Simulations in High-Energy Physics

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

Cours de Printemps du LAL, Orsay, May 2018

PART I: Introduction

1 Introduction: improving event generators

QCD Basics: Scales & Kinematics

PART II: Monte Carlo for Perturbative QCD

3 Parton-level Monte Carlo

4 Parton showers – the basics

PART III: Precision Simulations

- 5 First improvements
- 6 Matching
- Multijet merging
- 8 Electroweak corrections

PART IV: Monte Carlo for Non-Perturbative QCD

Madronisation

Underlying Event

PART I: INTRODUCTION

IMPROVING EVENT GENERATORS

Strategy of event generators

principle: divide et impera

 hard process: fixed order perturbation theory

traditionally: Born-approximation

- bremsstrahlung: resummed perturbation theory
- hadronisation: phenomenological models
- hadron decays: effective theories, data
- "underlying event": phenomenological models

... and possible improvements

possible strategies:

- improving the phenomenological models:
 - "tuning" (fitting parameters to data)
 - replacing by better models, based on more physics

(my hot candidate: "minimum bias" and "underlying event" simulation)

- improving the perturbative description:
 - inclusion of higher order exact matrix elements and correct connection to resummation in the parton shower:

"NLO-Matching" & "Multijet-Merging"

 systematic improvement of the parton shower: next-to leading (or higher) logs & colours

Motivation – precision edge of particcle physics

- after Higgs discovery: time for precision studies is it the SM Higgs boson or something else? relevant: spin/parity (√), couplings to other particles
- Higgs signal suffers from different backgrounds, depending on production and decay channel considered in the analysis
- decomposing in bins of different jet multiplicities yields
 - different signal composition (e.g. WBF vs. ggF)
 - ullet different backgrounds (most notably: $tar{t}$ in WW final states)
- to this end: must understand jet production in big detail name of the game: uncertainties and their control

despite far-reaching claims: analytic resummation and fixed-order calculations will not be sufficient

same reasoning also true for new resonances/phenomena

Motivation – BSM edge of particle physics

- to date no survivors in searches for new physics & phenomena

(a pity, but that's what Nature hands to us)

- push into precision tests of the Standard Model

(find it or constrain it!)

- statistical uncertainties approach zero

(because of the fantastic work of accelerator, DAQ, etc.)

systematic experimental uncertainties decrease

(because of ingenious experimental work)

- theoretical uncertainties are or become dominant

(it would be good to change this to fully exploit LHC's potential)

⇒ more accurate tools for more precise physics needed!

Aim of the lectures

• review the state of the art in precision simulations

(celebrate success)

highlight missing or ambiguous theoretical ingredients

(acknowledge failure)

(maybe) suggest some further studies – experiment and theory

(. . .)

QCD BASICS

SCALES & KINEMATICS

Contents

- 2.a) Factorisation: an electromagnetic analogy
- 2.b) QED Initial and Final State Radiation
- 2.c) Hadrons in initial state: DGLAP equations of QCD
- 2.d) Hadron production: Scales

An electromagnetic analogy

ullet consider a charge Z moving at constant velocity v

- at v = 0: radial E field only
- at v = c: \vec{B} field emerges: $\vec{E} \perp \vec{B}$, $\vec{B} \perp \vec{v}$, $\vec{E} \perp \vec{v}$, energy flow \sim Poynting vector $\vec{S} \sim \vec{E} \times \vec{B}$, $\parallel \vec{v} \parallel$
- approximate classical fields by "equivalent quanta": photons

• spectrum of photons:

(in dependence on energy ω and transverse distance b_{\perp})

$$\mathrm{d} n_{\gamma} = \frac{Z^2 \alpha}{\pi} \cdot \frac{\mathrm{d} \omega}{\omega} \cdot \frac{\mathrm{d} b_{\perp}^2}{b_{\perp}^2} \stackrel{\mathrm{electron}(Z=1)}{\longrightarrow} \frac{\alpha}{\pi} \cdot \frac{\mathrm{d} \omega}{\omega} \cdot \frac{\mathrm{d} b_{\perp}^2}{b_{\perp}^2}$$

• Fourier transform to transverse momenta k_{\perp} :

$$\mathrm{d}n_{\gamma} = \frac{\alpha}{\pi} \cdot \frac{\mathrm{d}\omega}{\omega} \cdot \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2}$$

note: divergences for $k_\perp o 0$ (collinear) and $\omega o 0$ (soft)

therefore: Fock state for lepton = superposition (coherent):

$$|e\rangle_{\rm phys} = |e\rangle + |e\gamma\rangle + |e\gamma\gamma\rangle + |e\gamma\gamma\gamma\rangle + \dots$$

photon fluctuations will "recombine"

QED Initial and Final State Radiation

- consider final state radiation in $\gamma^* \to \ell \bar{\ell}$ (electron velocities/momenta labelled as v and v'/p and p')
- classical electromagnetic spectrum from radiation function:

(this is from Jackson or any other reasonable book on ED)

$$\frac{\mathrm{d}^2 I}{\mathrm{d}\omega \mathrm{d}\Omega} \; = \; \frac{\mathrm{e}^2}{4\pi^2} \left| \vec{\epsilon}^{\,*} \cdot \left(\frac{\vec{v}}{1 - \vec{v} \cdot \vec{n}} - \frac{\vec{v}'}{1 - \vec{v}' \cdot \vec{n}} \right) \right|^2 \, ,$$

with ϵ the polarisation vector and $\vec{n}(\Omega)$ the direction of the radiation

recast with four-momenta, equivalent photon spectrum:

$$dN = \frac{d^3k}{(2\pi)^3 2k_0} \frac{\alpha}{\pi} \left| \epsilon_{\mu}^* \left(\frac{p^{\mu}}{p \cdot k} - \frac{p'^{\mu}}{p' \cdot k} \right) \right|^2$$
$$= \frac{d^3k}{(2\pi)^3 2k_0} \frac{\alpha}{\pi} \left| W_{pp';k} \right|^2$$

with the eikonal $W_{pp';k}$

repeat exercise in QFT, Feynman diagrams:

$$\mathcal{M}_{X \to e^{+}e^{-}\gamma} = e \bar{u}(p) \left[\Gamma \frac{\not p' - \not k}{(p'-k)^{2}} \gamma^{\mu} - \gamma^{\mu} \frac{\not p + \not k}{(p+k)^{2}} \Gamma \right] u(p') \epsilon_{\mu}^{*}(k)$$

$$\xrightarrow{\text{soft}} e \epsilon_{\mu}^{*}(k) \left[\frac{p^{\mu}}{p \cdot k} - \frac{p'^{\mu}}{p' \cdot k} \right] \bar{u}(p') \Gamma u(p) = e \mathcal{M}_{X \to e^{+}e^{-}\gamma} \cdot W_{\rho p';k}$$

manifestation of Low's theorem: soft radiation independent of spin (\rightarrow classical)

(radiation decomposes into soft, classical part with logs - i.e. dominant - and hard collinear part)

Simulations in High-Energy Physics

DGLAP equations for QED

(Dokshitser-Gribov-Lipatov-Altarelli-Parisi Equations)

define probability to find electron or photon in electron:

at LO in
$$\alpha$$
 (noemission) : $\ell(x, k_{\perp}^2) = \delta(1-x)$
and $\gamma(x, k_{\perp}^2) = 0$

(introduced x = energy fraction w.r.t. physical state)

- including emissions:
 - probabilities change
 - energy fraction ξ of lepton parton w.r.t. the physical lepton object reduced by some fraction $z=x/\xi$
 - reminder: differential of photon number w.r.t. k_{\perp}^2 :

$$\mathrm{d}n_{\gamma} = \frac{\alpha}{\pi} \frac{\mathrm{d}k_{\perp}^{2}}{k_{\perp}^{2}} \frac{\mathrm{d}\omega}{\omega} \leftrightarrow \frac{\mathrm{d}n_{\gamma}}{\mathrm{d}\log k_{\perp}^{2}} = \frac{\alpha}{\pi} \frac{\mathrm{d}x}{x}$$

evolution equations (trivialised)

$$\frac{\mathrm{d}\ell(x, k_{\perp}^2)}{\mathrm{d}\log k_{\perp}^2} = \frac{\alpha(k_{\perp}^2)}{2\pi} \int_{x}^{1} \frac{\mathrm{d}\xi}{\xi} \mathcal{P}_{\ell\ell}\left(\frac{x}{\xi}, \alpha(k_{\perp}^2)\right) \ell(\xi, k_{\perp}^2)$$

$$\frac{\mathrm{d}\gamma(x, k_{\perp}^2)}{\mathrm{d}\log k_{\perp}^2} = \frac{\alpha(k_{\perp}^2)}{2\pi} \int_{x}^{1} \frac{\mathrm{d}\xi}{\xi} \mathcal{P}_{\gamma\ell}\left(\frac{x}{\xi}, \alpha(k_{\perp}^2)\right) \ell(\xi, k_{\perp}^2).$$

- k_{\perp}^2 plays the role of "resolution parameter"
- the $\mathcal{P}_{ab}(z)$ are the splitting functions, encoding quantum mechanics of the "splitting cross section", for example (at LO)

$$\mathcal{P}_{\ell\ell}(z) = \left(\frac{1+z^2}{1-z}\right)_+ + \frac{3}{2}\delta(1-z)$$

• if $\gamma \to \ell \bar{\ell}$ splittings included, have to add entries/splitting functions into evolution equations above

Running of α_s and bound states

- quantum effect due to loops: couplings change with scale
- running driven by β -function

$$\beta(\alpha_s) = \mu_R^2 \frac{\partial \alpha_s(\mu_R^2)}{\partial \mu_R^2}$$
$$= \frac{\beta_0}{4\pi} \alpha_s^2 + \frac{\beta_1}{(4\pi)^2} \alpha_s^3 + \dots$$

with

$$\beta_0 = \frac{11}{3} C_A - \frac{4}{3} T_R n_f$$

$$\beta_1 = \frac{34}{3} C_A^2 - \frac{20}{3} C_A T_R n_f - 4 C_F T_R n_f$$

• Casimir operators in the fundamental and adjoint representation:

$$C_F = \frac{N_c^2 - 1}{2N_c}$$
 and $C_A = N_c$

with $N_c = 3$ colours and $T_R = 1/2$.

