longrightarrow "unitarity" of parton shower

• radiation given by \mathcal{R}_N (correct at $\mathcal{O}(\alpha_s)$)

(but modified by logs of higher order in α_s from $\Delta_N^{(\mathcal{R}/\mathcal{B})}$)

- emission phase space constrained by μ_N
- also known as "soft ME correction" hard ME correction fills missing phase space
- used for "power shower": $\mu_N \rightarrow E_{pp}$ and apply ME correction

PRECISION MONTE CARLO

NLO MATCHING

▲日▼▲□▼▲田▼▲田▼ 田 ろん⊙

F. Krauss QCD & Monte Carlo Event Generators IPPP

First improvements 00000 Matching

Contents

6.a) Basic idea

6.b) Powheg

6.c) MC@NLO

NLO matching: Basic idea

- parton shower resums logarithms fair description of collinear/soft emissions jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- adjust ("match") terms:
 - cross section at NLO accuracy & correct hardest emission in PS to exactly reproduce ME at order α_s (\mathcal{R} -part of the NLO calculation)

(this is relatively trivial)

• maintain (N)LL-accuracy of parton shower

(this is not so simple to see)

・ロト ・同ト ・ヨト ・ヨ

First improvements	Matching	Multijet merging
00000	○●○○○○○○○○○○	00000000000000000000000000000000000
PowHeg		

PowHeg

• reminder: $\mathcal{K}_{ij,k}$ reproduces process-independent behaviour of $\mathcal{R}_N/\mathcal{B}_N$ in soft/collinear regions of phase space

$$\mathrm{d}\Phi_1 \xrightarrow{\mathcal{R}_N(\Phi_{N+1})}{\mathcal{B}_N(\Phi_N)} \xrightarrow{\mathsf{IR}} \mathrm{d}\Phi_1 \xrightarrow{\alpha_{\mathsf{s}}}{2\pi} \mathcal{K}_{ij,k}(\Phi_1)$$

• define modified Sudakov form factor (as in ME correction)

$$\Delta_N^{(\mathcal{R}/\mathcal{B})}(\mu_N^2, t_0) = \exp\left[-\int_{t_0}^{\mu_N^2} \mathrm{d}\Phi_1 \, \frac{\mathcal{R}_N(\Phi_{N+1})}{\mathcal{B}_N(\Phi_N)}\right] \,,$$

- \bullet assumes factorisation of phase space: $\Phi_{\textit{N}+1} = \Phi_{\textit{N}} \otimes \Phi_1$
- \bullet typically will adjust scale of $\alpha_{\rm s}$ to parton shower scale

(日) (同) (三) (三)

	Matching	
	00000000000	
PowHeg		

- define local K-factors
- start from Born configuration Φ_N with NLO weight:

("local K-factor")

$$\begin{split} \mathrm{d}\sigma_{N}^{(\mathrm{NLO})} &= \mathrm{d}\Phi_{N}\,\bar{\mathcal{B}}(\Phi_{N}) \\ &= \mathrm{d}\Phi_{N}\left\{\mathcal{B}_{N}(\Phi_{N}) + \underbrace{\mathcal{V}_{N}(\Phi_{N}) + \mathcal{B}_{N}(\Phi_{N})\otimes\mathcal{S}}_{\tilde{\mathcal{V}}_{N}(\Phi_{N})} \right. \\ &+ \int \mathrm{d}\Phi_{1}\left[\mathcal{R}_{N}(\Phi_{N}\otimes\Phi_{1}) - \mathcal{B}_{N}(\Phi_{N})\otimes\mathrm{d}S(\Phi_{1})\right] \right\} \end{split}$$

- by construction: exactly reproduce cross section at NLO accuracy
- note: second term vanishes if $\mathcal{R}_N \equiv \mathcal{B}_N \otimes \mathrm{d}S$

(relevant for MC@NLO)

• □ ▶ • □ ▶ • □ ▶ •

First improvements 00000	Matching ○OO●OO○○○○○○	Multijet merging 00000000000000000000000000000000000
PowHeg		

- analyse accuracy of radiation pattern
- generate emissions with $\Delta_N^{(\mathcal{R}/\mathcal{B})}(\mu_N^2, t_0)$:

$$d\sigma_{N}^{(\text{NLO})} = d\Phi_{N} \,\bar{\mathcal{B}}(\Phi_{N}) \\ \times \underbrace{\left\{ \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \frac{\mathcal{R}_{N}(\Phi_{N} \otimes \Phi_{1})}{\mathcal{B}_{N}(\Phi_{N})} \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, k_{\perp}^{2}(\Phi_{1})) \right\}}$$

integrating to yield 1 - "unitarity of parton shower"

- radiation pattern like in ME correction
- pitfall, again: choice of upper scale μ_N^2 (this is vanilla POWHEG!)
- apart from logs: which configurations enhanced by local K-factor

(K-factor for inclusive production of X adequate for X + jet at large p + ?)

