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Outline

@ Introduction: Signal or not?

© Gauge sector of the Standard model
@ Precision physics at LHC: The W-boson properties
9 Boson pairs: Backgrounds and new physics
@ A practical application: Luminosity monitors

© Some remarks on flavor
@ The unitarity triangle: Importance of 3rd generation
9@ New physics in B physics

@ Top-quark physics
@ The top mass
@ Top properties: Single-top production, top couplings etc.

© Summary
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Interpretations

Know your Standard Model

Historical example: Mono-jets at SppS

@ In Phys. Lett. B139 (1984) 115, the UA1 collaboration reported
o 5 events with E1 miss > 40 GeV+-a narrow jet and
o 2 events with E| miss > 40 GeV+a neutral EM cluster
They could “not find a Standard Model explanation” for them,
compared their findings with a calculation of SUSY pair-production
(J.Ellis & H.Kowalski, Nucl. Phys. B246 (1984) 189),
and they deduced a gluino mass larger than around 40 GeV.

o In Phys. Lett. B139 (1984) 105, the UA2 collaboration describes
similar events, also after 113 nb~1, without indicating any
interpretation as strongly as UAL.

o In Phys. Lett. B158 (1985) 341, S.Ellis, R.Kleiss, and J.Stirling
calculated the backgrounds to that process more carefully, and
showed agreement with the Standard Model.

>
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Interpretations

Example: PDF uncertainty or new physics

Consider the ADD model of extra dimensions (KK towers of gravitons)
and its effect on the dijet cross section:

(Note: Destructive interference with SM)
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Figure from S.Ferrag, hep-ph/0407303
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Interpretations

Example: Inclusive SUSY searches Typical process
ATLAS TDR plot done with pythia
> oply parton shower for extra jets ‘
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Interpretations

To take home

@ It is simple to “find” new physics by misunderstanding,
mismeasuring, or misinterpreting “old” physics, i.e. the SM

©

Therefore: Control of backgrounds paramount to discovery!!!

©

Know your Standard Model and its inputs

©

Don't trust just one Monte Carlo/one theorist/one calculation:
Be sceptical!

©

If possible, infer from well-understood data.

©

Also: New measurements for important SM parameters (see below).
~
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Interpretations Gauge sector of the SM
00000

Precision physics

W mass measurements

Why is this important?
@ The EW sector of the SM can be parameterized by 4 parameters.
Example: a, sin’ Ow, v, A

@ But other observables related to them: My, Mz, My, Gf, ....
This is due to the mechanism of EWSB underlying the SM.

@ Example: At tree-level weak and electromagnetic coupling related by

yes

Gr— — "
2 <in2 ptree
V2m?, sin® 01

@ Natural question: Is the picture consistent?
This is a precision test of the SM and its underlying dynamics.

@ First tests: SM passed triumphantly, seems okay even at loop-level.
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Interpretations Gauge sector of the SM
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Summar

Precision physics

Why is this important? (cont'd)
2
@ Naively p = % connects masses with ew mixing angle
(Weinberg-angle, 6y)

@ Loop-corrections to it from self-energies etc..
@ Interesting correction:

2 ) 2 2 2
Dpeo = 3Grmyy, L; _sin Ow Inm—QH 5 i
8v2r2 |my, cos?w \| mi, 6

o Relates my, m:, my.

@ For a long time, m; was most significant uncertainty in this relation;
by now, my has more than caught up.
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Interpretations Gauge sector of the SM >hysics Summar
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Precision physics

Why is this important? (cont'd)

August 2000 6 sz m, = 157 GeV.
T H
— LEP2 and Tevatron (prel.)
Q| == e e S 51 — 0.0275810.00035 1
68% CL 0.02749:0.00012 |f' ;
S5 4 incl. low Q° data B
5] N
= g > 34 i
80.4 58
=
= 2 i
80.31 14 1
m
140 Excluded Preliminary
150 30 100 300
m, [GeV] my, [GeV]
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Interpretations Gauge sector of the SM s Summar
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Precision physics

Some technical aspects of the measurement

@ But: How to measure the mass?

@ From LEP: Direct measurements.
Hampered by comparably low stats
and jet-energy uncertainties.

@ Tevatron: Measurement in leptonic
mode, but then the v's escape.

@ So, how to do it at a hadron collider?