- n_f = the number of (quark) flavours
- the Casimirs correspond to quark and gluon colour charges
- explicit expression for strong coupling

$$\alpha_{\rm s}(\mu_R^2) \equiv \frac{g_{\rm s}^2(\mu_R^2)}{4\pi} = \frac{1}{\frac{\beta_0}{4\pi}\log\frac{\mu_R^2}{\Lambda_{\rm QCD}^2}}$$

with $\Lambda_{\rm QCD}$ the Landau pole of QCD, $\Lambda_{\rm QCD} \approx 250 {
m MeV}.$

Picture of Hard QCD Interactions

borrowed from QED: lifetime of electron-photon fluctuations:

$$e(P) \rightarrow e(p) + \gamma(k)$$

- estimate: use uncertainty relation and Lorentz time dilation
 - $P^2 = (p + k)^2 = M_{\text{virt}}^2$ the virtual mass of the incident electron
 - ullet life time = life time in rest frame \cdot time dilation

$$\tau \sim \frac{1}{M_{\rm virt}} \cdot \frac{E}{M_{\rm virt}} = \frac{E}{(p+k)^2} \sim \frac{E}{2Ek(1-\cos\theta)} \approx \frac{k}{k^2\sin^2\theta/2} \approx \frac{\omega}{k_\perp^2}$$

lifetime larger with smaller transverse momentum

(i.e. with larger transverse distance)

same pattern also in QCD

- physical interpretation:
 equivalent quanta = quantum manifestation of accompanying fields
- in absence of interaction: recombination enforced by coherence
- but: hard interaction possibly "kicks out" quantum
 - \longrightarrow coherence broken
 - → equivalent (virtual) quanta become real
 - → emission pattern unravels

 alternative idea: initial state radiation of photons off incident electron

Hadrons in initial state: DGLAP equations of QCD

- define probabilities (at LO) to find a parton q quark or gluon in hadron h at energy fraction x and resolution parameter/scale Q:

 parton distribution function (PDF) $f_{q/h}(x, Q^2)$
- scale-evolution of PDFs: DGLAP equations

$$\begin{split} \frac{\partial}{\partial \log Q^2} \left(\begin{array}{c} f_{q/h}(x, Q^2) \\ f_{g/h}(x, Q^2) \end{array} \right) \\ &= \frac{\alpha_{\mathsf{s}}(Q^2)}{2\pi} \int\limits_{\mathsf{x}}^1 \frac{\mathrm{d}z}{z} \left(\begin{array}{cc} \mathcal{P}_{qq} \left(\frac{\mathsf{x}}{\mathsf{z}} \right) & \mathcal{P}_{qg} \left(\frac{\mathsf{x}}{\mathsf{z}} \right) \\ \mathcal{P}_{gq} \left(\frac{\mathsf{x}}{\mathsf{z}} \right) & \mathcal{P}_{gg} \left(\frac{\mathsf{x}}{\mathsf{z}} \right) \end{array} \right) \left(\begin{array}{c} f_{q/h}(z, Q^2) \\ f_{g/h}(z, Q^2) \end{array} \right) \,, \end{split}$$

QCD splitting functions:

$$\mathcal{P}_{qq}^{(1)}(x) = C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2}\delta(1-x) \right] = \left[P_{qq}^{(1)}(x) \right]_+ + \gamma_q^{(1)}\delta(1-x)
\mathcal{P}_{qg}^{(1)}(x) = T_R \left[x^2 + (1-x)^2 \right] = P_{qg}^{(1)}(x)
\mathcal{P}_{gq}^{(1)}(x) = C_F \left[\frac{1+(1-x)^2}{x} \right] = P_{gq}^{(1)}(x)
\mathcal{P}_{gg}^{(1)}(x) = 2C_A \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right]
+ \frac{11C_A - 4n_f T_R}{6} \delta(1-x) = \left[P_{gg}^{(1)}(x) \right]_+ + \gamma_g^{(1)}\delta(1-x) .$$

 remark: IR regularisation by +-prescription & terms $\sim \delta(1-x)$ from physical conditions on splitting functions

(flavour conservation for $q \to qg$ and momentum conservation for $g \to gg$, $q\bar{q}$)

Hadron production: Scales

- consider QCD final state radiation
- pattern for q o qg similar to $\ell o \ell \gamma$ in QED:

$$dw^{q \to qg} = \frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} C_{F} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \frac{d\omega}{\omega} \left[1 + \left(1 - \frac{\omega}{E} \right)^{2} \right]$$

$$\stackrel{\omega = E(1-z)}{=} \frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} C_{F} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} dz \frac{1+z^{2}}{1-z} = \frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} C_{F} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} dz P_{qg}^{(1)}(z).$$

divergent structures for:

$$z \to 1$$
 (soft divergence) \longleftrightarrow infrared/soft logarithms $k_{\perp}^2 \to 0$ (collinear/mass divergence) \longleftrightarrow collinear logarithms

ullet cut regularise with cut-off $k_{\perp, \min} \sim 1 {
m GeV} > \Lambda_{\sf QCD}$

- find two perturbative regimes:
 - a regime of jet production, where $k_{\perp} \sim k_{\parallel} \sim \omega \gg k_{\perp, \rm min}$ and emission probabilities scale like $w \sim \alpha_{\rm s}(k_{\perp}) \ll 1$; and
 - a regime of jet evolution, where $k_{\perp, \min} \leq k_{\perp} \ll k_{\parallel} \leq \omega$ and therefore emission probabilities scale like $w \sim \alpha_{\rm s}(k_{\perp}) \log^2 k_{\perp}^2 \stackrel{>}{\sim} 1$.
- in jet production:

standard fixed-order perturbation theory

in jet evolution regime,

perturbative parameter not $\alpha_{\rm s}$ any more but rather towers of $\exp\left[\alpha_{\rm s}\log k_\perp^2\log k_\parallel\right]$

• induces counting of leading logarithms (LL), $\alpha_{\rm s}L^{2n}$, next-to leading logarithms (NLL), $\alpha_{\rm s}L^{2n-1}$, etc.

PART II: MONTE CARLO

FOR PERTURBATIVE QCD

MONTE CARLO FOR

PARTON LEVEL

Contents

- 3.a) Calculating matrix elements efficiently
- 3.b) Phase spacing for professionals
- 3.c) Including higher order corrections
- 3.d) Cancellation of IR divergences
- 3.e) Tools for LHC physics

Simulating hard processes (signals & backgrounds)

• Simple example: $t \to bW^+ \to b\bar{l}\nu_l$:

$$|\mathcal{M}|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2 \theta_W} \right)^2 \frac{p_t \cdot p_\nu \ p_b \cdot p_l}{(p_W^2 - M_W^2)^2 + \Gamma_W^2 M_W^2}$$

Phase space integration (5-dim):

$$\Gamma = \tfrac{1}{2m_t} \tfrac{1}{128\pi^3} \int \mathrm{d}\rho_W^2 \tfrac{\mathrm{d}^2\Omega_W}{4\pi} \tfrac{\mathrm{d}^2\Omega}{4\pi} \left(1 - \tfrac{\rho_W^2}{m_t^2}\right) |\mathcal{M}|^2$$

- 5 random numbers \Longrightarrow four-momenta \Longrightarrow "events".
- Apply smearing and/or arbitrary cuts.
- Simply histogram any quantity of interest no new calculation for each observable

Calculating matrix elements efficiently

- stating the problem(s):
 - multi-particle final states for signals & backgrounds.
 - need to evaluate $d\sigma_N$:

$$\int_{\text{cuts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^3 q_i}{(2\pi)^3 2E_i} \right] \delta^4 \left(p_1 + p_2 - \sum_i q_i \right) \left| \mathcal{M}_{p_1 p_2 \to N} \right|^2.$$

- problem 1: factorial growth of number of amplitudes.
- problem 2: complicated phase-space structure.
- solutions: numerical methods.

ullet example for factorial growth: $e^+e^ightarrow qar q+ng$

n	$\#_{\text{diags}}$
0	1
1	2
2	8
3	48
4	384

- obvious: traditional textbook methods (squaring, completeness relations, traces) fail
 - \implies result in proliferation of terms $(\mathcal{M}_i \mathcal{M}_i^*)$
- better ideas of efficient ME calculation:
 - ⇒ realise: amplitudes just are complex numbers,
 - \Longrightarrow add them before squaring!
- remember: spinors, gamma matrices have explicit form could be evaluated numerically (brute force)
 but: Rough method, lack of elegance, CPU-expensive
- can do better with smart basis for spinors (see detour)
- this is still on the base of traditional Feynman diagrams!

Phase spacing for professionals

("Amateurs study strategy, professionals study logistics")

- democratic, process-blind integration methods:
 - Rambo/Mambo: Flat & isotropic

```
R.Kleiss, W.J.Stirling & S.D.Ellis, Comput. Phys. Commun. 40 (1986) 359;
```

HAAG/Sarge: Follows QCD antenna pattern

```
A.van Hameren & C.G.Papadopoulos, Eur. Phys. J. C 25 (2002) 563.
```

 multi-channelling: each Feynman diagram related to a phase space mapping (= "channel"), optimise their relative weights

```
R.Kleiss & R.Pittau, Comput. Phys. Commun. 83 (1994) 141.
```

- ullet main problem: practical only up to $\mathcal{O}(10\mathrm{k})$ channels.
- some improvement by building phase space mappings recursively: more channels feasible, efficiency drops a bit.

basic idea of multichannel sampling (again): use a sum of functions $g_i(\vec{x})$ as Jacobean $g(\vec{x})$.

$$\implies$$
 $g(\vec{x}) = \sum_{i=1}^{N} \alpha_i g_i(\vec{x});$

⇒ condition on weights like stratified sampling; ("combination" of importance & stratified sampling).

algorithm for one iteration:

- calculate total weight $g(\vec{x_j})$ and partial weights $g_i(\vec{x_j})$
- add $f(\vec{x_j})/g(\vec{x_j})$ to total result and $f(\vec{x_j})/g_i(\vec{x_j})$ to partial (channel-) results.
- after N sampling steps, update a-priori weights.

this is the method of choice for parton level event generation!

- quality measure for integration performance: unweighting efficiency
- want to generate events "as in nature".
- basic idea: use hit-or-miss method;
 - generate \vec{x} with integration method,
 - compare actual $f(\vec{x})$ with maximal value during sampling \implies "Unweighted events".
- comments:
 - unweighting efficiency, $w_{\rm eff} = \langle f(\vec{x_j})/f_{\rm max} \rangle =$ number of trials for each event.
 - expect $\log_{10}w_{\rm eff}\approx 3-5$ for good integration of multi-particle final states at tree-level.
 - maybe acceptable to use $f_{\mathrm{max,eff}} = K f_{\mathrm{max}}$ with K < 1. problem: what to do with events where $f(\vec{x_j})/f_{\mathrm{max,eff}} > 1$? answer: Add $\mathrm{int}[f(\vec{x_j})/f_{\mathrm{max,eff}}] = k$ events and perform hit-or-miss on $f(\vec{x_j})/f_{\mathrm{max,eff}} k$.

