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Introduction
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motivation: the quest for precision

@ LHC (and particle physics in general) in phase of SM “crash-testing":
confirm minutiae of EWSB and gauge structure
@ QCD effects often limiting factor:
pE/’Z’H, Miop, & = QQ, boosted objects & substructure
@ necessary: work on better understanding of parton shower
(based on perturbtion theory: theory-driven with experimental validation)
also: multi-parton interactions, hadronization

(very phenomenological - parially o totally experiment-driven)

100% No Maich

CSI LHC: need precise & accurate tools for precision physics I
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strategy of event generators
principle: divide et impera

@ hard process:
fixed order perturbation theory

traditionally: Born-approximation

@ bremsstrahlung:
resummed perturbation theory
@ hadronisation:
phenomenological models

@ hadron decays:
effective theories, data

@ "underlying event”:
phenomenological models

F. Krauss
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and possible improvements

possible strategies:

@ improving the phenomenological models:

e “tuning” (fitting parameters to data)
o replacing by better models, based on more physics

(my hot candidate: “minimum bias” and “underlying event” simulation)

@ improving the perturbative description:

e inclusion of higher order exact matrix elements and correct
connection to resummation in the parton shower:

“NLO-Matching” & “Multijet-Merging”
e systematic improvement of the parton shower:
next-to leading (or higher) logs & colours

F. Krauss
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aim of the lectures

@ review the state of the art in precision simulations

(celebrate success)

@ highlight missing or ambiguous theoretical ingredients

(acknowledge failure)

e (maybe) suggest some further studies — experiment and theory

F. Krauss
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Plan of the Lectures

Shameless promotion:

(as instructed by my co-author J.Huston)

o Perturbative QCD material of lectures covered in

o Parton Level
o Parton Showers
@ Precision Simulations
e Matching
o Merging

@ Non—Perturbative QCD

e Hadronization
e Underlying Event

F. Krauss
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MONTE CARLO FOR PERTURBATIVE QCD
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Parton-level Monte Carlo
[ leJe]e]
Calculating matrix elements efficiently

simulating hard processes (signals & backgrounds)

e simple example: t — bW+ — bly;:

2 1( 8ra \° PPy Pbpy S
1 't Puv N
|M| 2 (sin2 9W) (p3, —M2,)2+T3, M2, " %\Qv
s

phase space integration (5-dim):
w d®

_ 1 1 > d2Q, d2Q P 2
r_2m,: l287r3fde 4w 4w (1_ m? |M|

5 random numbers = four-momenta =— “events”.

apply smearing and/or arbitrary cuts.

Simply histogram any quantity of interest - no new calculation for
each observable
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Parton-level Monte Carlo
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Calculating matrix elements efficiently

calculating matrix elements efficiently

@ stating the problem(s):

o multi-particle final states for signals & backgrounds.
o need to evaluate dop:

N
' (13q,- N
/ [H M] & <P1 +p =) Zm) My o]

cuts =

o problem 1: factorial growth of number of amplitudes.
o problem 2: complicated phase-space structure.
o solutions: numerical methods.
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Parton-level Monte Carlo
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Calculating matrix elements efficiently

o example for factorial growth: eTe™ — qg + ng

N #diags E 100 N B T

011 gn cec —> qq+ng
112 _‘é" 100}
218 = i
3| 48 5 10 1
4 | 384 <

g 1“ L L

A 2 3 4

Number of gluons
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Parton-level Monte Carlo
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Calculating matrix elements efficiently

@ obvious: traditional textbook methods (squaring, completeness
relations, traces) fail
= result in proliferation of terms (M;M7)
@ better ideas of efficient ME calculation:
= realise: amplitudes just are complex numbers,
—> add them before squaring!
@ remember: spinors, gamma matrices have explicit form
could be evaluated numerically (brute force)
but: Rough method, lack of elegance, CPU-expensive
@ can do better with smart basis for spinors (see detour)

@ this is still on the base of traditional Feynman diagrams!

F. Krauss
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Parton-level Monte Carlo
@00

Phase spacing for professionals

phase spacing for professionals

(“Amateurs study strategy, professionals study logistics™)

@ democratic, process-blind integration methods:
e Rambo/Mambo: Flat & isotropic
R.Kleiss, W.J.Stirling & S.D.Ellis, Comput. Phys. Commun. 40 (1986) 359;
o HAAG/Sarge: Follows QCD antenna pattern
A.van Hameren & C.G.Papadopoulos, Eur. Phys. J. C 25 (2002) 563
e multi-channelling: each Feynman diagram related to a phase space
mapping (= "channel”), optimise their relative weights

R.Kleiss & R.Pittau, Comput. Phys. Commun. 83 (1994) 141

@ main problem: practical only up to O(10k) channels.