@ Jacobean peak in p{
Even better: transverse mass
Mt = \/2pf_EL(1 — €05 0 miss)
Their position relates to myy, Bttt
@ QCD effects controlled by Z.
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Gauge sector of the SM
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Precision physics

Anticipated sensitivity
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Interpretations

Gauge sector of the SM

000008000000

Precision physics

Flavor physics

Actual measurements

Run-2 measurement more
W-Boson Mass [GeV] precise than any individual
LEP-2 measurement.
TEVATRON Le— 80.420 + 0.031
(Single most precise measurement by DO, 2009, 1fb 1
LEP2 -1 80.376 +0.033 )
AMyy, = 43 MeV)
Average - 80.399 + 0.023
9 XDoF:0911 @ Accuracy goal for LHC:
NuTeV n 80.136 + 0.084 15 MeV.
LEP1/SLD —|  80.363 +0.032 @ With current theoretical
LEP1/SLD/m, || 80.364 +0.020 technology (MC@NLO etc.)
‘ ‘ ‘ this is a close call.
80 80.2 80.4 80.6
m,, [GeV] e 9 Probably need high-precision
tools, including QED, weak
corrections mixed with QCD.

Projection to LHC

@ Already now, each modern
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Gauge sector of the SM

O00000@00000

Precision physics

LHC: First serious look into acceptances
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Gauge sector of the SM
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Precision physics

W width measurements
Why is this important?

o Naively, in the SM (massless fermions):
MW = mW%|VCKM|2, N. = 1,3 for leptons/quarks

@ Loop corrections: Another precision test of the SM.

@ Are there other decay channels?

Method 1: Indirect
@ Basic idea: Z properties well-known, relate W and Z.
@ Assume W- and Z-production cross section well-known as well as

Tw—ew-
@ Then measure leptonic W branching ratio through:
Tpp—oW—sbly . Tpp—W BR(W—¢v)
Opp—Z—rte Opp—z BR(Z—¢¢)

@ Can translate BR to width, since partial width well-known.

>
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Interpretation: Gauge sector of the SM
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Precision physics

Method 2: Direct

@ |dea: While peak of transverse
mass distribution determined by
myy, shape defined by I'yy.

@ Therefore: Build MC templates
for varying 'y (or even better
in my-Iw plane) and fit.

@ Quality control again through
Z-bosons.

@ Note: This is almost
model-independent.

Events/ 5 GeV

10

10

10°

10

L I I I | L
40 60 80 100 (20 140 160 180 200

oLy, =1.6GeV
«T, =2.1GeV
«T, =26GeV

m, (GeV)
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Interpretation Gauge sector of the SM »p physic Summar
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Precision physics

Results from Tevatron

TeVEWWG
. Sandard Model
W-Boson Width [Ge\/] World Average (RPP 2002) -®-
U reasty
TEVATRON —e—+ 2.050 + 0.058 Run jEAION g —e—  wamay
LEP2 ——— 2,196 + 0.083
Run Il combined ——
Average —o— 2.098 + 0.048 D) e e
YAIDOF: 2,111 CDF II() —
pp indirect 4 2.141 + 0.057 Run | combined —e—
DO la+h(e)—e—
CDF la(e) ——&——
LEP1/SLD 4 2.091 + 0.003
LEP1/SLD/m; A 2.091 + 0.002
M T T L L L L L L J
2 22 24 9 9.6 10 106 1" 115 12
Ty [Gev] . Br(W -1v) (&)
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Gauge sector of the SM
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Precision physics

W™ charge assymetries at Tevatron

Why is this important?
@ Define the forward direction at Tevatron as the direction of the
proton, and the backward direction through the antiproton/

o The different valence content leads to W™ bosons produced with a
forward tilt asnd the W~ bosons with a backward tilt (see first
lecture).

@ Measuring the assymetry of leptons emerging from the W's allows
then for a check of the PDFs.

o Use the p-assymetry
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Interpretation Gauge sector of the SM ) Summar
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Precision physics

Results
Example: Muons with p; > 35 GeV.
> 0.25¢
g 0.2 D@ Prelimlinary
E E L=49fb g
7 015 p. >35GeV ¢ ¢ 3
< E ™
E p.*>20Gev i
0.1 L ¢
0 OSi ¢
: i
_0:7 *
-0.05F ; §
o1 i3 —— Runlia
£ [ —*— Runllb
-0.15F 4 ]
E CTEQ6.6 central value
-0'2; CTEQ6.6 uncertainty band
Yo\ A W ! ! ! ! [
) 3.5 -2 -1.5 -1 -0.5 0 05 1 15 2 25
Pseudorapidity
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Gauge sector of the SM

Boson pairs

Boson pair production

Why is this important?