Including higher order corrections

obtained from adding diagrams with additional:

loops (virtual corrections) or legs (real corrections)

- effect: reducing the dependence on μ_R & μ_F NLO allows for meaningful estimate of uncertainties
- additional difficulties when going NLO:
 ultraviolet divergences in virtual correction
 infrared divergences in real and virtual correction

enforce

UV regularisation & renormalisation IR regularisation & cancellation

 $({\sf Kinoshita-Lee-Nauenberg-Theorem})$

Structure of NLO calculations

ullet phase space factorisation assumed here $(\Phi_{\mathcal{R}} = \Phi_{\mathcal{B}} \otimes \Phi_1)$

$$\int \mathrm{d}\Phi_1 \mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}} \otimes \Phi_1) \, = \, \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}})$$

process independent, universal subtraction kernels

$$\mathcal{S}_{N}(\Phi_{\mathcal{B}} \otimes \Phi_{1}) = \mathcal{B}_{N}(\Phi_{\mathcal{B}}) \otimes \mathcal{S}_{1}(\Phi_{\mathcal{B}} \otimes \Phi_{1})$$

$$\mathcal{I}_{N}^{(\mathcal{S})}(\Phi_{\mathcal{B}} \otimes \Phi_{1}) = \mathcal{B}_{N}(\Phi_{\mathcal{B}}) \otimes \mathcal{I}_{1}^{(\mathcal{S})}(\Phi_{\mathcal{B}}),$$

and invertible phase space mapping (e.g. Catani-Seymour)

$$\Phi_{\mathcal{R}} \; \longleftrightarrow \; \Phi_{\mathcal{B}} \otimes \Phi_1$$

Aside: choices . . .

- common lore: NLO calculations reduce scale uncertainties
- this is, in general, true. however: unphysical scale choices will yield unphysical results

more ways of botching it at higher orders

Availability of exact calculations (hadron colliders)

- fixed order matrix elements ("parton level") are exact to a given perturbative order.
- important to understand limitations: only tree-level and one-loop level fully automated, beyond: prototyping

Survey of existing parton-level tools @ tree-level

	Models	2 -> n	Ampl.	Integ.	public?	lang.
ALPGEN	SM	n = 8	rec.	Multi	yes	Fortran
AMEGIC++	SM, UFO	n = 6	hel.	Multi	yes	C++
Соміх	SM, UFO	n = 8	rec.	Multi	yes	C++
СомрНер	SM, LANHEP	n = 4	trace	1Channel	yes	C
HELAC	SM	n = 8	rec.	Multi	yes	Fortran
MADEVENT	SM, UFO	n = 6	hel.	Multi	yes	Python/Fortran
WHIZARD	SM, UFO	n = 8	rec.	Multi	yes	O'Caml

Survey of existing parton-level tools @ NLO

	type	technology dependencies on other codes		
LoopTools	integrals			
ONELOOP	integrals			
QCDLoop	integrals			
COLLIER	reduction			
CUTTOOLS	reduction	OPP		
FORMCALC	reduction	PV		
NINJA	reduction	Laurent expansion		
SAMURAI	reduction			
BLACKHAT	library (amplitudes)	OPP (unitarity)		
МсЕм	library (full calculation)	PV & OPP		
MJET	library (amplitudes)	OPP		
GoSAM	generator (amplitudes)	OPP		
	- , , ,	SAMURAI +NINJA +		
MADLOOP	generator (full calculation)	OL+OPP		
		CUTTOOLS +		
OPENLOOPS	generator (amplitudes)	OL+OPP		
		COLLIER +CUTTOOLS +		
RECOLA	generator (amplitudes)	TR		
		COLLIER +CUTTOOLS +		
HELAC-NLO	generator (full calculation)	OPP		
		CUTTOOLS +		

GOING MONTE CARLO

PARTON SHOWERS – THE BASICS

Contents

- 4.a) An analogy: radioactive decays
- 4.b) The pattern of QCD radiation
- 4.c) Quantum improvements
- 4.d) Compact notation

An analogy: Radioactive decays

ullet consider radioactive decay of an unstable isotope with half-life au.

(and ignore factors of ln 2.)

"survival" probability after time t is given by

$$\mathcal{S}(t) = \mathcal{P}_{ ext{nodec}}(t) = \exp[-t/ au]$$

(note "unitarity relation":
$$\mathcal{P}_{ ext{dec}}(t) = 1 - \mathcal{P}_{ ext{nodec}}(t)$$
.)

probability for an isotope to decay at time t:

$$\frac{\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)}{\mathrm{d}t} = -\frac{\mathrm{d}\mathcal{P}_{\mathrm{nodec}}(t)}{\mathrm{d}t} = \frac{1}{\tau} \, \exp(-t/\tau)$$

- now: connect half-life with width $\Gamma = 1/\tau$.
- probability for isotope decay at any fixed time t determined by Γ .

- spice things up now: add time-dependence, $\Gamma = \Gamma(t')$
- rewrite

$$\Gamma t \longrightarrow \int\limits_0^t \mathrm{d}t' \Gamma$$

decay-probability at a given time t is given by

$$rac{\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)}{\mathrm{d}t} = \Gamma(t) \; \mathrm{exp} \left[-\int\limits_0^t \, \mathrm{d}t' \Gamma(t')
ight] = \Gamma(t) \, \mathcal{P}_{\mathrm{nodec}}(t)$$

(unitarity strikes again:
$$\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)/\mathrm{d}t = -\mathrm{d}\mathcal{P}_{\mathrm{nodec}}(t)/\mathrm{d}t$$
.)

- interpretation of l.h.s.:
 - first term is for the actual decay to happen.
 - second term is to ensure that no decay before t ⇒ conservation of probabilities. the exponential is - of course - called the Sudakov form factor.

Simulations in High-Energy Physics

The pattern of QCD radiation

- a detour: Altarelli-Parisi equation, once more
- AP describes the scaling behaviour of the parton distribution function

(which depends on Bjorken-parameter and scale Q^2)

$$\frac{\mathrm{d}q(x, Q^2)}{\mathrm{d}\ln Q^2} = \int\limits_{x}^{1} \frac{\mathrm{d}y}{y} \left[\alpha_s(Q^2) P_q(x/y)\right] q(y, Q^2)$$

ullet term in square brackets determines the probability that the parton emits another parton at scale Q^2 and Bjorken-parameter y

(after the splitting,
$$x \rightarrow yx + (1 - y)x$$
.)

• driving term: Splitting function $P_q(x)$ important property: universal, process independent

Rederiving the splitting functions

ullet differential cross section for gluon emission in $e^+e^ightarrow$ jets

$$\frac{d\sigma_{ee \to 3j}}{dx_1 dx_2} = \sigma_{ee \to 2j} \frac{C_F \alpha_s}{\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

singular for $x_{1,2} \rightarrow 1$.

• rewrite with opening angle θ_{qg} and gluon energy fraction $x_3 = 2E_g/E_{\rm c.m.}$:

$$\frac{\mathrm{d}\sigma_{\mathsf{ee}\to3j}}{\mathrm{d}\cos\theta_{\mathsf{qg}}\mathrm{d}x_3} = \sigma_{\mathsf{ee}\to2j}\frac{C_F\alpha_s}{\pi} \left[\frac{2}{\sin^2\theta_{\mathsf{qg}}} \frac{1 + (1 - x_3)^2}{x_3} - x_3 \right]$$

singular for $x_3 \to 0$ ("soft"), $\sin \theta_{qg} \to 0$ ("collinear").

re-express collinear singularities

$$\begin{split} \frac{2\mathrm{d}\cos\theta_{qg}}{\sin^2\theta_{qg}} &= \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{qg}}{1+\cos\theta_{qg}} \\ &= \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{\bar{q}g}}{1-\cos\theta_{\bar{q}g}} \approx \frac{\mathrm{d}\theta_{qg}^2}{\theta_{qg}^2} + \frac{\mathrm{d}\theta_{\bar{q}g}^2}{\theta_{\bar{q}g}^2} \end{split}$$

• independent evolution of two jets $(q \text{ and } \bar{q})$

$$\mathrm{d}\sigma_{\mathrm{ee}\to3j} \approx \sigma_{\mathrm{ee}\to2j} \sum_{j\in\{q,\bar{q}\}} \frac{C_F \alpha_s}{2\pi} \frac{\mathrm{d}\theta_{jg}^2}{\theta_{jg}^2} P(z) \;,$$

- note: same form for any $t \propto \theta^2$:
- ullet transverse momentum $k_\perp^2pprox z^2(1-z)^2E^2 heta^2$
- invariant mass $q^2 pprox z(1-z)E^2\theta^2$

$$\frac{\mathrm{d}\theta^2}{\theta^2} \approx \frac{\mathrm{d}k_\perp^2}{k_\perp^2} \approx \frac{\mathrm{d}q^2}{q^2}$$

- parametrisation-independent observation: (logarithmically) divergent expression for $t \to 0$.
- practical solution: cut-off Q_0^2 . \implies divergence will manifest itself as log Q_0^2 .
- similar for P(z): divergence for $z \to 0$ cured by cut-off.

- what is a parton? collinear pair/soft parton recombine!
- introduce resolution criterion $k_{\perp} > Q_0$.

• combine virtual contributions with unresolvable emissions: cancels infrared divergences \Longrightarrow finite at $\mathcal{O}(\alpha_s)$

(Kinoshita-Lee-Nauenberg, Bloch-Nordsieck theorems)

• unitarity: probabilities add up to one $\mathcal{P}(\text{resolved}) + \mathcal{P}(\text{unresolved}) = 1$.