(ロ) (部) (目) (日) (日)

イロト イヨト イヨト イヨト

PowHeg

- large enhancement at high $p_{T,h}$
- can be traced back to large NLO correction
- ullet fortunately, NNLO correction is also large $\rightarrow \sim$ agreement

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶

- improving POWHEG
- split real-emission ME as

- can "tune" *h* to mimick NNLO or other (resummation) result
- differential event rate up to first emission

$$d\sigma = d\Phi_B \bar{\mathcal{B}}^{(\mathbb{R}^{(S)})} \left[\Delta^{(\mathcal{R}^{(S)}/\mathcal{B})}(s, t_0) + \int_{t_0}^{s} d\Phi_1 \frac{\mathcal{R}^{(S)}}{\mathcal{B}} \Delta^{(\mathcal{R}^{(S)}/\mathcal{B})}(s, k_{\perp}^2) \right] + d\Phi_R \mathcal{R}^{(F)}(\Phi_R)$$

IPPP

First improvements	Matching	Multijet merging
00000	○○○○○●○○○○○	00000000000000000000000000000000000
MC@NLO		

MC@NLO

• MC@NLO paradigm: divide \mathcal{R}_N in soft ("S") and hard ("H") part:

$$\mathcal{R}_N = \mathcal{R}_N^{(S)} + \mathcal{R}_N^{(H)} = \mathcal{B}_N \otimes \mathrm{d}\mathcal{S}_1 + \mathcal{H}_N$$

• identify subtraction terms and shower kernels $dS_1 \equiv \sum_{\{ij,k\}} \mathcal{K}_{ij,k}$

(modify ${\cal K}$ in $1^{{\mbox{st}}}$ emission to account for colour)

イロト イポト イヨト イヨト

$$d\sigma_{N} = d\Phi_{N} \underbrace{\tilde{\mathcal{B}}_{N}(\Phi_{N})}_{\mathcal{B}+\tilde{\mathcal{V}}} \left[\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \mathcal{K}_{ij,k}(\Phi_{1}) \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, k_{\perp}^{2}) \right] \\ + d\Phi_{N+1} \mathcal{H}_{N}$$

• effect: only resummed parts modified with local K-factor

First improvements 00000	Matching ○○○○○○●○○○○○	Multijet merging
MC@NLO		

• phase space effects: shower vs. fixed order

- problem: impact of subtraction terms on local *K*-factor (filling of phase space by parton shower)
- studied in case of $gg \rightarrow H$ above
- proper filling of available phase space by parton shower paramount

イロト イポト イヨト イヨト

MC@NLO for light jets: jet- p_{\perp}

MC@NLO for light jets: dijet mass

First improvements 00000 MC@NLO Matching

MC@NLO for light jets: azimuthal decorrelations

F. Krauss QCD & Monte Carlo Event Generators MC@NLO

Matching

MC@NLO for light jets: R_{32} & forward energy flow

F. Krauss QCD & Monte Carlo Event Generators

MC@NLO for light jets: jet vetoes

Multijet merging

PRECISION MONTE CARLO

MULTIJET MERGING

▲日▼▲□▼▲田▼▲田▼ 田 ろん⊙

F. Krauss QCD & Monte Carlo Event Generators IPPP

Multijet merging

Contents

- 7.a) Basic idea
- 7.b) Multijet merging at LO
- 7.c) Multijet merging at NLO

Multijet merging: basic idea

- parton shower resums logarithms fair description of collinear/soft emissions jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- combine ("merge") both: result: "towers" of MEs with increasing number of jets evolved with PS
 - multijet cross sections at Born accuracy
 - maintain (N)LL accuracy of parton shower

イロト イ団ト イヨト イヨ

• separate regions of jet production and jet evolution with jet measure Q_J

("truncated showering" if not identical with evolution parameter)