@ Major background to current measurements (tt, H — WW) and
future discoveries (x*-pair production etc.).

@ Interesting in its own right:

o With no Higgs boson or similar: Cross section would explode

or WW-scattering becomes strongly-interacting.
o Maybe the first mode where alternatives to the Higgs scenario show.
o Structure of interactions entirely dominated by gauge principle,

but: are there non-Standard exotic couplings?
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Gauge sector of the SM

O®@000000

Boson pairs

H — WW and backgrounds
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Interpretation

Boson pairs

Cross

Gauge sector of the SM

0O0@00000

sections in ee-annihilation
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Gauge sector of the SM

[e]e]e] le]elele]

Boson pairs

Cross sections in hadronic collisions

1000

Vector boson pair production

100

o [pb]

PP (upper curves)
PP (lower curves)

— W
- W'ZAWZ
-zz
Ll L P

5 10
Vs [Tev]

8
8
Z

Typically factor of 2 suppression per W — Z.
In HE limit dominated by sea (pp — pp).

Theory consistent with experiment.

Cross-Section [pb]

Tevatron Run Il pp at Vs = 1.96 TeV

EI—“‘ oCDF Preliminary
10* : = CDF Published
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[ ® D0 Published
10 W Theory
F L
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Interpretation

Gauge sector of the SM

Boson pairs

Example: WW & WZ in jj + E, final states

(Recent measurement by CDF, 3.5 fb— 1)

@ Motivation (1): Check for consistency with SM.

@ Motivation (2): Topologically similar to VH
= An excellent bootcamp analysis!

@ Backgrounds: EWK (V+ jets, tt, single top) + QCD.

CDF Runll Preliminary
T T T

T
Sample Description | Expected # of Evis | Expected % of Sample

A 12804 28.9
z d 0.0
£ 0.7
By 1.0
W 114
W s pur 128
W rpe 211
¢ 1.0
single top 0.6
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Interpretation Gauge sector of the SM r pl >hysic Summar

OOOO0.00

Boson pairs

Example: WW & WZ in jj + E, final states
(Recent measurement by CDF, 3.5 fb— 1)

L, 22 CDF Runll Preliminary Systematic Y uncert.
S 6Es b WK T
ST Data (3.5 fb) . 3 EWK r&ll;ll)i.‘ [
2 -L“‘_‘_ £ badkgound Extraction Resolution 5.6
& b | Somrtnconaig Total extracti 95

A S otal extraction >

; = JES 8.0

E =R JER 0.7

2 r resolution model 1.0

= Acceptance /. . =
= Trigger inefficiency 2.2
ISR/FSR 2.5
04l == E PDF 2.0
02 A Total acceptance 9.0
ooliiH Luminosity 5.9
021
% 00 120 140 0 Total 14.4
Duet mass (¢ GeV/cz)
o Final result: o = 18 & 2.8(stat) = 2.4(syst) & 1.1(lumi) pb, in

agreement with SM.
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Interpretations

Boson pairs

Testing anomalous gauge couplings at Tevatron

@ In principle gauge structure and gauge self-interactions defined by
form of gauge-covariant derivative D* = 9 + (i/g)A* and
Frv = [D*, D"].
If fields do not commute, terms like [A¥, A”] emerge. They result in
self-interactions with structure constants £2°¢, coming from
A = AET? (the T2 are generators of the group - matrices), and
with £2b¢T¢ oc [T2, TP).

@ But there are other gauge-invariant options for the gauge
self-interactions.
Example: WW~ vertex.

Luwy = —ie[(WiVW“A”—WZW“VAV)JrileW,,F’“'

by X
ir HPEY o et BV ir wp v
W, WRPF + RW Wy FEY — wl, WHPEY]

mw w

(Terms X and & are CP-violating, A — 1 and & violate parity.)
-
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Interpretations Gauge sector of the SM Flavor physics ] Summar

Boson pairs

Testing anomalous gauge couplings in W+~ at Tevatron
@ Simple test for anomalous WW+ couplings at Tevatron in W~-FS.
@ Good observables: p] and Qgdn., with £ from W decay.

@ The latter is result of “radiation zero” due to interference of
diagrams.

@ Various backgrounds: e.g. QCD (with j — + conversion)

@ Need cuts on v: minimal p, etc..