@ some improvement by building phase space mappings recursively:
more channels feasible, efficiency drops a bit.




Parton-level Monte Carlo
(o] T}
Phase spacing for professionals

basic idea of multichannel sampling (again):
use a sum of functions g;(X) as Jacobean g(x).
> N >
= g(x) =25 aigi(X);
= condition on weights like stratified sampling;
(“combination” of importance & stratified sampling).

algorithm for one iteration: 3
2
@ select g; with probability or; — ;. ‘f(x]

@ calculate total weight (%) and partial weights g;(X;)

@ add f()?j)/g()?]) to total result and f()?l)/gl(%) to partial
(channel-) results. = _ ;‘1

@ after N sampling steps, update a-priori weights. LI T

this is the method of choice for parton level event generation!

F. Krauss




Parton-level Monte Carlo
ooe
Phase spacing for professionals

@ quality measure for integration performance: unweighting efficiency
@ want to generate events “as in nature”.
@ basic idea: use hit-or-miss method;

e generate X with integration method,
e compare actual f(X) with maximal value during sampling
—> “Unweighted events”.

@ comments:

e unweighting efficiency, wegr = (f(X;)/fmax) = number of trials for
each event.

o expect log;, weg =~ 3 — 5 for good integration of multi-particle final
states at tree-level.

e maybe acceptable to use frax,eff = Kfmax with K < 1.
problem: what to do with events where f(X;)/fnax,eft > 17
answer: Add int[f(X;)/fmax,er)] = k events and perform hit-or-miss
on f(X;)/fmax,err — k.

F. Krauss
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Parton-level Monte Carlo
@000
Including higher order corrections

including higher order corrections

@ obtained from adding diagrams with additional:
loops (virtual corrections) or
legs (real corrections)

o effect: reducing the dependence on ugr & ur
NLO allows for meaningful estimate of uncertainties

e additional difficulties when going NLO:
ultraviolet divergences in virtual correction
infrared divergences in real and virtual correction
enforce
UV regularisation & renormalisation
IR regularisation & cancellation

(Kinoshita—Lee-Nauenberg—Theorem)

F. Krauss
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Parton-level Monte Carlo
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Including higher order corrections

structure of NLO calculations

virtual correction

Born term (renormalized) real correction

do = d¢BBN(¢B) + dd)BVN(q)B) +d¢RRN(¢R)

ddg (By+Vn+I4)) +dor (Ry - Su)

after adding a zero: IEV'S) = [doR 5Sy

F. Krauss
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Parton-level Monte Carlo
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Including higher order corrections

@ phase space factorisation assumed here (¢ = 5 ® dy)

/d¢18/\/(¢5 X Cbl) = I,(VS)(Q)B)

@ process independent, universal subtraction kernels

SN((DB & q)l) = BN(CDB) X 51(¢B X (Dl)
I (05 @ &1) = Bu(®5) @ 79 (05),

and invertible phase space mapping (e.g. Catani-Seymour)

Pr +— PR b,
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Parton-level Monte Carlo
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Including higher order corrections

aside: choices . ..

@ common lore: NLO calculations reduce scale uncertainties

@ this is, in general, true. however:
unphysical scale choices will yield unphysical results

0 S0 100 150 200 250 300 350 400 450 500
T T T T T

W+djets+X . Lo
— w0 — NLO 3
5 VT = Uty
8 e
2,
U 3
o
5
© e
3 —
10°F B
BlackHat+Sherpa
}
7E - Lo/No N E|
oF - 3
sk 3
A =
sE 3
H =
o =
L
50 100 150 200 250 300 350 400 450 500

Second Jet E; [GeV ]

@ more ways of botching it at higher orders
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Parton-level Monte Carlo
o

Tools for LHC physics

availability of exact calculations (hadron colliders)

o fixed order matrix elements (“parton level”) are exact to a given
perturbative order.

(and often quite a pain!)