- matrix elements populate hard regime
- parton showers populate soft domain

• □ ▶ • □ ▶ • □ ▶ •

Why it works: jet rates with the parton shower

- consider jet production in $e^+e^- \rightarrow hadrons$ Durham jet definition: relative transverse momentum $k_\perp > Q_J$
- fixed order: one factor α_S and up to $\log^2 \frac{E_{c.m.}}{Q_I}$ per jet
- use Sudakov form factor for resummation & replace approximate fixed order by exact expression:

$$\mathcal{R}_{2}(Q_{J}) = \left[\Delta_{q}(E_{\text{c.m.}}^{2}, Q_{J}^{2})\right]^{2}$$

$$\mathcal{R}_{3}(Q_{J}) = 2\Delta_{q}(E_{\text{c.m.}}^{2}, Q_{J}^{2}) \int_{Q_{J}^{2}}^{E_{\text{c.m.}}^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \left[\frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} dz \mathcal{K}_{q}(k_{\perp}^{2}, z) \right]$$

$$\times \Delta_{q}(E_{\text{c.m.}}^{2}, k_{\perp}^{2}) \Delta_{q}(k_{\perp}^{2}, Q_{J}^{2}) \Delta_{g}(k_{\perp}^{2}, Q_{J}^{2}) \left[\frac{1}{2\pi} dz \mathcal{K}_{q}(k_{\perp}^{2}, z) \right]$$

Multijet merging

Multijet merging at LO

• expression for first emission

$$d\sigma = d\Phi_{N} \mathcal{B}_{N} \left[\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \mathcal{K}_{N} \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{N+1}) \Theta(Q_{J} - Q_{N+1}) \right] + d\Phi_{N+1} \mathcal{B}_{N+1} \Delta_{N}^{(\mathcal{K})}(\mu_{N+1}^{2}, t_{N+1}) \Theta(Q_{N+1} - Q_{J})$$

• note: N + 1-contribution includes also N + 2, N + 3, ...

(no Sudakov suppression below t_{n+1} , see further slides for iterated expression)

- potential occurrence of different shower start scales: $\mu_{N,N+1,...}$
- "unitarity violation" in square bracket: $\mathcal{B}_N \mathcal{K}_N \longrightarrow \mathcal{B}_{N+1}$

(cured with UMEPS formalism, L. Lonnblad & S. Prestel, JHEP 1302 (2013) 094 &

S. Platzer, arXiv:1211.5467 [hep-ph] & arXiv:1307.0774 [hep-ph])

<ロ> (日) (日) (日) (日) (日)

$$d\sigma = \sum_{n=N}^{n_{max}-1} \left\{ d\Phi_n \mathcal{B}_n \left[\prod_{j=N}^{n-1} \Theta(Q_{j+1} - Q_j) \right] \left[\prod_{j=N}^{n-1} \Delta_j^{(\mathcal{K})}(t_j, t_{j+1}) \right] \right\} \\ \times \left[\Delta_n^{(\mathcal{K})}(t_n, t_0) + \int_{t_0}^{t_n} d\Phi_1 \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_n, t_{n+1}) \Theta(Q_j - Q_{n+1}) \right] \\ + d\Phi_{n_{max}} \mathcal{B}_{n_{max}} \left[\prod_{j=N}^{n_{max}-1} \Theta(Q_{j+1} - Q_j) \right] \left[\prod_{j=N}^{n_{max}-1} \Delta_j^{(\mathcal{K})}(t_j, t_{j+1}) \right] \\ \times \left[\Delta_{n_{max}}^{(\mathcal{K})}(t_n, t_0) + \int_{t_0}^{t_n} d\Phi_1 \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_n, t_{n+1}) \Theta(Q_j - Q_{n+1}) \right] \right] \\ \times \left[\Delta_{n_{max}}^{(\mathcal{K})}(t_{n_{max}}, t_0) + \int_{t_0}^{t_{n_{max}}} d\Phi_1 \mathcal{K}_{n_{max}} \Delta_{n_{max}}^{(\mathcal{K})}(t_{n_{max}}, t_{n_{max}+1}) \right] \right]$$

Multijet merging

Multijet merging at LO

Di-photons @ ATLAS: $m_{\gamma\gamma}$, $p_{\perp,\gamma\gamma}$, and $\Delta\phi_{\gamma\gamma}$ in showers

(arXiv:1211.1913 [hep-ex])

- * ロ * * 個 * * 注 * * 注 * うへで

Multijet merging

Multijet merging at LO

Aside: Comparison with higher order calculations

A step towards multijet-merging at NLO: MENLOPS

- combine matching for lowest multiplicity with multijet merging
- interpolating local K-factor for reweighting hard emissions

$$k_{N}(\Phi_{N+1}) = \frac{\tilde{\mathcal{B}}_{N}}{\mathcal{B}_{N}} \left(1 - \frac{\mathcal{H}_{N}}{\mathcal{B}_{N+1}}\right) + \frac{\mathcal{H}_{N}}{\mathcal{B}_{N+1}} \longrightarrow \begin{cases} \tilde{\mathcal{B}}_{N}/\mathcal{B}_{N} & \text{for soft emission} \\ 1 & \text{for hard emission} \end{cases}$$