]

F T =
w EDPOTR 4 bt Candidates = DB, 0.7 o
f=21:1lne —+— SMMC + Background (k=1. k=l) = i
5 E -eede=- AC MC + Background (=1, 2=0.2} %‘ A Dite fotat meoerialtles)
E Background i —— M (systematic uncertainties)
e T Wao b
T M e T -
2 20
=
E 1
E 10
10
E L L L 1 L 1 O I I 1 I 1 I 1
50 100 150 200 250 300 4 3 2 A 1 z 3 4
Photon E, (GeV) Q, x Ay
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Interpretations

Practical application

Solution for a technical problem: luminosity measurement

The need for a standard candle

o For many measurements (total cross sections): Need luminosity
L[fb~'s™1] x o[fb] = event rate[s~1].

@ But design luminosity # real luminosity.

@ So, we need a way to measure instantaneous luminosity.

@ Simple idea: Use equation above with a process yielding sufficiently
large event rates (then statistical error small)
— maybe af)’;t?

@ Problem: We do not know it well enough. There's some fit
parameterizations, but it is soft QCD physics, so no a priori
theoretical knowledge.

(At Tevatron: typically error of O(10%) due to lumi)

@ Solution: Use best known process (from theory point of view).

F. Krauss IPPP
Phenomenology at collider experiments



Summar

Interpretation

Practical application

Luminosity measurement with gauge bosons: Theoretical
precision

@ Drell-Yan type processes best
known processes at hadron -
colliders.

@ Results available up to NNLO
(the 2 — 1 case!).

@ Due to dependence on x; » = u <
only, also differential xsec w.r.t. © CDF data (3% lumi. eror omitiea)
rapidity known up to NNLO. v
That's great to get the

accepta nce correct. (from C. Anastasiou et al., Phys. Rev. D 69 (2004) 094008),

do/dY [pb]

There will be ~ 20 leptonic W /s at LHC, in principle enough for a
sufficiently precise measurement of luminosity.
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Interpretation Gauge sector of the SM »p physic Summar

Practical application

Theory vs. Tevatron data
CDF and DO Runll Preliminary

3.5

pp— WX = lv+X

*D0(e) ® DO(u)
Runll  ACDF(e) M CDF(u)

Y CDF(x)
«D0e)  ODO()
ACDF(e)  CJCDF()

o b b by by b e

1
17 175 18 18 19 195 2 205
Center of Mass Energy (TeV)

Runl

LI L L L L O
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Gauge sector of the SM

Practical application

pp > (Z77)+X PR~ WX
Wl T T T T = T T T
W NNLO o W
ety
= R o el - E
£ B 5 =
S o 3 S
< =
2 2 s 3
=R 1o 4 E 10
s
> 200
5 3 /
£ N ‘
g 20~ Vs = 14 TeV — %
© M= My aan Vs = 14 TeV ¥
Wesusau M= My
M/2 5 s 2
W21 I | | ! 1 1 |
) k] o B 4 = 2 0 2 i
i 4
(from C. Anastasiou et al., Phys. Rev. D 69 (2004) 094008)
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Gauge sector of the SM

Practical application

Systematic uncertainties

W and Z Cross Sections: Tevatron W and Z Cross Sections: LHC
28 2
57 [ MRST99.00 partons El MRST99.00 partons
NNLO QCD CDFee) 2 E NNLO Qe E
26 £ £5% - E »nE 3
DY 2 [ e5%
5 2sF a T ¢ DOE T 4 o 5 "
2 P} o Saf 2 E
T oaaf L E 0 .
23 F PR 4 Ao f E|
[ 99 gl o1l gl 00 00 I - 19 99 git ol qnt w0 o
© 22 NNLO E Earys NNLO 3
21 F w sl
/ 17E gy 3
W W
20 16
027 22
CDF(e)
026 | T E
CDF() 2
025 .
20| 5%
DO(e)] o [
. T il RS . s k|
= = " I
" S8l v .
v LI I~ L]
i 99 gt ol gl w0 00
gt e g™ 00 00 E ST E B g NNLO E|
NNLO .
020 16 5|
z z
019 15

Seemingly, main uncertainty from PDFs.
Ratios may be a way to overcome this( at least partially).
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Interpretations

Unitarity triangle

Flavor physics ] s Summar
®00

Flavor physics

CKM matrix

@ Inter-generation transitions
dominated by mass spectrum
and CKM matrix;

Relative size of CKM Matrix
(not to scale)

@

°®-

° o

@ dominant: t — b, b—c, ....