- the Sudakov form factor, once more
- differential probability for emission between q^2 and $q^2 + dq^2$:

$$\mathrm{d}\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{\mathrm{d}q^2}{q^2} \int_{z_{\mathrm{min}}}^{z_{\mathrm{max}}} \mathrm{d}z P(z) =: \mathrm{d}q^2 \, \Gamma(q^2)$$

ullet from radioactive example: evolution equation for Δ

$$-\frac{\mathrm{d}\Delta(Q^2, q^2)}{\mathrm{d}q^2} = \Delta(Q^2, q^2) \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}q^2} = \Delta(Q^2, q^2) \Gamma(q^2)$$

$$\implies \Delta(Q^2, q^2) = \exp\left[-\int_{q^2}^{Q^2} \mathrm{d}k^2 \Gamma(k^2)\right]$$

- maximal logs if emissions ordered
- impacts on radiation pattern: in each emission t becomes smaller

Quantum improvements

- improvement: inclusion of various quantum effects
- trivial: effect of summing up higher orders (loops) $\alpha_s \to \alpha_s(k_\perp^2)$

- much faster parton proliferation, especially for small k_{\perp}^2 .
- avoid Landau pole: $k_{\perp}^2 > Q_0^2 \gg \Lambda_{\rm QCD}^2 \Longrightarrow Q_0^2 = \text{physical parameter.}$

- soft limit for single emission also universal
- problem: soft gluons come from all over (not collinear!)
 quantum interference? still independent evolution?
- answer: not quite independent.
- consider case in QED

- assume photon into e^+e^- at θ_{ee} and photon off electron at θ photon momentum denoted as k
- energy imbalance at vertex: $k_{\perp}^{\gamma} \sim k_{\parallel} \theta$, hence $\Delta E \sim k_{\perp}^2/k_{\parallel} \sim k_{\parallel} \theta^2$.
- formation time for photon emission: $\Delta t \sim 1/\Delta E \sim k_{\parallel}/k_{\perp}^2 \sim 1/(k_{\parallel}\theta^2)$.
- ee-separation: $\Delta b \sim \theta_{ee} \Delta t$
- must be larger than transverse wavelength of photon: $\theta_{\rm ee}/(k_{\parallel}\theta^2)>1/k_{\perp}=1/(k_{\parallel}\theta)$
- ullet thus: $heta_{ee} > heta$ must be satisfied for photon to form
- angular ordering as manifestation of quantum coherence

• pictorially:

gluons at large angle from combined colour charge!

• experimental manifestation: ΔR of $2^{\rm nd}$ & $3^{\rm rd}$ jet in multi-jet events in pp-collisions

Parton showers, compact notation

Sudakov form factor (no-decay probability)

$$\Delta_{ij,k}^{(\mathcal{K})}(t,t_0) = \exp \left[-\int\limits_{t_0}^t \frac{\mathrm{d}t}{t} \, \frac{\alpha_{\rm s}}{2\pi} \int \mathrm{d}z \frac{\mathrm{d}\phi}{2\pi} \quad \underbrace{\mathcal{K}_{ij,k}(t,z,\phi)}_{\text{splitting kernel for}} \right]$$
splitting kernel for
$$(ij) \to ij \text{ (spectator }k)$$

evolution parameter t defined by kinematics

generalised angle (HERWIG ++) or transverse momentum (PYTHIA, SHERPA)

- will replace $rac{\mathrm{d}\,t}{t}\mathrm{d}zrac{\mathrm{d}\phi}{2\pi}\longrightarrow\mathrm{d}\Phi_1$
- scale choice for strong coupling: $\alpha_{\rm s}(k_{\perp}^2)$

resums classes of higher logarithms

ullet regularisation through cut-off t_0

• "compound" splitting kernels \mathcal{K}_n and Sudakov form factors $\Delta_n^{(\mathcal{K})}$ for emission off n-particle final state:

$$\mathcal{K}_{\textit{n}}(\Phi_1) = \frac{\alpha_{\mathsf{s}}}{2\pi} \sum_{\mathsf{all}\,\{ij,k\}} \mathcal{K}_{ij,k}(\Phi_{ij,k})\,, \quad \Delta_{\textit{n}}^{(\mathcal{K})}(t,t_0) = \mathsf{exp}\left[\,-\int\limits_{t_0}^t \mathrm{d}\Phi_1\,\mathcal{K}_{\textit{n}}(\Phi_1)\right]$$

consider first emission only off Born configuration

$$\mathrm{d}\sigma_B = \mathrm{d}\Phi_N\,\mathcal{B}_N(\Phi_N)$$

$$\cdot \left\{ \Delta_N^{(\mathcal{K})}(\mu_N^2, t_0) + \int\limits_{t_0}^{\mu_N^2} \mathrm{d}\Phi_1 \left[\mathcal{K}_N(\Phi_1) \Delta_N^{(\mathcal{K})}(\mu_N^2, t(\Phi_1)) \right] \right\}$$
integrates to unity \longrightarrow "unitarity" of parton shower

• further emissions by recursion with $Q^2 = t$ of previous emission

Connection to resummation

• consider standard Collins-Soper-Sterman Q_T -formalism (CSS):

$$\frac{\mathrm{d}\sigma_{AB\to X}}{\mathrm{d}y\mathrm{d}Q_{\perp}^{2}} = \mathrm{d}\Phi_{X}\,\mathcal{B}_{ij}(\Phi_{X}) \cdot \underbrace{\int \frac{\mathrm{d}^{2}b_{\perp}}{(2\pi)^{2}} \exp(i\vec{b}_{\perp}\cdot\vec{Q}_{\perp})\tilde{W}_{ij}(b;\Phi_{X})}_{\text{guarantee 4-mom conservation higher orders}}$$

with

$$\tilde{W}_{ij}(b; \Phi_X) = \underbrace{C_i(b; \Phi_X, \alpha_s) C_j(b; \Phi_X, \alpha_s) H_{ij}(\alpha_s)}_{\text{collinear bits}}$$

$$= \underbrace{\left[-\int_{1/b_{\perp}^2}^{Q_X^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \left(A(\alpha_s(k_{\perp}^2)) \log \frac{Q_X^2}{k_{\perp}^2} + B(\alpha_s(k_{\perp}^2)) \right) \right]}_{\text{loops}}$$

Sudakov form factor, A, B expanded in powers of α_s

- analyse structure of emissions above
- logarithmic accuracy in $\log \frac{\mu_N}{k_\perp}$ (a la CSS) possibly up to next-to leading log,
 - ullet if evolution parameter \sim transverse momentum,
 - ullet if argument in $lpha_{
 m s}$ is $\propto {\it k}_{\perp}$ of splitting,
 - ullet if $K_{ij,k}
 ightarrow$ terms $A_{1,2}$ and B_1 upon integration

(OK, if soft gluon correction is included, and if $K_{ij,k}
ightarrow$ AP splitting kernels)

- in CSS k_{\perp} typically is the transverse momentum of produced system, in parton shower of course related to the cumulative effect of explicit multiple emissions
- resummation scale $\mu_N \approx \mu_F$ given by (Born) kinematics simple for cases like $q\bar{q}' \to V$, $gg \to H$, ... tricky for more complicated cases

Example: achievable precision of shower alone in DY

Another systematic uncertainty

- parton showers are approximations, based on leading colour, leading logarithmic accuracy, spin-averaged
- parametric accuracy by comparing Sudakov form factors:

$$\Delta = \exp\left\{-\int \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \left[A\log\frac{k_{\perp}^2}{Q^2} + B\right]\right\} \,,$$

where A and B can be expanded in $\alpha_{\rm s}(k_\perp^2)$

- showers usually include terms $A_{1,2}$ and B_1 (NLL)
- ullet A_2 realised by pre-factor multiplying scale $\mu_R \simeq k_\perp$

(CMW rescaling: Catani, Marchesini, Webber, Nucl Phys B,349 635)

- fixed-order precision necessitates to consistently assess uncertainties
 from parton showers
 (quite often just used as black box)
- maybe improve by including higher orders?

Event generation (on-the-fly scale variations)

- basic idea: want to vary scales to assess uncertainties
- simple reweighting in matrix elements straightforward
- reweighting in parton shower more cumbersome
 - shower is probabilistic, concept of weight somewhat alien
 - introduce relative weight
 - evaluate (trial-)emission by (trial-)emission

Implementation in HERWIG7

Weight variation for W+jets with MEPS@NLO

ullet uncertainties in p_{\perp}^W

CPU budget

Going beyond leading colour

start including next-to leading colour

(first attempts by Platzer & Sjodahl; Nagy & Soper)

• also included in 1st emission in SHERPA's MC@NLO

Towards higher logarithmic accuracy

- reproduce DGLAP evolution at NLO include all NLO splitting kernels
- corrections to standard $1 \rightarrow 2$ trivial
 - 2-loop cusp term subtracted & combined with LO soft contribution
 - use weighting algorithms

(Hoeche, Schumann, Siegert, 0912.3501)

- new topology at NLO from $q
 ightarrow ar{q}$ and q
 ightarrow q' splittings
- \bullet generic $1 \to 3$ process in parton shower
- implementation complete and cross-checked (PYTHIA vs. SHERPA)

Comparison with data: $e^-e^+ \rightarrow$ hadrons

(Hoeche, FK & Prestel, 1705.00982)

Comparison with data: $e^-e^+ \rightarrow \text{hadrons}$

(Hoeche, FK & Prestel, 1705.00982)

Comparison with data: DY at LHC

(Hoeche, FK & Prestel, 1705.00982)

ROUND III: PRECISION MONTE CARLO

FIRST IMPROVEMENTS:

ME CORRECTIONS

Contents

- 5.a) Improving event generators
- 5.b) Matrix-element corrections

Improving event generators

The inner working of event generators ... simulation: divide et impera

hard process: fixed order perturbation theory

traditionally: Born-approximation

- bremsstrahlung: resummed perturbation theory
- hadronisation: phenomenological models
- hadron decays: effective theories, data
- "underlying event": phenomenological models

First improvements

- improving the phenomenological models:
 - "tuning" (fitting parameters to data)
 - replacing by better models, based on more physics

(my hot candidate: "minimum bias" and "underlying event" simulation)

- improving the perturbative description:
 - inclusion of higher order exact matrix elements and correct connection to resummation in the parton shower:

"NLO-Matching" & "Multijet-Merging"

• systematic improvement of the parton shower: next-to leading (or higher) logs & colours

• remember structure of NLO calculation for N-body production

$$\begin{split} \mathrm{d}\sigma &= \mathrm{d}\Phi_{\mathcal{B}}\mathcal{B}_{N}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{B}}\mathcal{V}_{N}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{R}}\mathcal{R}_{N}(\Phi_{\mathcal{R}}) \\ &= \mathrm{d}\Phi_{\mathcal{B}}\left(\mathcal{B}_{N} + \mathcal{V}_{N} + \mathcal{I}_{N}^{(\mathcal{S})}\right) + \mathrm{d}\Phi_{\mathcal{R}}\left(\mathcal{R}_{N} - \mathcal{S}_{N}\right) \end{split}$$

• phase space factorisation assumed here ($\Phi_{\mathcal{R}} = \Phi_{\mathcal{B}} \otimes \Phi_1$)

$$\int \mathrm{d}\Phi_1 \mathcal{S}_N (\Phi_\mathcal{B} \otimes \Phi_1) \, = \, \mathcal{I}_N^{(\mathcal{S})} (\Phi_\mathcal{B})$$

process independent subtraction kernels

$$\mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}} \otimes \Phi_{1}) = \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \otimes \mathcal{S}_{1}(\Phi_{\mathcal{B}} \otimes \Phi_{1})$$

$$\mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}} \otimes \Phi_{1}) = \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \otimes \mathcal{I}_{1}^{(\mathcal{S})}(\Phi_{\mathcal{B}})$$

with universal $S_1(\Phi_{\mathcal{B}} \otimes \Phi_1)$ and $\mathcal{I}_1^{(\mathcal{S})}(\Phi_{\mathcal{B}})$