@ important to understand limitations:
only tree-level and one-loop level fully automated, beyond:
prototyping

3
& B done
S 2 for some processes
=} . first solutions

1 2 3 4 5 6 7 8 9
n FS particles
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Parton showers — the basics
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an analogy: radioactive decays

a simple analogy

@ school book example:
radiactive decay of isotopes with half-life 7 = 1/I"

N(t) = N(O)exp[—t/7] = N(0)exp[-Tt]
N(0) exp { / dt’r(t’)} — N(0) A(t, 0)
0 ——

Sudakov form factor

@ Sudakov form factor = “survival” probability

@ decay probability for individual isotope at given time t

decays at t

Paecart) _ £ At o) =

dt

- dpno decay ( t)
dt

didn’t decay before

F. Krauss
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Parton showers — the basics
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The pattern of QCD radiation

the pattern of QCD radiation

@ a detour: Altarelli-Parisi equation
@ AP describes the scaling behaviour of the parton distribution
function

. 2
(which depends on Bjorken-parameter and scale Q2)

X 2 /
dabx @) _ / d7y [0s(@)Pa(x/y)] aly. @)

X

@ term in square brackets determines the probability that the parton
emits another parton at scale Q2 and Bjorken-parameter y
(after the splitting, x — yx + (1 — y)x.)
e driving term: Splitting function Pg(x)
important property: universal, process independent

F. Krauss
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Parton showers — the basics
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The pattern of QCD radiation
splitting kernels

o first implementations used DGLAP splitting kernels:

dtd
Kijk(®1) = ttd) oslu )P{u}—w( )

with colour factors C and IS{,-J-}HU given by

Pg—qg(z) = CF L — -+ Z)]
1401 =22
Posgals) = G |——
Pemqz?d) = Tr[2+0-2?]
2 2
Pgsgg(z) = CA|:172+;—2(Z —z+2)]

o refinements of splitting kernels: Catani-Seymour subtraction kernels
or symmetrised eikonal kernels, both including recoil factor (see later)

F. Krauss
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Parton showers — the basics
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The pattern of QCD radiation

rederiving the splitting functions (pedestrianized)

o differential cross section for gluon emission in eTe™ — jets

2 2
da’ee%3j Cras X{ + X3

dxydxo T Oeend T (1—x)(1—x)

singular for x; o — 1.

@ rewrite with opening angle 0, and gluon energy fraction

x3=2E;/Ecm.:
d(feeﬁ3j Y . Cras 2 1+ (1 — X3)2 .
deosbgdxs ¥ |sin? g X3 ’

singular for x3 — 0 (“soft"), sinfse — 0 (“collinear™).

F. Krauss
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Parton showers — the basics
000e000

The pattern of QCD radiation

@ re-express collinear singularities

2dcosfly;  dcosOy dcosfgg
sin®fg; 1 —coslg, 14 cosfy,
_ dcosfge dcosfg,  db5,  dOZ,
"~ 1-—cosfg 1—cosfg 62, ' 0%,

@ independent evolution of two jets (¢ and g)

Cra d9
doee—)?)j ~ Oee—2j Z ;TS 92 'D(Z)a
j€{q,q}
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Parton showers — the basics
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The pattern of QCD radiation

note: same form for any t o 6

transverse momentum k3 = z%(1 — z)2E26?

invariant mass g2 ~ z(1 — z)E%6?

4> k3 dP

02 k3 q2
@ parametrisation-independent observation:
(logarithmically) divergent expression for t — 0.

e practical solution: cut-off Q2.
= divergence will manifest itself as log Q3.

similar for P(z): divergence for z — 0 cured by cut-off.

F. Krauss
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Parton showers — the basics
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The pattern of QCD radiation

@ what is a parton? Tesche
collinear pair/soft parton recombine!

mcmb

@ introduce resolution criterion k; > Q.

@ combine virtual contributions with unresolvable emissions:
cancels infrared divergences = finite at O(as)

(Kinoshita-Lee-Nauenberg, Bloch-Nordsieck theorems)

@ unitarity: probabilities add up to one
P(resolved) + P(unresolved) = 1.

F. Krauss




Parton showers — the basics
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The pattern of QCD radiation

o the Sudakov form factor, once more

o differential probability for emission between ¢° and g% + dg?:

Zmax

2
%dq / dzP(z) =: dq? F(q2)

ap = 949
73271'q2

Zmin
@ from radioactive example: evolution equation for A

CdA(Q*, ¢%)

dP
dq2 - A(Q27 q2) =

aE A(Q, ¢ (q?)

QZ
= A(Q? ¢°) = exp —/dkzr(kz)
G2

F. Krauss
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Parton showers — the basics
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Quantum improvements

quantum improvements: running coupling

@ improvement: inclusion of various quantum effects

e trivial: effect of summing up higher orders (loops) a. — avs(k?)