F. Krauss

Basic properties

Up to O(A\3):
22 3 g
1- 5 A AX>(p — im)
Vekm = A 1o A2 AN2
AN3(1 — p — in) —AA% 1

@ Source of CP-violation in Vi3-elements
but cosmologically not sufficient;

@ unitarity of CKM matrix: triangles
(Vi Vi = 65);

9 size of CP-violation in SM given by
area of the triangle.
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Flavor physics
oeo

Unitarity triangle

“The" unitarity triangle

Unitarity : 1,075 + V05 Vil =0
(P, 1)

> ¥
I’m’I b

CP violation

¥(9,) B(#)
(0.0) vy (1.0)

cd’ ¢cb

CP violation oc J =Jm [VudeV‘Vc; ]:A?)\"W,\,](}*5 , the Jarlskog invariant

us

D.Hitlin, Talk at “Flavor in the Era of LHC", 2005)
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Interpretation

Flavor physics

Unitarity triangle

Turning measurements into the CKM framework

Overconstraining the Unitarity Triangle
15 - T
B X7 B'(B°) = p'p, pm. W v %
— m— 10| %
B> mlv B°B’ oscillation rate — A
- V.~ BB oscillation rate os| N
V.V a’ b po 0 Am
ud” u 2Py & s
I= o0 L
a
[V
B(&) B
x
B* - (D/D°)K* _Vchcb 10 & 7
2 = B%) > (55 T .
= (DID°) K" (GLW) B xev BB (5K s Yo
S (ADS) B—D'tv BB’ - (ccdd) o 0s o0 05 10 15 20
— (K¢z*zn) K* (Dalitz plot) Ty P
(from D.Hitlin, Talk at “Flavor in the Era of LHC”, 2005) (from CKMFitter homepage)
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©0000

New physics

The B-physics relation to new phenomena

@ There is an amazing consistency of the current flavor-physics
measurements: The CKM-picture seems to be about right.

@ However, many new physics models can have a similar pattern in
their flavor sector (they need to, to survivel!).
@ So, important question: where to look for new physics?
o FCNC processes (flavor-changing neutral cu[rent).
Forbidden at tree-level in the SM (no Z — bs-vertex etc.).

Come through loops — next transparency.
o Rare processes (like B — 71v.) and CP-asymmetries

F. Krauss IPPP
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Flavor physics
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New physics

Flavor physics

FCNC as window to new physics
@ In SM: Only charged flavor changes, due to CKM matrix.
@ Therefore: FCNC like b — s or BB-mixing always loop-induced:

@ Heavy particles running in loop (W, t): FCNC tests scales similar to
potential new physics scales.

F. Krauss IPPP
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Interpretations

New physics

B-physics: Bs —

General comments

@ Two contributions (SM): Penguin & Box p

o Both suppressed by ViV \/ . \{}

o BR™  ~107° N
Bs,d_’uu )

Prospects at LHC
@ Simple: leptonic final state 107
@ Minor theoretical uncertainties

Limit at 90% CI

A\ Bspeated CDEEDOLimit

108 +
@ But: Huge background R =
@ Mass resolution paramount O 0 O O
[ B [[ ATLAS _CM5 _ LACh | Tntcgrated Luminsity ()
[omM™ev) [ 77 36 18| (from T.Nakada, Talk at “Flavor in the Era of LHC", 2007)
-

IPPP
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Flavor physics

00000

New physics

Mixing phenomena: B;Bs-mixing

Theoretical background

@ Mixing phenomena transmitted by boxes in
SM: o | Vs V| due to GIM.

@ B;B,-mixing very important for unitarity
triangle (ratio with ByBy cancels hadronic
uncertainties)

@ But: high oscillation frequency in
Bs Bs-mixing — tricky to see!

@ Especially complicated: Tag the flavor - is
it a b or a b decaying.

@ One of Tevatron's strategies: check for a
neighboring K from fragmentation.

F. Krauss IPPP
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New physics

Results for Bs-mixing

(Recent measurement by CDF, 1 fb—1)

CDF Run Il Preliminary L=10f"
— data ~ 30F
= —— combined
—— expected no signal g’ —— hadronic
—— expected signal <20 — semileptonic

10,
0O
-10)
7
L L L L
EE U R R 3 15 16 17 18 19 20
om, s Am, sy

o Final result: Ams = 17.77 £ 0.10(statstat) =+ 0.07(sys)
|Vig|| Vis| = 0.2060 % 0.0007(exp) = 0.008(theo)
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Interpretation: Top physics
) 900000000

Top mass

Top-physics: Mass measurements

Why is this important?