First improvements

Matrix element corrections

- parton shower ignores interferences typically present in matrix elements
- pictorially

- form many processes $\mathcal{R}_N < \mathcal{B}_N \times \mathcal{K}_N$
- typical processes: $q\bar{q}' \rightarrow V$, $e^-e^+ \rightarrow q\bar{q}$, $t \rightarrow bW$
- practical implementation: shower with usual algorithm, but reject first/hardest emissions with probability $\mathcal{P} = \mathcal{R}_N/(\mathcal{B}_N \times \mathcal{K}_N)$

First improvements

• analyse first emission, given by

$$d\sigma_{\mathcal{B}} = d\Phi_{\mathcal{N}} \, \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{N}})$$

$$\cdot \left\{ \Delta_{\mathcal{N}}^{(\mathcal{R}/\mathcal{B})}(\mu_{\mathcal{N}}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{\mathcal{N}}^{2}} d\Phi_{1} \left[\frac{\mathcal{R}_{\mathcal{N}}(\Phi_{\mathcal{N}} \times \Phi_{1})}{\mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{N}})} \Delta_{\mathcal{N}}^{(\mathcal{R}/\mathcal{B})}(\mu_{\mathcal{N}}^{2}, t(\Phi_{1})) \right] \right\}$$

once more: integrates to unity ---- "unitarity" of parton shower

Multiiet merging

- radiation given by \mathcal{R}_N (correct at $\mathcal{O}(\alpha_s)$) (but modified by logs of higher order in $\alpha_{\rm S}$ from $\Delta_N^{(\mathcal{R}/\mathcal{B})}$)
- emission phase space constrained by μ_N
- also known as "soft ME correction" hard ME correction fills missing phase space
- used for "power shower": $\mu_N \to E_{pp}$ and apply ME correction

PRECISION MONTE CARLO

(N)NLO MATCHING

- 6.a) Basic idea
- 6.b) Powheg
- 6.c) MC@NLO
- 6.d) NNLO the new frontier

- parton shower resums logarithms fair description of collinear/soft emissions jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- adjust ("match") terms:
 - cross section at NLO accuracy & correct hardest emission in PS to exactly reproduce ME at order α_s (\mathcal{R} -part of the NLO calculation)

(this is relatively trivial)

• maintain (N)LL-accuracy of parton shower

(this is not so simple to see)

Basic idea

PowHeg

• reminder: $\mathcal{K}_{ii,k}$ reproduces process-independent behaviour of $\mathcal{R}_N/\mathcal{B}_N$ in soft/collinear regions of phase space

$$\mathrm{d}\Phi_1 \, \frac{\mathcal{R}_N(\Phi_{N+1})}{\mathcal{B}_N(\Phi_N)} \, \stackrel{\mathsf{IR}}{\longrightarrow} \, \mathrm{d}\Phi_1 \, \frac{\alpha_{\mathsf{s}}}{2\pi} \, \mathcal{K}_{ij,k}(\Phi_1)$$

define modified Sudakov form factor (as in ME correction)

$$\Delta_{\mathcal{N}}^{(\mathcal{R}/\mathcal{B})}(\mu_{\mathcal{N}}^2,t_0) = \exp \left[-\int\limits_{t_0}^{\mu_{\mathcal{N}}^2} \mathrm{d}\Phi_1 \, rac{\mathcal{R}_{\mathcal{N}}(\Phi_{\mathcal{N}+1})}{\mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{N}})}
ight] \; ,$$

- assumes factorisation of phase space: $\Phi_{N+1} = \Phi_N \otimes \Phi_1$
- typically will adjust scale of α_s to parton shower scale

- define local K-factors
- start from Born configuration Φ_N with NLO weight:

("local K-factor")

$$\begin{split} \mathrm{d}\sigma_N^{(\mathrm{NLO})} &= \mathrm{d}\Phi_N \, \bar{\mathcal{B}}(\Phi_N) \\ &= \mathrm{d}\Phi_N \left\{ \mathcal{B}_N(\Phi_N) + \underbrace{\mathcal{V}_N(\Phi_N) + \mathcal{B}_N(\Phi_N) \otimes \mathcal{S}}_{\tilde{\mathcal{V}}_N(\Phi_N)} \right. \\ &+ \int \mathrm{d}\Phi_1 \left[\mathcal{R}_N(\Phi_N \otimes \Phi_1) - \mathcal{B}_N(\Phi_N) \otimes \mathrm{d}\mathcal{S}(\Phi_1) \right] \left. \right\} \end{split}$$

- by construction: exactly reproduce cross section at NLO accuracy
- note: second term vanishes if $\mathcal{R}_N \equiv \mathcal{B}_N \otimes \mathrm{d}S$

(relevant for MC@NLO)

- analyse accuracy of radiation pattern
- generate emissions with $\Delta_N^{(\mathcal{R}/\mathcal{B})}(\mu_N^2, t_0)$:

$$d\sigma_{N}^{(\text{NLO})} = d\Phi_{N} \,\bar{\mathcal{B}}(\Phi_{N})$$

$$\times \left\{ \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \frac{\mathcal{R}_{N}(\Phi_{N} \otimes \Phi_{1})}{\mathcal{B}_{N}(\Phi_{N})} \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, k_{\perp}^{2}(\Phi_{1})) \right\}$$

integrating to yield 1 - "unitarity of parton shower"

- radiation pattern like in ME correction
- pitfall, again: choice of upper scale μ_N^2

(this is vanilla POWHEG!)

apart from logs: which configurations enhanced by local K-factor

(K-factor for inclusive production of X adequate for X+ jet at large p_{\perp} ?)

- large enhancement at high p_{T,h}
- can be traced back to large NLO correction
- ullet fortunately, NNLO correction is also large $ightarrow \sim$ agreement

PowHeg

- improving POWHEG
- split real-emission ME as

$$\mathcal{R} = \mathcal{R}\left(\underbrace{\frac{h^2}{p_{\perp}^2 + h^2}}_{\mathcal{R}^{(S)}} + \underbrace{\frac{p_{\perp}^2}{p_{\perp}^2 + h^2}}_{\mathcal{R}^{(F)}}\right)$$

$$d\sigma = d\Phi_{B} \bar{\mathcal{B}}^{(R^{(S)})} \left[\Delta^{(\mathcal{R}^{(S)}/\mathcal{B})}(s, t_{0}) + \int_{t_{0}}^{s} d\Phi_{1} \frac{\mathcal{R}^{(S)}}{\mathcal{B}} \Delta^{(\mathcal{R}^{(S)}/\mathcal{B})}(s, k_{\perp}^{2}) \right] + d\Phi_{R} \mathcal{R}^{(F)}(\Phi_{R})$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

MC@NLO

• MC@NLO paradigm: divide \mathcal{R}_N in soft ("S") and hard ("H") part:

$$\mathcal{R}_N = \mathcal{R}_N^{(S)} + \mathcal{R}_N^{(H)} = \mathcal{B}_N \otimes \mathrm{d}\mathcal{S}_1 + \mathcal{H}_N$$

ullet identify subtraction terms and shower kernels $\mathrm{d}\mathcal{S}_1 \equiv \sum\limits_{\{ij,k\}} \mathcal{K}_{ij,k}$

(modify ${\cal K}$ in $1^{\mbox{\scriptsize st}}$ emission to account for colour)

$$\begin{split} \mathrm{d}\sigma_{N} &= \mathrm{d}\Phi_{N}\underbrace{\tilde{\mathcal{B}}_{N}(\Phi_{N})}_{\mathcal{B}+\tilde{\mathcal{V}}} \bigg[\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2},\,t_{0}) + \int\limits_{t_{0}}^{\mu_{N}^{2}} \mathrm{d}\Phi_{1}\,\mathcal{K}_{ij,k}(\Phi_{1})\,\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2},\,k_{\perp}^{2}) \bigg] \\ &+ \mathrm{d}\Phi_{N+1}\,\mathcal{H}_{N} \end{split}$$

• effect: only resummed parts modified with local K-factor

- problem: impact of subtraction terms on local K-factor (filling of phase space by parton shower)
- studied in case of $gg \rightarrow H$ above
- proper filling of available phase space by parton shower paramount

MC@NLO

(K.Hamilton, P.Nason, C.Oleari & G.Zanderighi, JHEP 1305 (2013) 082)

- based on POWHEG + shower from PYTHIA or HERWIG
- up to today only for singlet S production, gives NNLO + PS
- basic idea:

NNLOPS- the new frontier

- use S+jet in POWHEG
- push jet cut to parton shower IR cutoff
- apply analytical NNLL Sudakov rejection weight for intrinsic line in Born configuration

(kills divergent behaviour at order α_s)

- don't forget double-counted terms
- reweight to NNLO fixed order

NNLOPS for *H* production

(K.Hamilton, P.Nason, E.Re & G.Zanderighi, JHEP 1310 (2013) 222)

NNLOPS for Z production: UNNLOPS

S. Hoche, Y. Li, & S. Prestel, Phys.Rev.D90 & D91

• also available for H production

NNLOPS: shortcomings/limitations

- MINLO relies on knowledge of B_2 terms from analytic resummation --- to date only known for colour singlet production
- MINLO relies on reweighting with full NNLO result \longrightarrow one parameter for $H(y_H)$, more complicated for Z, \ldots
- UNNLOPs relies on integrating single- and double emission to low scales and combination of unresolved with virtual emissions → potential efficiency issues, need NNLO subtraction
- UNNLOPS puts unresolved & virtuals in "zero-emission" bin \rightarrow no parton showering for virtuals (?)