Multijet merging

Transverse momentum of W & Z boson

ATLAS, arXiv:1108.6308, arXiv:1107.2381

Multijet merging

Z+jets: inclusive quantities

ATLAS, arXiv:1111.2690

- イロト イ理ト イヨト トヨー のへで

Multijet merging

Z+jets: jet transverse momenta

ATLAS, arXiv:1111.2690

Multijet merging

Z+jets: jet transverse momenta

ATLAS, arXiv:1111.2690

- イロト (個) (注) (注) (注) 三 のへの

Multijet merging

Z+jets: correlation of leading jets

ATLAS, arXiv:1111.2690

Multijet merging

Z+jets: $\Delta \phi_{Zj}$ in unboosted sample

CMS, arXiv:1301.1646

MENLOPS

Multijet merging

Z+jets: $\Delta \phi_{Zj}$ in boosted sample

CMS, arXiv:1301.1646

- イロト イ団ト イヨト イヨト ヨー のくぐ

イロト イポト イヨト イヨト

Multijet-merging at NLO: MEPS@NLO

- basic idea like at LO: towers of MEs with increasing jet multi (but this time at NLO)
- combine them into one sample, remove overlap/double-counting maintain NLO and (N)LL accuracy of ME and PS
- this effectively translates into a merging of MC@NLO simulations and can be further supplemented with LO simulations for even higher final state multiplicities

Multijet merging

Multijet merging at NLO

First emission(s), once more

$$d\sigma = d\Phi_N \tilde{\mathcal{B}}_N \left[\Delta_N^{(\mathcal{K})}(\mu_N^2, t_0) + \int_{t_0}^{\mu_N^2} d\Phi_1 \mathcal{K}_N \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Theta(Q_J - Q_{N+1}) \right] \\ + d\Phi_{N+1} \mathcal{H}_N \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Theta(Q_J - Q_{N+1})$$

$$+ \mathrm{d}\Phi_{N+1}\,\tilde{\mathcal{B}}_{N+1}\left(1 + \frac{\mathcal{B}_{N+1}}{\tilde{\mathcal{B}}_{N+1}}\int_{t_{N+1}}^{\mu_{N}^{2}}\mathrm{d}\Phi_{1}\,\mathcal{K}_{N}\right)\Theta(Q_{N+1} - Q_{J}) \\ \cdot \left[\Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_{0}) + \int_{t_{0}}^{t_{N+1}}\mathrm{d}\Phi_{1}\,\mathcal{K}_{N+1}\Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_{N+2})\right] \\ + \mathrm{d}\Phi_{N+2}\,\mathcal{H}_{N+1}\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{N+1})\Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_{N+2})\Theta(Q_{N+1} - Q_{J}) + \dots$$

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

 first emission by MC@NLO

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

 first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}

▲日▼▲雪▼▲画▼▲画▼ 画 ものぐの

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$

F. Krauss

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

<ロト < 国ト < 国ト < 国

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

iterate

<ロト < 国ト < 国ト < 国

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

iterate

<ロト < 国ト < 国ト < 国

F. Krauss QCD & Monte Carlo Event Generators

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

<ロト < 国ト < 国ト < 国

• sum all contributions

F. Krauss QCD & Monte Carlo Event Generators

Multijet merging

Multijet merging at NLO

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

Multijet merging

Multijet merging at NLO

MEPs@NLO: example results for $e^-e^+ \rightarrow$ hadrons

Multijet merging

Multijet merging at NLO

MEPs@NLO: example results for $e^-e^+ \rightarrow$ hadrons

A 3 3

First improvements 00000 Multijet merging at NLO

Multijet merging

Example: MEPs@NLO for W+jets

(up to two jets @ NLO, from BlackHat, see arXiv: 1207.5031 [hep-ex])

Multijet merging

Multijet merging at NLO

F. Krauss QCD & Monte Carlo Event Generators

Multijet merging

Multijet merging at NLO

イロト イヨト イヨト イヨト

Results for Higgs boson production through gluon fusion

- parton-shower level, Higgs boson does not decay
- setup & cuts:

 $\begin{array}{ll} \text{jets:} & \quad \text{anti-kt, } p_{\perp} \geq 20 \text{ GeV}, \ R = 0.4, \ |\eta| \leq 4.5 \\ \text{dijet cuts:} & \quad \text{at least 2 jets with } p_{\perp} \geq 25 \text{ GeV} \\ \text{WBF cuts:} & \quad m_{jj} \geq 400 \text{ GeV}, \ \Delta y_{jj} \geq 2.8 \\ \end{array}$

• jet multiplicity plots:

0-jet excl.: no jet with $p_{\perp} \ge \{20, 25, 30\}$ GeV 2-jet incl.: at least two jets with $p_{\perp} \ge \{20, 25, 30\}$ GeV