@ much faster parton proliferation, especially for small k3.

e avoid Landau pole: k2 > Q3 > /\(ZQCD = Q3 = physical
parameter.

F. Krauss
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Parton showers — the basics
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Quantum improvements

quantum improvements: ordering

@ consider two subsequent emissions and effect of interference:
leads to (calculable) cancellations in parts of phase space
@ QM considerations:
o assume splittings v — eTe™ with fe and e~ — e~y at 0, with
photon momentum k

o energy imbalance at vertex: k| ~ k6, hence AE ~ kf_/k“ ~ k||92.
o formation time for photon emission:
At ~1/AE ~ ky /K] ~ 1/(k,6).

o ee-separation: Ab ~ O At ¢
e must be larger than transverse wavelength of
photon: Bee/(k;6%) > 1/ki = 1/(k;6) R X
e thus: fe > 0 must be satisfied for photon to +
form ¢

@ angular ordering (or similar) as manifestation of quantum coherence

F. Krauss
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Parton showers — the basics
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Quantum improvements

@ QCD: all quanta are colured

@ pictorial solution

s

gluons at large angle from combined colour charge!




Quantum improvements

@ experimental manifestation:

AR of 2" & 3™ jet in multi-jet events in pp-collisions

Froction of events

F. Krauss
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Parton showers — the basics
( 1o}

Parton showers, compact notation

parton showers, compact notation

@ Sudakov form factor (no-decay probability)

t
It o do
A(..}C)(t to) = ex —/ N P (t, z, ¢)
ij,k\t t0 p + 2 5 ij,k\Ly Z,
e ™ m ———

splitting kernel for

(ij) — ij (spectator k)

@ evolution parameter t defined by kinematics

generalised angle (HERWIG ++) or transverse momentum (PYTHIA, SHERPA)

. dt . d
o will replace —dz—¢ — do;
t 27
e scale choice for strong coupling: as(k?) resums classes of higher logarithms

@ regularisation through cut-off ¢,

F. Krauss
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Parton showers — the basics
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Parton showers, compact notation

@ “compound” splitting kernels K, and Sudakov form factors Afvlc)

for emission off n-particle final state:

t

Qs

Kn(®1) = 5~ > Kir(®iin), Affc)(t,to):expl—/dd)llC,,(le)
all {ij, k} t

@ consider first emission only off Born configuration

dO'B = d(DN BN(¢N)

. {A(N’“’(HQNA to) + / do, [m(m)A%‘“(uQN, r(cbl))} }

to

integrates to unity — “unitarity” of parton shower

o further emissions by recursion with @? = t of previous emission

F. Krauss
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Parton showers — the basics
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Connection to resummation

the link to resummation

@ origin of observables such as pKv’Z’H:

(multiple) initial state parton emissions, boson “kicked” out by recoil
@ resum emissions with Sudakov form factor
@ build Sudakov form factor from “parton splitting kernels”,

in Qr resummation:

2
dk2 Q2
A QD) = e |- [ 5 (AUd)ee - + B))
ki ki
Q4
both A and B have expansion in as

@ various schemes available: Q7, SCET, etc.

F. Krauss
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Parton showers — the basics
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Connection to resummation

.. r
@ analyse structure of emissions above 1
. . . N
@ logarithmic accuracy in Iogu— (a la CSS) +
ki
possibly up to next-to leading log, T @0
e if evolution parameter ~ transverse momentum, T @O
e if argument in as is o< ki of splitting, TO
o if Kijx — terms A1, and B; upon integration +/© OO
(OK, if soft gluon correction is included, and if Kr'j,k — AP splitting kernels) Q‘Q—Q—Q—*

o

@ in CSS k typically is the transverse momentum of produced
system, in parton shower of course related to the cumulative effect
of explicit multiple emissions

e resummation scale py & ug given by (Born) kinematics —
simple for cases like gg' — V, gg — H, ...
tricky for more complicated cases

F. Krauss
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Parton showers — the basics
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Connection to resummation

@ example result: interplay of fixed order and resummation

. + .
Resummed cross section for W' production
d6/dQ"dQ,dy (y = 0) for pp collisions at 8 TeV

1000 - T T T T T T T T T 7
L — - Resummed, W + Y (fixed order corrected) | ]
. + K —— resummed, W only (no fixed order) 1
s r -+ fixed order q
)
Q
=]
&
3
2 100
>
=
L
o
w2
(o2
s
=
10 . | . | . | . | .
0 10 20 30 40 50
Qvr [GeV]