PRECISION MONTE CARLO

MULTIJET MERGING

- 7.a) Basic idea
- 7.b) Multijet merging at LO
- 7.c) Multijet merging at NLO

Multijet merging: basic idea

- parton shower resums logarithms
 fair description of collinear/soft emissions
 jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- combine ("merge") both: result: "towers" of MEs with increasing number of jets evolved with PS
 - multijet cross sections at Born accuracy
 - maintain (N)LL accuracy of parton shower

Basic idea

 separate regions of jet production and jet evolution with jet measure Q_I

("truncated showering" if not identical with evolution parameter)

- matrix elements populate hard regime
- parton showers populate soft domain

Multijet merging 00000000000000000

- consider jet production in $e^+e^- \rightarrow hadrons$ Durham jet definition: relative transverse momentum $k_{\perp} > Q_J$
- fixed order: one factor α_S and up to $\log^2 \frac{E_{\rm c.m.}}{O_L}$ per jet
- use Sudakov form factor for resummation & replace approximate fixed order by exact expression:

$$\mathcal{R}_2(Q_J) = \left[\Delta_q(E_{\text{c.m.}}^2, Q_J^2)\right]^2$$

$$\mathcal{R}_{3}(Q_{J}) = 2\Delta_{q}(E_{\text{c.m.}}^{2}, Q_{J}^{2}) \int_{Q_{J}^{2}}^{E_{\text{c.m.}}^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \left[\frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} dz \mathcal{K}_{q}(k_{\perp}^{2}, z) \right]$$

$$\times \Delta_q(E_{\text{c.m.}}^2, k_\perp^2) \Delta_q(k_\perp^2, Q_J^2) \Delta_g(k_\perp^2, Q_J^2) \bigg]$$

Multijet merging **00**00000000000000

Basic idea

Multijet merging at LO

Multijet merging at LO

expression for first emission

$$\begin{split} \mathrm{d}\sigma &= & \mathrm{d}\Phi_{N}\,\mathcal{B}_{N} \left[\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2},\,t_{0}) \right. \\ & \left. + \int\limits_{t_{0}}^{\mu_{N}^{2}} \mathrm{d}\Phi_{1}\,\mathcal{K}_{N}\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2},\,t_{N+1}) \Theta(Q_{J} - Q_{N+1}) \right] \\ & \left. + \mathrm{d}\Phi_{N+1}\,\mathcal{B}_{N+1}\,\Delta_{N}^{(\mathcal{K})}(\mu_{N+1}^{2},\,t_{N+1}) \Theta(Q_{N+1} - Q_{J}) \right. \end{split}$$

• note:
$$N + 1$$
-contribution includes also $N + 2$, $N + 3$, ...

(no Sudakov suppression below t_{n+1} , see further slides for iterated expression)

- potential occurrence of different shower start scales: $\mu_{N,N+1,...}$
- "unitarity violation" in square bracket: $\mathcal{B}_N\mathcal{K}_N\longrightarrow\mathcal{B}_{N+1}$

(cured with UMEPs formalism, L. Lonnblad & S. Prestel, JHEP 1302 (2013) 094 &

S. Platzer, arXiv:1211.5467 [hep-ph] & arXiv:1307.0774 [hep-ph])

$$\mathrm{d}\sigma \ = \ \sum_{n=N}^{n_{\mathrm{max}}-1} \left\{ \mathrm{d}\Phi_n \, \mathcal{B}_n \, \overline{\left[\prod_{j=N}^{n-1} \, \Theta(Q_{j+1} - Q_J) \right]} \, \overline{\left[\prod_{j=N}^{n-1} \, \Delta_j^{(\mathcal{K})}(t_j, \, t_{j+1}) \right]} \right. \\ \times \left[\Delta_n^{(\mathcal{K})}(t_n, t_0) + \int\limits_{t_0}^{t_n} \mathrm{d}\Phi_1 \, \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_n, t_{n+1}) \Theta(Q_J - Q_{n+1}) \right] \\ - \mathrm{no \; emission} \quad \mathrm{no \; mission \; no \; jet \; \& \; below \; last \; ME \; emission} \right]$$

Multijet merging

$$+\mathrm{d}\Phi_{n_{\mathsf{max}}}\,\mathcal{B}_{n_{\mathsf{max}}}\left[\prod_{j=N}^{n_{\mathsf{max}}-1}\Theta(Q_{j+1}-Q_J)\right]\left[\prod_{j=N}^{n_{\mathsf{max}}-1}\Delta_j^{(\mathcal{K})}(t_j,\,t_{j+1})\right]$$

$$imes \left[\Delta_{n_{\mathsf{max}}}^{(\mathcal{K})}(t_{n_{\mathsf{max}}},t_0) + \int\limits_{t_0}^{t_{n_{\mathsf{max}}}} \mathrm{d}\Phi_1 \, \mathcal{K}_{n_{\mathsf{max}}} \Delta_{n_{\mathsf{max}}}^{(\mathcal{K})}(t_{n_{\mathsf{max}}},t_{n_{\mathsf{max}}+1})
ight]$$

Di-photons @ ATLAS: $m_{\gamma\gamma}$, $p_{\perp,\gamma\gamma}$, and $\Delta\phi_{\gamma\gamma}$ in showers

(arXiv:1211.1913 [hep-ex])

Aside: Comparison with higher order calculations

Multijet merging

Multijet-merging at NLO: MEPs@NLO

- basic idea like at LO: towers of MEs with increasing jet multi (but this time at NLO)
- combine them into one sample, remove overlap/double-counting
 - maintain NLO and (N)LL accuracy of ME and PS
- this effectively translates into a merging of MC@NLO simulations and can be further supplemented with LO simulations for even higher final state multiplicities

Multijet merging 0000000**000000**00000

First emission(s), once more

$$d\sigma = d\Phi_{N} \tilde{\mathcal{B}}_{N} \left[\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \mathcal{K}_{N} \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{N+1}) \Theta(Q_{J} - Q_{N+1}) \right]$$

$$+ d\Phi_{N+1} \mathcal{H}_{N} \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{N+1}) \Theta(Q_{J} - Q_{N+1})$$

$$+ d\Phi_{N+1} \tilde{\mathcal{B}}_{N+1} \left(1 + \frac{\mathcal{B}_{N+1}}{\tilde{\mathcal{B}}_{N+1}} \int_{t_{N+1}}^{\mu_{N}^{2}} d\Phi_{1} \mathcal{K}_{N} \right) \Theta(Q_{N+1} - Q_{J})$$

$$\cdot \left[\Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_{0}) + \int_{t_{0}}^{t_{N+1}} d\Phi_{1} \mathcal{K}_{N+1} \Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_{N+2}) \right]$$

$$+ d\Phi_{N+2} \mathcal{H}_{N+1} \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{N+1}) \Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_{N+2}) \Theta(Q_{N+1} - Q_{J}) + \dots$$

p_{\perp}^{H} in MEPs@NLO

first emission by Mc@NLO

p_{\perp}^{H} in MEPs@NLO

• first emission by MC@NLO , restrict to $Q_{n+1} < Q_{\mathrm{cut}}$

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{\mathrm{cut}}$
- Mc@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$

p_{\perp}^{H} in MEPS@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{\mathrm{cut}}$
- ullet restrict emission off $pp
 ightarrow h + {
 m jet}$ to $Q_{n+2} < Q_{
 m cut}$

50

100

150

200

250 30 p₊(h) [GeV]

 10^{-4}

p_{\perp}^{H} in MEPs@NLO

- first emission by Mc@NLO, restrict to $Q_{n+1} < Q_{\text{cut}}$
- Mc@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{cut}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- Mc@NLo $pp \rightarrow h + 2$ jets for $Q_{n+2} > Q_{\text{cut}}$

p_{\perp}^{H} in MePs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + {
 m jet}$ to $Q_{n+2} < Q_{
 m cut}$
- Mc@NLO $pp \rightarrow h + 2 \text{jets for}$ $Q_{n+2} > Q_{\text{cut}}$
- iterate

 10^{-4}

50

100

150

200

250 30 p₊(h) [GeV]

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{\mathrm{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- Mc@NLO $pp \rightarrow h + 2 \text{jets for}$ $Q_{n+2} > Q_{\text{cut}}$
- iterate

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{\mathrm{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2 \text{jets for } Q_{n+2} > Q_{\text{cut}}$
- iterate
- sum all contributions

p_{\perp}^{H} in MEPS@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{\mathrm{cut}}$
- Mc@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- Mc@NLO $pp \rightarrow h + 2 \text{jets for}$ $Q_{n+2} > Q_{\text{cut}}$
- iterate
- sum all contributions
- eg. $p_{\perp}(h) > 200 \text{ GeV}$ has contributions fr. multiple topologies

Example: MEPs@NLO for W+jets

(up to two jets @ NLO, from BLACKHAT, see arXiv: 1207.5031 [hep-ex])

FxFx: validation in Z+jets

(Data from ATLAS, 1304.7098, aMC@NLO _MADGRAPH with HERWIG++)

(green: 0, 1, 2 jets + uncertainty band from scale and PDF variations, red: MC@NLO)

FxFx: validation in Z+jets

(Data from ATLAS, 1304,7098, aMC@NLO_MADGRAPH_with HERWIG++)

(green: 0, 1, 2 jets + uncertainty band from scale and PDF variations, red: MC@NLO)

Differences between MEPS@NLO, UNLOPS & FxFx

	FxFx	MePs@NLo	UNLoPs
ME	all internal	${\cal V}$ external	all external
	aMc@NLO _MADGRAPH	COMIX or AMEGIC++	
		${\cal V}$ from OPENLOOPS, BLACKHAT, MJET,	
shower	external	intrinsic	intrinsic
	HERWIG or PYTHIA		Рутніа
Δ_N	analytical	from PS	from PS
$\Theta(Q_J)$	a-posteriori	per emission	per emission
Q_J -range	relatively high	> Sudakov regime	pprox Sudakov regime
	(but changed)		
		≈ 10%	≈ 10%

Higgs- p_{\perp} : exclusive over inclusive rate

• $\approx 20\%$ of Higgs with $p_{\perp} = 60 \,\text{GeV}$ are not accompanied by a jet

PRECISION MONTE CARLO

ELECTROWEAK CORRECTIONS

Contents

- 8.a) Motivation
- 8.b) Multijet merging at LO
- 8.c) Multijet merging at NLO

Motivation: the size of EW corrections

- EW corrections sizeable $\mathcal{O}(10\%)$ at large scales: must include them!
- but: more painful to calculate
- need EW showering & possibly corresponding PDFs

(somewhat in its infancy: chiral couplings)

• example: $Z\gamma$ vs. p_T (right plot)

(handle on
$$p_{\perp}^{Z}$$
 in $Z \to \nu \bar{\nu}$)

(Kallweit, Lindert, Pozzorini, Schoenherr for LH'15)

- difference due to EW charge of Z
- no real correction (real V emission)
- improved description of $Z \to \ell\ell$

Inclusion of electroweak corrections in simulation

- incorporate approximate electroweak corrections in MEPS@NLO
 - using electroweak Sudakov factors

$$\tilde{\mathrm{B}}_{n}(\Phi_{n}) \, pprox \, \tilde{\mathrm{B}}_{n}(\Phi_{n}) \, \Delta_{\mathsf{EW}}(\Phi_{n})$$

using virtual corrections and approx. integrated real corrections

$$\tilde{\mathrm{B}}_{n}(\Phi_{n}) \; \approx \; \tilde{\mathrm{B}}_{n}(\Phi_{n}) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_{n}) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_{n}) + \mathrm{B}_{n,\mathrm{mix}}(\Phi_{n})$$

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD⊕EW matching and merging
 - \rightarrow validated at fixed order, found to be reliable. difference $\leq 5\%$ for observables not driven by real radiation

Results: $pp \rightarrow \ell^- \bar{\nu} + \text{jets}$

(Kallweit, Lindert, Maierhöfer, Pozzorini, Schoenherr JHEP04(2016)021) pp $\rightarrow \ell^- \bar{v}$ + 0,1,2 j @ 13 TeV $d\sigma/dp_{T_{ij}}$ [pb/GeV] $Q_{\rm cut} = 20\,{\rm GeV}$ 10-6 MEPS@LO MEPS@NLO QCD MEPS@NLO OCD+EW, irr 10-9 MEPS@NLO OCD+EW, ir w.o. LO mix 1.8 1.6 1.4 do/doNLO 0.8 0.6 0.4 0.2 2000 100 200 500 1000 p_{T,j_1} [GeV]

⇒ particle level events including dominant EW corrections

Practicalities

measure collinear W emission?