• SHERPA with $H + \{0, 1, 2\}^{(NLO)} + \{3\}^{(LO)}$ jets, $Q_{cut} = 20 \, GeV$

Multijet merging

Multijet merging at NLO

Inclusive observables for gg ightarrow H

Multijet merging

Multijet merging at NLO

Exclusive observables for $gg \rightarrow H$

Multijet merging

Multijet merging at NLO

gg ightarrow H after WBF cuts

Multijet merging

Multijet merging at NLO

$gg \rightarrow H$ after WBF cuts

< ₽

Quark mass effects

• include effects of quark masses

• reweight NLO HEFT with LO ratio:

$$\mathrm{d}\sigma_{\mathrm{mass}}^{(\mathrm{NLO})} \approx \mathrm{d}\sigma_{\mathrm{HEFT}}^{(\mathrm{NLO})} \times \frac{\mathrm{d}\sigma_{\mathrm{mass}}^{(\mathrm{LO})}}{\mathrm{d}\sigma_{\mathrm{HEFT}}^{(\mathrm{LO})}}$$

Multijet merging

Multijet merging at NLO

Quark mass effects - results

• top mass effect in MEPs@NLO (on Higgs- p_{\perp})

comparison S-MC@NLO- HRES (top-loop only)

- * ロ * * 母 * * 臣 * * 臣 * 三 * のへで

イロト イヨト イヨト イヨト

b-mass effects

- *b*-mass effects more tricky
- relevant only for (negative) interference of top- and bottom-loops (bottom² double Yukawa - supressed)
- but: cannot start shower at m_H radiation "sees" bottom at all scales above m_b ⇒ must use full theory there
- p_T spectrum naively "squeezed" funny shapes
- LO multijet merging improves situation

Multijet merging at NLO

Higgs backgrounds: inclusive observables in W^+W^- +jets

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のQ@

Multijet merging at NLO

Higgs backgrounds: jet vetoes in W^+W^- +jets

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のQ@

Multijet merging at NLO

Higgs backgrounds: gluon-induced processes W^+W^- +jets

ullet include (LO-) merged loop^2 contributions of $gg \rightarrow VV$ (+1 jet)

000000000000000

Multijet merging

Multijet merging at NLO

Higgs backgrounds: jet vetoes in W^+W^- +jets

Multijet merging

Multijet merging at NLO

Multijet merging at NLO

Relevant observables for $VH \rightarrow 3\ell$: $m_{123} \& \Delta R_{01}$

Multijet merging

Other merging approaches: FxFx & friends

Differences between MEPS@NLO, UNLOPS & FxFx

	FxFx	MePs@Nlo	UNLOPS
ME	all internal	$\mathcal V$ external	all external
		COMIX or AMEGIC++	
		${\cal V}$ from OpenLoops, , Mjet, \ldots	
shower	external	intrinsic	intrinsic
	HERWIG or PYTHIA		ΡΥΤΗΙΑ
Δ_N	analytical	from PS	from PS
$\Theta(Q_J)$	a-posteriori	per emission	per emission
Q_J -range	relatively high	> Sudakov regime	pprox Sudakov regime
	(but changed)		
		pprox 10%	pprox 10%

Other merging approaches: FxFx & friends

FxFx: validation in Z+jets

(Data from ATLAS, 1304.7098, with HERWIG++)

(green: 0, 1, 2 jets + uncertainty band from scale and PDF variations, red: MC@NLO)

Other merging approaches: FxFx & friends

FxFx: validation in Z+jets

(Data from ATLAS, 1304.7098, with HERWIG++)

(green: 0, 1, 2 jets + uncertainty band from scale and PDF variations, red: MC@NLO)

Multijet merging

Other merging approaches: FxFx & friends

FxFx: Q_J dependence in $t\bar{t}$

(R.Frederix & S.Frixione, JHEP 1212 (2012) 061)

Other merging approaches: FxFx & friends

Aside: merging without Q_J - the MINLO approach

(K.Hamilton, P.Nason, C.Oleari & G.Zanderighi, JHEP 1305 (2013) 082)

- based on POWHEG + shower from PYTHIA or HERWIG
- up to today only for singlet S production, gives NNLO + PS
- basic idea:
 - use S+jet in POWHEG
 - push jet cut to parton shower IR cutoff
 - apply analytical NNLL Sudakov rejection weight for intrinsic line in Born configuration

(kills divergent behaviour at order α_{s})

イロト イポト イヨト イヨト

- don't forget double-counted terms
- reweight to NNLO fixed order

Other merging approaches: FxFx & friends

for H production

(K.Hamilton, P.Nason, E.Re & G.Zanderighi, JHEP 1310 (2013) 222)