@ Strong correlation of top- and W-mass
(self-consistency check of SM)

T
—LEP2 and Tevatron (prel.)
80.5- - LEP1 and SLD

68% CL

@ A change in m; by 2 GeV
shifts SM expectation of my by 15%.

@ Once the Higgs-boson is found:
Do mass and Yukawa-coupling agree? o

@ Important input in many (loop)
calculations.
Example: FCNC processes.

F. Krauss IPPP
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Top mass

Experimental techniques: Upshot
@ Typically, three different channels considered separately:
dileptons (bblwl'v"), semi-leptonic (bblwjj), hadronic (bbjjj).
@ Three different methods: Template, matrix element, cross section
(see next transparencies).

@ Depend partly on top-reconstruction. mmm"‘“m“ﬁ o~ |
. _ By \usz«»
@ Main systematics: jet energy scale (JES). S Y w/'v .
- e Tl - o m, = »I
Solution: “in situ”-calibration %8
through W — qg’ (my known). P %
Invariant mass |\
m,
(from C.Schwanenberger's talk
ICHEP08)

F. Krauss
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Top mass

Template method

@ Basic idea: Run many MC samples for
different values of m; & compare
observables (distributions) with
experiment.

0.14- CDF Run Il Preliminary

op
[ 145 Gevic?
[ 185 Gevic?
[ 185 Gevic®
[ 205 Gevic®

@ Use observables strongly correlated with
m;: Naive choice myeco..

@ Alternatively, look for observables that are

least sensitive to badly controlled inputs )
. s’ (GeVic®)
(like JES). —

(from C.Schwanenberger's talk at ICHEP08)

@ Examples: p/, vertex displacement of
b-decay (see next slide)

F. Krauss IPPP
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Top mass

Alternative template method

= Quantities with minimal dependence on jet energy scale

Jet
COF Fanl Pty (195

displaced

GOF Run I Profiminary (1.9 &)
e O 02

Socondary vhx

N

W0 L e 0 1 e 20 B0
s 5V 1]

GOF R Promiary (190 COF Ao 1 Protiminary (1915
bl LT

<LopPt= [GeV.

100 150 0 250 £ 150 40 LS L0 1T 1) 00 e B
LepPtiGeY ] Top Mass(GeV (€]
(from C.Schwanenberger's talk at ICHEP08)
F. Krauss IPPP
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Top mass

Matrix element method Results

@ Per event define a probability for being signal- s G
or background-like: P I
7) X M 2 X|X 2 o hj —e— 1801+ 53
(Xocen) ¢ [Map x| X | Xicen)) S
Dol Mj/b‘ 1730+ 2.2
@ Here [(X|X,oen)|? is “transfer function”: conmr_Jfe-
Probability to see Xscen When X was produced rdor = 6 /11
needs to be taken from MC Tevatron Run-I/II* H 1726+ 1.4
& checked with control data. S

@ At Tevatron: LO-matrix element M, x for P

X = tt+decays CDF /9225, D0/5626)

o
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Top mass

Some remarks on m; from m..,

@ Need m; in well-defined renormalization scheme:
at NLO: [mM5(m,) — m¢" Pl (m,)| ~ 8 GeV!lI
Then: Which top-mass has been measured?

@ Answer: We do not know.
Due to comparison with MC, it is a LO m; with QCD parton
showers (some HO QCD) and modelling of fragmentation,
underlying event, color-reconnection, .. ..
My suspicion: It is an “MC"-scheme, close to on-shell.

@ But therefore, need either to understand underlying MC better
or use better observables, independent of reco and MC.

@ Examples for better observables: o, doz/dMz.

F. Krauss IPPP
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Top mass

Top-mass from oz

@ Production cross section depends on m;:

12 o e 12 P e
G54 [Pb] (COF run i prel) ] [ CDFrunl CDF run I (prel.)
= 3 10 F -1 B
10 m =171 GeV ] F cpﬁi,,[pb]forno ph for 760 pb
: E vk e
8 6 B
4 3 4 b
2 E 5 E
] F B ONNLO .,y M =171 Gev
0 0 bl bl by
185 170 175 180 1800 1850 1900 1950 2000
Vs [GeV]

m; [GeV]

(from S.Moch & P.Uwer, arXiv:0804.1476)

@ Main theoretical uncertainties due to HO, around 8-10 %.