@ note: parton shower will act similar to Q7 resummation




Parton showers — the basics
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Connection to resummation

currently best realisation:
@ evolution and splitting parameter ((if) + k — i 4+ j + k):

4(pipj)(PjPK) 2(pjpk)
L LA LS _ ZhPK

Jyi Q4 J Q2

@ splitting functions including IR regularisation

(a la Curci, Furmanski & Petronzio, Nucl.Phys. B175 (1980) 27-92)

© 2 B 1—z B 1+z
Paq (= n7) = 2Cr [(1 — 22 4 k2 2 |
©), .2 B z 2z
Pog (2 x7) = ZCF[ZerKz 2 }
ps(0) (2, 12 - 2c { 1o —1 = - Z)} s
e (50 Ala—a2+s2 A
Pég)(z, h",2) = TR {zz +(1— 2)2]

e renormalisation /factorisation scale given by u? = K2 Q@?

@ combine gluon splitting from two splitting functions with different
spectators k — accounts for different colour flows

F. Krauss
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Parton showers — the basics
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Connection to resummation

example: achievable precision of shower alone in DY

pr spectrum, Z— ee (dressed) ; spectrum, Z—» ee (dressed)

0< [y <1

lyzl <08

1< Jyz!

(0.

08 < [yz] <16 (x0.1)

2 < lyz| < 2.4 (x0.0T}

16 < lyz| (x0.01)

—e— ATLAS data

JHEP 09 (2014) 145
—— ME+PS (1-jet)
Quut < 20 GeV

—e— ATLAS data
Phys Lett. B720 (2013) 32
—— ME+PS (1-jet)
5 < Quur <20 GeV

= 12
(L: 11 0< lyz. £ 1 ﬂl\um HJ
a I——a®SY + { a +—+

10 10
S S [Ear e e L 1
g o = =l g ook

08 E \ 08 E \

12 & 12 &
£ g 1slels2 S g o=tz <16
(S (I oy
g e g S A
S o9 F S o9F

08 E \ 08 E \ |

12 12 F
= <24 gl 2|
g 1 —H S ufE ,
s Luwﬂ s s N ’H%
g ogE R W—L—T—._IJ g oof

[ S BT IR M OBE L iivvnl vl vl

1 10" 10% 1073 1072 10! 1
P [Gevl [
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Parton showers — the basics
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Connection to resummation

massive quarks are tricky

03

g [ ATLAS  Ze22bijets
ggﬁ
35 o2 ER
@ parton showers geared towards collinear & o | —L_L;: ]
0.1, e i

soft emissions of gluons (double log structure)

@ g — qg only collinear, beyond
“shower-approximation” — no soft gluon

@ old measurements at of inclusive g — bb
and g — ccC rate R R R - R

o fix this at LHC for modern showers .

(important for tEbb)

@ questions: kernel, scale in as

(example: k| vs. mpp)

F. Krauss




Parton showers — the basics
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Connection to resummation

o ATLAS measurement in bb production
@ use decay products in B — J/W(up)+ X and B — p+ X
@ use muons as proxies, most obvious observable AR(JW, 1)

? ATLAS o Data PythiasOpt. 1 ] 2 oL ATLAS o Data -+ MGS5_aMC+Py8 4fl*
i S Stat.  -=-MG5_aMC+Py8 5fl*
oS 10 Stat. == Pythia8 Opt. 4 s _aMC.
S Stat.+Syst. —- Pythia8 Opt. 5 Ol . Stat +Syst.—— Sherpa 5
g =8TeV, 1.4 1" - Pythia8 Opt. 8 & =8TeV, 11.4 10 - Pythia8 Opt. 4
- 1 —+— Pythia8 Opt. 5b - —+ Herwig++
1 = Pythia8 Opt. 8b ——
=% ®
o, —o— 1
£ p— — F
8 18f 3 8 1
5 1.4 - 4 8 o -
S ! 2);\ 4 S sk i
N 3 9 — A=t
= 08 . i S e, =
. . B 05 -
£ 16f 3 % 1.6 =
8 4 —— — S 1 -
1.2 —— - = E i
e + s ] .| Q b ==
08 —n— —— | 0.8 B F—o— == —
065 B 06 =
0 2 3 4 5 0 1 2 3 4 5
ARUg) ARy 1)
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Parton showers — the basics
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Connection to resummation

massive quarks are tricky - encore

@ heavy quarks also problematic in initial state:
no PDF support for Q% < mé — quarks stop showering
@ possible solutions:
e naive: ignore and leave for beam remnants (SHERPA)
o better: enforce splitting in region around m% (PYTHIA)
— effectively produces collinear Q and gluon in IS