ROUND IV: SIMULATING SOFT QCD

<ロト < 団 > < 臣 > < 臣 > 三 の < ()</p>

F. Krauss QCD & Monte Carlo Event Generators

IPPF

SIMULATING SOFT QCD

HADRONISATION

F. Krauss QCD & Monte Carlo Event Generators IPPP

э

イロト イヨト イヨト イヨト

Contents

- 8.a) QCD radiation, once more
- 8.b) Hadronisation: General thoughts
- 8.c) The string model
- 8.d) The cluster model
- 8.e) Practicalities

QCD radiation, once more

• remember QCD emission pattern

$$\mathrm{d} w^{q \to qg} \; = \; \frac{\alpha_{\mathsf{s}}(k_{\perp}^2)}{2\pi} \, C_{\mathsf{F}} \, \frac{\mathrm{d} k_{\perp}^2}{k_{\perp}^2} \, \frac{\mathrm{d} \omega}{\omega} \, \left[1 + \left(1 - \frac{\omega}{E} \right) \right] \, .$$

- spectrum cut-off at small transverse momenta and energies by onset of hadronization, at scales $R\approx 1\,{\rm fm}/\Lambda_{\rm QCD}$
- two (extreme) classes of emissions: gluons and gluers determined by relation of formation and hadronization times

(日) (同) (三) (三)

- gluers formed at times R, with momenta $k_{\parallel}\,\sim\,k_{\perp}\,\sim\,\omega\,\stackrel{>}{\sim}\,1/R$
- assuming that hadrons follow partons,

$$\frac{\mathrm{d}N_{(\mathrm{hadrons})}}{\sim} \sim \int_{k_{\perp}>1/R}^{Q} \frac{\mathrm{d}k_{\perp}^{2}}{k_{\perp}^{2}} \frac{C_{F} \alpha_{\mathrm{s}}(k_{\perp}^{2})}{2\pi} \left[1 + \left(1 - \frac{\omega}{E}\right)\right] \frac{\mathrm{d}\omega}{\omega}$$
$$\sim \frac{C_{F} \alpha_{\mathrm{s}}(1/R^{2})}{\pi} \log(Q^{2}R^{2}) \frac{\mathrm{d}\omega}{\omega}$$

or - relating their energyn with that of the gluers -

$$\mathrm{d}N_{\mathrm{(hadrons)}}/\mathrm{d}\log\epsilon\ =\ \mathrm{const.}\,,$$

a plateau in log of energy (or in rapidity)

イロト イヨト イヨト イヨト

- impact of additional radiation
- new partons must separate before they can hadronize independently
- therefore, one more time

$$egin{array}{rcl} t^{
m form} &\sim & rac{k_\parallel}{k_\perp^2} \ t^{
m sep} &\sim & R heta &\sim & t^{
m form}\left(Rk_\perp
ight) \ t^{
m had} &\sim & k_\parallel R^2 &\sim & t^{
m form}\left(Rk_\perp
ight)^2. \end{array}$$

$$ullet$$
 for gluers ${\it Rk}_\perppprox 1$: all times the same

- naively; new & more hadrons following new partons
- but: colour coherence primary and secondary partons not separated enough in

$$1/R \stackrel{<}{\sim} \omega_{(
m hadron)} \stackrel{<}{\sim} 1/(R heta)$$

and therefore no independent radiation

(日) (同) (三) (三)

Hadronisation: General thoughts

- confinement the striking feature of low-scale sotrng interactions
- transition from partons to their bound states, the hadrons
- the Meissner effect in QCD

・ロト ・同ト ・ヨト ・ヨ

• linear QCD potential in Quarkonia - like a string

- イロト (四) (目) (日) (日) (の)

- combine some experimental facts into a naive parameterisation
- in $e^+e^- \rightarrow$ hadrons: exponentially decreasing p_{\perp} , flat plateau in y for hadrons

• try "smearing": $ho(p_{\perp}^2)\sim \exp(-p_{\perp}^2/\sigma^2)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

• use parameterisation to "guesstimate" hadronisation effects:

$$E = \int_0^Y dy dp_{\perp}^2 \rho(p_{\perp}^2) p_{\perp} \cosh y = \lambda \sinh Y$$

$$P = \int_0^Y dy dp_{\perp}^2 \rho(p_{\perp}^2) p_{\perp} \sinh y = \lambda (\cosh Y - 1) \approx E - \lambda$$

$$\lambda = \int dp_{\perp}^2 \rho(p_{\perp}^2) p_{\perp} = \langle p_{\perp} \rangle.$$

- estimate $\lambda \sim 1/R_{
 m had} pprox m_{
 m had}$, with $m_{
 m had}$ 0.1-1 GeV.
- effect: jet acquire non-perturbative mass $\sim 2\lambda E$ ($\mathcal{O}(10 \text{GeV})$ for jets with energy $\mathcal{O}(100 \text{GeV})$).