F. Krauss IPPP
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Top-mass from oz: Results

Top mass from cross section measurement

a |epton+jets/dilepton/lepton+tau combination

—— Tppx

D@ Preliminary, ~1 fb"

2

D@ Preliminary, ~1fb"
Moch and Uwer
DO Isjetsidileptoni+tau ~1 fb"
68% CL contour
world average top quark mass

04 (9b)

Total uncertinty
—— NNLO_approx Moch & Uex
NLO+NLL Cactiar et .

160 165 170

st S5 7 .
175 180 150 155 160 165 170 175 180 185 190
Top Mass (GeV) top quark mass (GeV)

pole mass (M,, =169.6 +55GeV with NNLO_ | +3.2%

I 07/30/2008_Top Quark Mass in Lepton Jets at the Tevation — Chwistian Schwanenberger — ICHEF 2008, Phikdeiphia 27 |0S

(from C.Schwanenberger's talk at ICHEP08)

F. Krauss IPPP
Phenomenology at collider experiments



Interpretation: E | Top physics
00000000

Top mass

Taking the top-mass from do;/d Mz

s \ do/dm; [pb/GeV] ] 8= do/dm; [pb/CeV] ] 8= do/dm; [pb/CeV] ]
NLO, CTEQSM, LHC NLO, CTEQSM, LHC NLO, CTEQSM, LHC
A \ m, = 165 Gev A m, = 170 Gev A mo-1msoey ]

L L L L N
0 0 I
300 400 500 600 700 500 300 400 500 600 700 800 300 400 500 600 700 500
€ invariant mass [GeV] € invariant mass [GeV] € invariant mess [GeV]

(from R.Frederix & F.Maltoni, arXiv:0712.2355)

@ Theory uncertainty: 0.250my:/m;: at NLO.

F. Krauss IPPP
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Single-top production

Process characteristics

o Important: Only direct, model-independent measurement of V;,

\/1\./1‘/ 4 ; g t
A ! b b

@ At Tevatron: important background to WH
o Cross section quite large, ~ 40 % of 0.

o Tricky signature, huge backgrounds: especially top-pairs (sometimes
“irreducible”: tW at NLO), W+jets, etc..

@ Involved analysis techniques: matrix elements, neural networks,
boosted decision trees.

F. Krauss
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Single-top production: Combination of results

Cross sections at Tevatron

Single Top Quark Cross Section August 2009
I
CDF Lepton+jets 3.2 b i HeH 2.17 iggg pb
I
CDF MET+ets 217" ! 50 3% pb
I
I
D@ Lepton+jets 2.3 b ! 3.94 fggg pb
I
. - !
Tevatron Combination ! 2.76 ig;ii’ pb
Preliminary
I
Bl B.W. Harris et al., PRD 66‘0540‘24 (2002) ~
N. Kidonakis, PRD 74, 114012 (2006) Myop = 170 GeV
I
[ \

0 2 4 6 8
o (pp — th+X, tgb+X) [pb]

from arXiv:/0908.2171 [hep-ex]
F. Krauss IPPP
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New physics aspects in single-top production

Top physics
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@ Sensitive to new physics, different impact in different channels
(t-channel, s-channel and T-W associated)

(Tevatron)
singlet

*

L Lo
662 64 66 OF 1 13 1E 16

5, (pb)

(LHC)

singlet

I I
L e T

S, {pb)

(from T.Tait & C.P.Yuan, Phys

3

w2

+: N*
#: 4th q
SM with 3o

theory uncertainty

Rev. D 63 (2001) 014018)

F. Krauss
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Top properties

The charge of the top-quark

Basic idea

@ In the SM, Q; = 2/3, so a charge measurement confirms that the
top quark fits the pattern of the isodoublets in the quark sector.
@ There are potentially two ways to determine the charge of the top:
@ Check the strength of the coupling to the photon directly, through
the tt~y coupling, e.g. by building the ratio oz, /cttg.
This seems feasible at a linear collider, at Tevatron/LHC it is more
difficult due to initial state radiation.
o Infer the charge from the decay products, i.e. from the W and the b.
This is the method used at Tevatron.

@ The trick is to make pairings of W's, where the charge is known
from the lepton, and the b-jet, such that mpy =~ m;. The problem
is to check whether the jet originated from a b or a b, leading to
charges 2/3 (SM) or 4/3 (XM), respectively, for a top-quark.