• LO
$$pp o Wj$$
 with $\Delta \phi(\mu,j) pprox \pi$

measure collinear W emission?

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS

measure collinear W emission?

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS

measure collinear W emission?

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR

measure collinear W emission?

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100 \, \text{GeV}$

measure collinear W emission?

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100 \, \text{GeV}$
- describe $pp \rightarrow Wij$ @ NLO, $p_{\perp}^{j_2} > 100 \, \text{GeV}$

measure collinear W emission?

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100 \, \text{GeV}$
- describe $pp \rightarrow Wij$ @ NLO, $p_{\perp}^{j_2} > 100 \, \text{GeV}$
- pos. NLO QCD, \sim flat

measure collinear W emission?

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100 \, \text{GeV}$
- describe $pp \rightarrow Wij$ @ NLO, $p_{\perp}^{j_2} > 100 \, \text{GeV}$
- ullet pos. NLO QCD, neg. NLO EW, \sim flat

measure collinear W emission?

- LO $pp \to Wj$ with $\Delta \phi(\mu, j) \approx \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100 \, \text{GeV}$
- describe $pp \rightarrow Wij$ @ NLO, $p_{\perp}^{j_2} > 100 \, \text{GeV}$
- ullet pos. NLO QCD, neg. NLO EW, \sim flat
- sub-leading Born contribs positive

measure collinear W emission?

- LO pp o Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large pp o Wjj component opening PS
- ullet sub-leading Born (γ PDF) at large ΔR
- ullet restrict to exactly 1j, no $p_{\perp}^{j_2}>100\,{
 m GeV}$
- ullet describe pp o Wjj @ NLO, $p_{\perp}^{j_2}>100\,{
 m GeV}$
- \bullet pos. NLO QCD, neg. NLO EW, \sim flat
- sub-leading Born contribs positive
- sub²leading Born (diboson etc) conts. pos.
 - \rightarrow possible double counting with BG

measure collinear W emission?

- LO $pp o W\! j$ with $\Delta\phi(\mu,j)pprox\pi$
- NLO corrections neg. in peak large pp o Wjj component opening PS
- ullet sub-leading Born (γ PDF) at large ΔR
- ullet restrict to exactly 1j, no $p_{\perp}^{j_2}>100\,{
 m GeV}$
- ullet describe pp o Wjj @ NLO, $p_\perp^{j_2}>100\,{
 m GeV}$
- \bullet pos. NLO QCD, neg. NLO EW, \sim flat
- sub-leading Born contribs positive
- sub²leading Born (diboson etc) conts. pos.
 → possible double counting with BG
- merge using exclusive sums

Data comparison

(M. Wu ICHEP'16, ATLAS arXiv:1609.07045)

- ALPGEN+PYTHIA $pp \rightarrow W + \text{jets MLM merged}$ (Mangano et.al., JHEP07(2003)001)
- PYTHIA 8 $pp \rightarrow Wj + QCD$ shower $pp \rightarrow ii + QCD+EW$ shower (Christiansen, Prestel, EPJC76(2016)39)
- SHERPA+OPENLOOPS NLO QCD+EW+subLO $pp \rightarrow Wi/Wii$ excl. sum

(Kallweit, Lindert, Maierhöfer,)

(Pozzorini, Schoenherr, JHEP04(2016)021)

• NNLO QCD $pp \rightarrow Wj$

(Boughezal, Liu, Petriello, arXiv:1602.06965)

Data comparison

(M. Wu ICHEP'16, ATLAS arXiv:1609.07045)

- ALPGEN+PYTHIA $pp \rightarrow W + \text{jets MLM merged}$ (Mangano et.al., JHEP07(2003)001)
- PYTHIA 8 $pp \rightarrow Wj + QCD$ shower $pp \rightarrow jj + QCD+EW$ shower
- SHERPA+OPENLOOPS NLO QCD+EW+subLO $pp \rightarrow Wi/Wii$ excl. sum

(Kallweit, Lindert, Maierhöfer,)

(Pozzorini, Schoenherr, JHEP04(2016)021)

(Christiansen, Prestel, EPJC76(2016)39)

• NNLO QCD $pp \rightarrow Wi$

(Boughezal, Liu, Petriello, arXiv:1602.06965)

Practicalities

Data comparison

(M. Wu ICHEP'16, ATLAS arXiv:1609.07045)

- ALPGEN+PYTHIA $pp \rightarrow W + \text{jets MLM merged}$ (Mangano et.al., JHEP07(2003)001)
- PYTHIA 8 $pp \rightarrow Wj + QCD$ shower
 - $pp \rightarrow ii + QCD+EW$ shower (Christiansen, Prestel, EPJC76(2016)39)
- SHERPA+OPENLOOPS NLO QCD+EW+subLO $pp \rightarrow Wi/Wii$ excl. sum

(Kallweit, Lindert, Maierhöfer,)

(Pozzorini, Schoenherr, JHEP04(2016)021)

- NNLO QCD $pp \rightarrow Wj$
 - (Boughezal, Liu, Petriello, arXiv:1602.06965)

SIMULATING SOFT QCD

SIMULATING SOFT QCD

HADRONISATION

Contents

- 9.a) Connection to QCD
- 9.b) General ideas
- 9.c) String model
- 9.d) Cluster model
- 9.e) Some questions

QCD radiation, once more

remember QCD emission pattern

$$\mathrm{d}w^{q\to qg} \;=\; \frac{\alpha_{\mathsf{s}}(k_{\perp}^2)}{2\pi}\; C_F \, \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \, \frac{\mathrm{d}\omega}{\omega} \; \left[1+\left(1-\frac{\omega}{E}\right)\right] \;.$$

- spectrum cut-off at small transverse momenta and energies by onset of hadronization, at scales $R\approx 1\,{\rm fm}/\Lambda_{QCD}$
- two (extreme) classes of emissions: gluons and gluers determined by relation of formation and hadronization times

- ullet gluers formed at times R, with momenta $k_\parallel \sim k_\perp \sim \omega \stackrel{>}{\sim} 1/R$
- assuming that hadrons follow partons,

$$\begin{split} \mathrm{d}\textit{N}_{\mathrm{(hadrons)}} \; &\sim \int\limits_{k_{\perp} > 1/R}^{Q} \; \frac{\mathrm{d}k_{\perp}^{2}}{k_{\perp}^{2}} \; \frac{\textit{C}_{\textit{F}} \, \alpha_{\mathsf{s}}(k_{\perp}^{2})}{2\pi} \; \left[1 + \left(1 - \frac{\omega}{\textit{E}} \right) \right] \; \frac{\mathrm{d}\omega}{\omega} \\ &\sim \frac{\textit{C}_{\textit{F}} \, \alpha_{\mathsf{s}}(1/R^{2})}{\pi} \log(\textit{Q}^{2}R^{2}) \; \frac{\mathrm{d}\omega}{\omega} \end{split}$$

or - relating their energyn with that of the gluers -

$$dN_{(hadrons)}/d\log\epsilon = const.$$

a plateau in log of energy (or in rapidity)

- impact of additional radiation
- new partons must separate before they can hadronize independently
- therefore, one more time

- for gluers $Rk_{\perp} \approx 1$: all times the same
- naively; new & more hadrons following new partons
- but: colour coherence primary and secondary partons not separated enough in

$$1/R \stackrel{<}{\sim} \omega_{({\rm hadron})} \stackrel{<}{\sim} 1/(R\theta)$$

and therefore no independent radiation

Hadronisation: General thoughts

- confinement the striking feature of low–scale sotrng interactions
- transition from partons to their bound states, the hadrons
- the Meissner effect in QCD

• linear QCD potential in Quarkonia – like a string

- combine some experimental facts into a naive parameterisation
- in $e^+e^- o$ hadrons: exponentially decreasing p_\perp , flat plateau in y for hadrons

ullet try "smearing": $ho(p_\perp^2)\sim \exp(-p_\perp^2/\sigma^2)$

use parameterisation to "guesstimate" hadronisation effects:

$$\begin{split} E &= \int_0^Y \mathrm{d}y \mathrm{d}p_\perp^2 \rho(p_\perp^2) p_\perp \cosh y = \lambda \sinh Y \\ P &= \int_0^Y \mathrm{d}y \mathrm{d}p_\perp^2 \rho(p_\perp^2) p_\perp \sinh y = \lambda (\cosh Y - 1) \approx E - \lambda \\ \lambda &= \int \mathrm{d}p_\perp^2 \rho(p_\perp^2) p_\perp = \langle p_\perp \rangle \,. \end{split}$$

- estimate $\lambda \sim 1/R_{\rm had} \approx m_{\rm had}$, with $m_{\rm had}$ 0.1-1 GeV.
- effect: jet acquire non-perturbative mass $\sim 2\lambda E$ ($\mathcal{O}(10 \mathrm{GeV})$) for jets with energy $\mathcal{O}(100 \mathrm{GeV})$).

- similar parametrization underlying Feynman-Field model for independent fragmentation
- ullet recursively fragment q
 ightarrow q' + had, where
 - transverse momentum from (fitted) Gaussian;
 - longitudinal momentum arbitrary (hence from measurements);
 - \bullet flavour from symmetry arguments + measurements.
- problems: frame dependent, "last quark", infrared safety, no direct link to perturbation theory,

The string model

- a simple model of mesons: yoyo strings
 - ullet light quarks $(m_q=0)$ connected by string, form a meson
 - ullet area law: $m_{
 m had}^2 \propto$ area of string motion
 - \bullet L=0 mesons only have 'yo-yo' modes:

- ullet turn this into hadronisation model $e^+e^ightarrow qar q$ as test case
- \bullet ignore gluon radiation: $q\bar{q}$ move away from each other, act as point-like source of string
- ullet intense chromomagnetic field within string: more $qar{q}$ pairs created by tunnelling and string break-up
- analogy with QED (Schwinger mechanism): $\mathrm{d}\mathcal{P}\sim\mathrm{d}x\mathrm{d}t\exp\left(-\pi m_q^2/\kappa\right)$, $\kappa=$ "string tension".