イロト イヨト イヨト イヨト

- similar parametrization underlying Feynman-Field model for independent fragmentation
- ullet recursively fragment q
 ightarrow q'+ had, where
 - transverse momentum from (fitted) Gaussian;
 - longitudinal momentum arbitrary (hence from measurements);
 - flavour from symmetry arguments + measurements.
- problems: frame dependent, "last quark", infrared safety, no direct link to perturbation theory,

(日) (同) (三) (三)

The string model

- a simple model of mesons: yoyo strings
 - light quarks $(m_q = 0)$ connected by string, form a meson
 - ullet area law: $m_{
 m had}^2 \propto$ area of string motion
 - L=0 mesons only have 'yo-yo' modes:

・ロト ・同ト ・ヨト ・ヨ

Hadronisation	Underlying Event
000000000000000000000000000000000000000	
The string model	

- ullet turn this into hadronisation model $e^+e^- \to q \bar q$ as test case
- ignore gluon radiation: $q\bar{q}$ move away from each other, act as point-like source of string
- intense chromomagnetic field within string: more qq
 q
 pairs created by tunnelling and string break-up
- analogy with QED (Schwinger mechanism): $d\mathcal{P} \sim dx dt \exp(-\pi m_q^2/\kappa)$, $\kappa =$ "string tension".

・ロト ・同ト ・ヨト ・ヨ

- string model = well motivated model, constraints on fragmentation (Lorentz-invariance, left-right symmetry, ...)
- how to deal with gluons?
- \bullet interpret them as kinks on the string \Longrightarrow the string effect

• infrared-safe, advantage: smooth matching with PS.

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶

The cluster model

- underlying idea: preconfinement/LPHD
 - typically, neighbouring colours will end in same hadron
 - $\bullet\,$ hadron flows follow parton flows $\longrightarrow\,$ don't produce any hadrons at places where you don't have partons
 - works well in large– N_c limit with planar graphs
- follow evolution of colour in parton showers

Hadronisation

- paradigm of cluster model: clusters as continuum of hadron resonances
- trace colour through shower in $N_c
 ightarrow \infty$ limit
- force decay of gluons into $q\bar{q}$ or $\bar{d}d$ pairs, form colour singlets from neighbouring colours, usually close in phase space
- ullet mass of singlets: peaked at low scales $\approx Q_0^2$
- decay heavy clusters into lighter ones or into hadrons (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like)
- if light enough, clusters will decay into hadrons
- naively: spin information washed out, decay determined through phase space only → heavy hadrons suppressed (baryon/strangeness suppression)

イロト イヨト イヨト イヨト
- self-similarity of parton shower will end with roughly the same local distribution of partons, with roughly the same invairant mass for colour singlets
- adjacent pairs colour connected, form colourless (white) clusters.
- clusters ("≈ excited hadrons) decay into hadrons

<ロト <問ト < 注ト < 注

Observables

- in the following a selection of data from the LEP collaboration relevant for the tuning of hadronisation models
- all compared with an actual tune of SHERPA
- typically, PYTHIA does as good (or sometimes even slightly better)
- so, this is the level we talk about these days, agreement of 5% or better over large ranges of observables and scales

Observables

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ のへで

F. Krauss QCD & Monte Carlo Event Generators

Observables

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

10-2

yDurham ycut

yDurham

F. Krauss QCD & Monte Carlo Event Generators

Observables

Observables

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

F. Krauss QCD & Monte Carlo Event Generators

Hadronisation

Underlying Event

Summary

Observables

Observables

(beam remnant fragmentation not in LEP.)

イロト イポト イヨト イヨト

• there are some issues with inclusive strangeness/baryon production

SIMULATING SOFT QCD

UNDERLYING EVENT

F. Krauss QCD & Monte Carlo Event Generators IPPP

э

Contents

- 8.a) Multiple parton scattering
- 8.b) Modelling the underlying event
- 8.c) Some results
- 8.d) Practicalities

Underlying Event

Multiple parton scattering

- hadrons = extended objects!
- no guarantee for one scattering only.
- running of α_S
 - \implies preference for soft scattering.

<ロ> <同> <同> <同> <同> <同

- first experimental evidence for double-parton scattering: events with $\gamma + 3$ jets:
 - cone jets, R = 0.7, $E_T > 5 \text{ GeV}; |\eta_j| < 1.3;$
 - "clean sample": two softest jets with *E_T* < 7 GeV;
- cross section for DPS

$$\sigma_{\rm DPS} = \frac{\sigma_{\gamma j} \sigma_{jj}}{\sigma_{\rm eff}}$$

 $\sigma_{\rm eff} pprox$ 14 \pm 4 mb.