F. Krauss IPPP
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Measuring the charge of the top

Jet charge

)

Consider cone jets with R = 0.4
and p; > 20 GeV.

Define jet charge by

iEtEcks Qi(ﬁi i EJ)”

Q)=
K

i€tracks
1 = 1/2 has been optimized
with MC.

Label each pair as being SM
(fr = 1) or XM-like (1. = 0),
measure (fi).

F. Krauss
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(from CDF-Note 8967)

Result: Q; =2/3

CDF Run i prefiminary L=1.5 b

3 1640

E

N 1645
1650,

14087
1655
1660,
1665
-1670
1675

1680
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Top properties

Top decays

Vip» from top decays

N
} D& Runll = 11 D@ Run Il L=0.9 fby
£ 600 o Data(L=0.9 1) e
= S 10
——R=1
iR=05 S
400 +
—iR=0 84
Background
200+ “
s 95% C.L.
6
68% C.L.
51— T T
0 T I 5 0% 09 LTI 12
TN,

(from DO, Phys. Rev. Lett. 100 (2008) 192003)

o Simultaneous fit to o,z and BR(t — Wb)/BR(t — Wq)
@ Underlying assumption: > BR(t — Wg) =1
q

F. Krauss
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Top properties

W-helicity in top-quark decays

Why is this important?

Spin information of the top quark is

preserved in its decay products g

t
Examining the V-A nature of t Wb vertex SRR
provides stringent test of the SM w
spin =1

W, Longitudinal fraction| W_ Left-Handed fraction]W, Right-Handed fraction
Fy F. F.

+112 l +112 l ) +12 I

F. Krauss IPPP
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Measurement of the W-helicity in top-quark decays

@ Measure cos0*
from £y = Zpp in W-rest frame.

@ P(cosf*) = fowp + frwy + f-w_

arbitrary units

with wo = 3(1 — cos? %)

wy = 3(1 + cos6*)?

w_ = 2(1 - cos6*)>. L
@ SM: fy = 0.697 + 0.002, f, = O(10~%), S
fo=1-—fo—f. T m g

@ fy=0.66+0.16 & f. = —0.03 £ 0.07

(recent CDF-measurement) (from oo 95

F. Krauss IPPP
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Top properties

Charged Higgs bosons in top decays?

Theory considerations Experimental results
@ If my+ < my — my, decay mode is, in 3® “"”y

principle, open.

o If decays of H* along CKM bpicture,
H* — v and H* — cs dominant:

o Dwat-1om

m,,. =100 GeV/c’ 10+ . . .
o et 11ag wjts 2123 aeptan | tiepton
T
@ D@ Runll Preliminary
=3 £ 10 TS
< £ o
= EJ S S
§
[

ejets Liag vjets 21ag " clepton | tviepton

tan B (from DO-conf/5715)

F. Krauss IPPP
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The next generation(s)?

Theoretical background
@ There is no a priori reason to assume 3 generations only.

@ Some models, like, e.g. little Higgs, predict the existence of further
elementary fermions, like t’.

@ Reason against 4th generation: Only 3 v's with m,, < mz/2 at LEP.

F. Krauss IPPP
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Gauge sector of the SM

To take home
@ The gauge sector is THE crucial point for the SM.

@ There is an intricate interplay with other parameters, especially m;.
(Remark: Adopt the following point: all matter particles want to
have masses = v, so the real question is not why the top is so heavy
but why the electron is so light!)

@ Need to check the consistency: shed light on mechanism of EWSB.
@ Even after Higgs boson will be found: Must match the pattern!

@ Potentially a window to new physics, in particular through VV-pair
production: Unitarity (see lecture 5), anomalous gauge couplings
etc..

F. Krauss IPPP
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Flavor sector of the SM

To take home
@ There are many interesting questions in the flavor sector:

o Rare/FCNC decays of b (and of t)

@ Check properties, especially of the top-quark: coupling, CKM
elements, charge.

@ Myop is an important input, but more (theoretical) work needed to
ensure that meaningful results at sufficient accuracy have been
extracted from data.

@ Top production (single and in pairs) is a relevant background to
nearly all new physics searches at LHC — we need to understand
this as good as possible.

@ LHC is a top-factory! Can go for high precision:
not only mass, also Vi, width, rare decays, ...

F. Krauss IPPP
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