- string model = well motivated model, constraints on fragmentation (Lorentz-invariance, left-right symmetry, . . .)
- how to deal with gluons?
- ullet interpret them as kinks on the string \Longrightarrow the string effect

• infrared-safe, advantage: smooth matching with PS.

The cluster model

- underlying idea: preconfinement/LPHD
 - typically, neighbouring colours will end in same hadron
 - \bullet hadron flows follow parton flows \longrightarrow don't produce any hadrons at places where you don't have partons
 - ullet works well in large– N_c limit with planar graphs
- follow evolution of colour in parton showers

- paradigm of cluster model: clusters as continuum of hadron resonances
- ullet trace colour through shower in $N_c o \infty$ limit
- force decay of gluons into $q\bar{q}$ or $\bar{d}d$ pairs, form colour singlets from neighbouring colours, usually close in phase space
- ullet mass of singlets: peaked at low scales $pprox Q_0^2$
- decay heavy clusters into lighter ones or into hadrons (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like)
- if light enough, clusters will decay into hadrons
- naively: spin information washed out, decay determined through phase space only \to heavy hadrons suppressed (baryon/strangeness suppression)

- self-similarity of parton shower will end with roughly the same local distribution of partons, with roughly the same invairant mass for colour singlets
- adjacent pairs colour connected, form colourless (white) clusters.
- clusters ("≈ excited hadrons) decay into hadrons

Practicalities

- practicalities of hadronisation models: parameters
 - kinematics of string or cluster decay:
 - must "pop" quark or diquark flavours in string or cluster decay
 - cannot be completely democratic or driven by masses alone 2-10 parameters
 - → suppression factors for strangeness, diquarks
 - transition to hadrons, cannot be democratic over multiplets
 - → adjustment factors for vectors/tensors etc. 2-6 parameters
- tuned to LEP data, overall agreement satisfying
- validity for hadron data not guite clear

(beam remnant fragmentation not in LEP.)

2-5 parameters

• there are some issues with inclusive strangeness/baryon production

Colour reconnections and friends

(Fischer, Sjostrand, 1610:09818)

Collective flow observed in pp at LHC. Partly unexpected. New mechanisms required; could also (partly) replace CR.

Active field, e.g. N. Fischer & TS, arXiv:1610:09818 [hep-ph]:

ctive field, e.g. 14. Hischer & 15, arxiv.1010.05010 [hep-ph].

- Thermal $exp(-p_{\perp}/T) \rightarrow exp(-m_{\perp}/T)$ hadronic spectrum.
- Close-packed strings \Rightarrow increased string κ or T.
- $\bullet \ \, \mathsf{Dense} \,\, \mathsf{hadronic} \,\, \mathsf{gas} \Rightarrow \mathsf{hadronic} \,\, \mathsf{rescattering}.$

(slide stolen from Torbjorn Sjostrand)

Strange strangeness

- universality of hadronisation assumed
- parameters tuned to LEP data in particular: strangeness suppression
- for strangeness: flat ratios but data do not reproduce this
- looks like SU(3) restoration not observed for protons
- needs to be investigated

SIMULATING SOFT QCD

UNDERLYING EVENT

Contents

- 10.a) Multiple parton scattering
- 10.b) Modelling the underlying event
- 10.c) Some results
- 10.d) Practicalities

Multiple parton scattering

- hadrons = extended objects!
- no guarantee for one scattering only.
- running of α_S \implies preference for soft scattering.

- first experimental evidence for double–parton scattering: events with $\gamma + 3$ jets:
 - cone jets, R = 0.7, $E_T > 5 \text{ GeV}$; $|\eta_j| < 1.3$;
 - "clean sample": two softest jets with E_T < 7 GeV;
- cross section for DPS

$$\sigma_{\mathrm{DPS}} = \frac{\sigma_{\gamma j} \sigma_{jj}}{\sigma_{\mathrm{eff}}}$$

 $\sigma_{\rm eff} \approx$ 14 \pm 4 mb.

- more measurements, also at LHC
- ATLAS results from W + 2 jets

but: how to define the underlying event?

- everything apart from the hard interaction, but including IS showers, FS showers, remnant hadronisation.
- remnant-remnant interactions, soft and/or hard.
- lesson: hard to define

 origin of MPS: parton-parton scattering cross section exceeds hadron-hadron total cross section

$$\sigma_{
m hard}(
ho_{\perp,
m min}) \ = \int\limits_{
ho_{\perp,
m min}^2}^{s/4} {
m d}
ho_{\perp}^2 rac{{
m d}\sigma(
ho_{\perp}^2)}{{
m d}
ho_{\perp}^2} > \sigma_{
ho
ho,
m total}$$

for low $p_{\perp, \min}$

remember

$$\frac{\mathrm{d}\sigma(p_{\perp}^2)}{\mathrm{d}p_{\perp}^2} = \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f(x_1, q^2) f(x_2, q^2) \frac{\mathrm{d}\hat{\sigma}_{2 \to 2}}{\mathrm{d}p_{\perp}^2}$$

- $\bullet \ \langle \sigma_{
 m hard}(p_{\perp,
 m min})/\sigma_{pp,
 m total}
 angle \geq 1$
- depends strongly on cut-off $p_{\perp,\min}$ (energy-dependent)!

Modelling the underlying event

- take the old PYTHIA model as example:
 - start with hard interaction, at scale $Q_{\rm hard}^2$.
 - select a new scale p_{\perp}^2 from

$$\mathsf{exp}\left[-rac{1}{\sigma_{\mathrm{norm}}}\int\limits_{
ho_{\perp}^2}^{Q_{\mathrm{hard}}^2}\mathrm{d}
ho_{\perp}{}'^2rac{\mathrm{d}\sigma(
ho_{\perp}^2)}{\mathrm{d}
ho_{\perp}'^2}
ight]$$

with constraint $p_{\perp}^2 > p_{\perp, \mathrm{min}}^2$

- rescale proton momentum ("proton-parton = proton with reduced energy").
- repeat until no more allowed $2 \rightarrow 2$ scatter

Modelling the underlying event

- possible refinements:

 - add parton showers to UE
 - "regularisation" to dampen sharp dependence on $p_{\perp, \min}$: replace $1/\hat{t}$ in MEs by $1/(t+t_0)$, also in α_s .
 - ullet treat intrinsic k_{\perp} of partons (ightarrow parameter)
 - $\bullet \ \ \mathsf{model} \ \mathsf{proton} \ \mathsf{remnants} \ (\to \mathsf{parameter})$

Some results for MPS in Z production

- observables sensitive to MPS
- classical analysis: transverse regions in QCD/jet events
- idea: find the hardest system, orient event into regions:
 - toward region along system
 - away region back-to-back
 - transverse regions
- typically each in 120°

- see some data comparison in Minimum Bias
- practicalities of underlying event models: parameters
 - profile in impact parameter space
 - IR cut-off at reference energy, its energy evolution, dampening paramter and normalisation cross section
 - treating colour connections to rest of event

4 parameters

2-3 parameters

2-5 parameters

- tuned to LHC data, overall agreement satisfying
- energy extrapolation not exactly perfect, plus other process categories such as diffraction etc..

SUMMARY

Summary of fixed order

- NLO (QCD) "revolution" consolidated:
 - lots of routinely used tools for large FS multis (4 and more)
 - incorporation in MC tools done, need comparisons, critical appraisals and a learning curve in their phenomenological use
 - to improve: description of loop-induced processes
- amazing success in NNLO (QCD) calculations:
 - emergence of first round of $2 \rightarrow 2$ calculations
 - next revolution imminent (with question marks)
 - first MC tools for simple processes $(gg \rightarrow H, DY)$, more to be learnt by comparison etc. (see above)
- first N³LO calculation in $gg \rightarrow H$, more to come (?)
- attention turning to NLO (EW)
 - first benchmarks with new methods (V+3i)
 - calculational setup tricky
 - need maybe faster approximation for high-scales (EW Sudakovs)

Simulations in High-Energy Physics

Limitations of fixed order

- practical limitations/questions to be overcome:
 - dealing with IR divergences at NNLO: slicing vs. subtracting

(I'm not sure we have THE solution yet)

- how far can we push NNLO? are NLO automated results stable enough for NNLO at higher multiplicity?
- \bullet users of codes: higher orders tricky \to training needed

 $(\mathsf{MC} = \mathsf{black}\ \mathsf{box}\ \mathsf{attitude}\ \mathsf{problematic}\ \mathsf{-}\ \mathsf{a}\ \mathsf{new}\ \mathsf{brand}\ \mathsf{of}\ \mathsf{pheno/experimenters}\ \mathsf{needed?})$

- limitations of perturbative expansion:
 - breakdown of factorisation at HO (Seymour et al.)
 - ullet higher-twist: compare $(lpha_{
 m s}/\pi)^n$ with $\Lambda_{
 m QCD}/M_Z$
- limitations in analytic resummation: process- and observable-dependent
 - first attempts at automation (CAESAR and some others) checks/cross-comparison necessary
- showering needs to be improved

(for NNLO the "natural" accuracy is NNLL)

Summary for event generation

- Systematic improvement of event generators by including higher orders has been at the core of QCD theory and developments in the past decade:
 - multijet merging ("CKKW", "MLM")
 - NLO matching ("MC@NLO", "PowHEG")
 - MENLOPS NLO matching & merging
 - MEPS@NLO ("SHERPA", "UNLOPS", "MINLO", "FxFx")

- multijet merging an important tool for many relevant signals and backgrounds - pioneering phase at LO & NLO over
- complete automation of NLO calculations done
 - --- must benefit from it!

(it's the precision and trustworthy & systematic uncertainty estimates!)

Vision

- we have constructed lots of tools for precision physics at LHC but we did not cross-validate them careful enough (yet)
 but we did not compare their theoretical foundations (yet)
- we also need unglamorous improvements:
 - systematically check advanced scale-setting schemes (MINLO)
 - automatic (re-)weighting for PDFs & scales (ME: √, PS: -)
 - scale compensation in PS is simple (implement and check)
 - PDFs: to date based on FO vs. data will we have to move to resummed/parton showered?

(reminder: LO* was not a big hit, though)

... and maybe we will have to go to the "dirty" corners:
 higher-twist, underlying event, hadronization, ...

(many of those driven by experiment)