<ロト <問ト < 注ト < 注

F. Krauss QCD & Monte Carlo Event Generators

Underlying Event

Summary

but: how to define the underlying event?

- everything apart from the hard interaction, but including IS showers, FS showers, remnant hadronisation.
- remnant-remnant interactions, soft and/or hard.
 - Iesson: hard to define

(日) (同) (三) (三)

 origin of MPS: parton-parton scattering cross section exceeds hadron-hadron total cross section

$$\sigma_{\rm hard}(\boldsymbol{p}_{\perp,{\rm min}}) = \int_{\boldsymbol{p}_{\perp,{\rm min}}^2}^{s/4} \mathrm{d}\boldsymbol{p}_{\perp}^2 \frac{\mathrm{d}\sigma(\boldsymbol{p}_{\perp}^2)}{\mathrm{d}\boldsymbol{p}_{\perp}^2} > \sigma_{pp,{\rm total}}$$

for low $p_{\perp,\min}$

remember

$$\frac{\mathrm{d}\sigma(p_{\perp}^2)}{\mathrm{d}p_{\perp}^2} = \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f(x_1, q^2) f(x_2, q^2) \frac{\mathrm{d}\hat{\sigma}_{2 \to 2}}{\mathrm{d}p_{\perp}^2}$$

- $\langle \sigma_{
 m hard}(\pmb{p}_{\perp,
 m min})/\sigma_{\pmb{pp},
 m total}
 angle \geq 1$
- depends strongly on cut-off $p_{\perp,\min}$ (energy-dependent)!

Modelling the underlying event

- take the old PYTHIA model as example:
 - start with hard interaction, at scale Q_{hard}^2 .
 - select a new scale p_{\perp}^2 from

$$\exp\left[-\frac{1}{\sigma_{\rm norm}}\int\limits_{p_{\perp}^2}^{Q_{\rm hard}^2}{\rm d}p'_{\perp}{}^2\frac{{\rm d}\sigma(p_{\perp}^2)}{{\rm d}p'_{\perp}{}^2}\right]$$

with constraint $p_{\perp}^2 > p_{\perp,\min}^2$

- rescale proton momentum ("proton-parton = proton with reduced energy").
- repeat until no more allowed $2 \rightarrow 2$ scatter

Modelling the underlying event

- possible refinements:
 - $\bullet\,$ may add impact-parameter dependence \longrightarrow more fluctuations
 - add parton showers to UE
 - "regularisation" to dampen sharp dependence on $p_{\perp,\min}$: replace $1/\hat{t}$ in MEs by $1/(t + t_0)$, also in α_s .
 - treat intrinsic k_{\perp} of partons (\rightarrow parameter)
 - model proton remnants (ightarrow parameter)

Some results for MPS in Z production

- observables sensitive to MPS
- classical analysis: transverse regions in QCD/jet events
- idea: find the hardest system, orient event into regions:
 - toward region along system
 - away region back-to-back
 - transverse regions
- typically each in 120°

イロト イヨト イヨト

Some results in Z production

▲ □ ▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ■ の Q @

Some results in Z production

Some results in Z production

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ の Q ()

• see some data comparison in Minimum Bias

Practicalities

- practicalities of underlying event models: parameters
 - profile in impact parameter space
 - IR cut-off at reference energy, its energy evolution, dampening paramter and normalisation cross section
 - treating colour connections to rest of event
- tuned to LHC data, overall agreement satisfying
- energy extrapolation not exactly perfect, plus other process categories such as diffraction etc..

2-3 parameters

4 parameters 2-5 parameters

(日) (同) (三) (三)

SUMMARY

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - のへの

F. Krauss QCD & Monte Carlo Event Generators

Summary

- Systematic improvement of event generators by including higher orders has been at the core of QCD theory and developments in the past decade:
 - multijet merging ("CKKW", "MLM")
 - NLO matching ("MC@NLO", "POWHEG")
 - MENLOPS NLO matching & merging
 - MEPS@NLO ("SHERPA", "UNLOPS", "MINLO", "FxFx")

/home/krauss/TeX/Privat

- multijet merging an important tool for many relevant signals and backgrounds - pioneering phase at LO & NLO over
- complete automation of NLO calculations done
 - \longrightarrow must benefit from it!

(it's the precision and trustworthy & systematic uncertainty estimates!)

(日) (同) (三) (三)

Famous last screams

• in Run-II we'll be in for a ride:

more statistics more energy more channels more precision more fun

• ... and all with QCD ...

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

oh, and btw.: the first NNLO+PS are out!