@ will need to check effect on precision obsevables: pS_W)/pE_Z)

F. Krauss
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Parton showers — the basics
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Improving Parton Showers

another systematic uncertainty

@ parton showers are approximations, based on
leading colour, leading logarithmic accuracy, spin-averaged

@ parametric accuracy by comparing Sudakov form factors:

dk? 1%
A:exp{—/l [A|ogl+3]} ,
K2 Q

where A and B can be expanded in as(k?)
@ showers usually include terms A; ; and By (NLL)

@ A, realised by pre-factor multiplying scale pg ~ k.

(CMW rescaling: Catani, Marchesini, Webber, Nucl Phys B,349 635)

o fixed-order precision necessitates to consistently assess uncertainties
from parton showers (quite often just used as black box)

@ maybe improve by including higher orders?

F. Krauss
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Parton showers — the basics
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Improving Parton Showers

event generation (on-the-fly scale variations)

@ basic idea: want to vary scales to assess uncertainties
@ simple reweighting in matrix elements straightforward

@ reweighting in parton shower more cumbersome

o shower is probabilistic, concept of weight somewhat alien
o introduce relative weight
e evaluate (trial-)emission by (trial-)emission

F. Krauss
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Improving Parton Showers

implementation in HERWIGY

Parton showers — the basics

1/o x do/dp

Dipole (pz/v2. 4
Dipole (vV2/ig, v
Dipole (i pir)

1072

1070

10!

10"

—— AO (ur/V2.1r/V2)
AO (V2. V2pr)
AO (ug.pr)

F. Krauss
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Parton showers — the basics
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Improving Parton Showers

weight variation for W+-jets with MEPS@NLO

e uncertainties in p"’ CPU budget
° udge

W pr uncertainty bands scale uncertainty o Sherpa MepseLo Sherpa MEPSENLO
T T - . e T
10° - B0 uer 222 CT4 1 13 /—f&_«‘“—_\ os|
L0 as dedicated 1.0 _osp o = 00
S 0k 4 07 B < os P Lo
& 0 ‘V ‘z 3 = 02 N v
2 10° 10’ 10° 10 L v
;% 10° | as uncertainty af
& T T e
2 S Vr N R R R oo v W
s Sherpa MEPS@NLO 9 . o/ s
=1l <10
1071 bp = Wed], |5 = 13TeV 2 \ - Sherpa Lovs sherpatiors
e I 1 v parton-level onl
Nytops = 1, Nps NLOPS £ 08 ) ) o] 9 W) 5= TV Vv partonlevel only
- . . 10 o P 0 ve +nonperturbative efects
10 04 s = 0 + unweighting
CT14 uncertainty 3 s = L = 0
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Parton showers — the basics

0000800000000

Improving Parton Showers

going beyond leading colour

@ start including next-to leading colour

(first attempts by Platzer & Sjodahl; Nagy & Soper)

average transverse momentum w.r.t. 7ig

0.1

0.001 ¢

<
B

1 10
(p1)/GeV

@ also included in 1st emission in SHERPA's MC@ONLO




Parton showers — the basics
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Improving Parton Showers

including NLO splitting kernels

( Hoeche, FK & Prestel, 1705.00982, and Hoeche & Prestel, 1705.00742)

@ expand splitting kernels as
P(z. 1) = POz, #2) + 2= POz, ?)
™

@ aim: reproduce DGLAP evolution at NLO
include all NLO splitting kernels

e three categories of terms in P(1):

o cusp (universal soft-enhanced correction) (already included in original showers)
e correctionsto 1 — 2
o new flavour structures (e.g. g — ¢q'), identified as 1 — 3

@ new paradigm: two independent implementations

F. Krauss
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Parton showers — the basics

0000008000000
Improving Parton Showers

subtle symmetry factors

@ observations for LO PS in final state:
e only ng) used but not Pf,g)
° Pé(rg) comes with “symmetry factor” 1/2

@ challenge this way of implementing symmetry through:

(Jadach & Skrzypek, hep-ph/0312355)

1—e 1—e
> / dzzPO(z) = / dzP9(2) + O(e)
=9, 0 €
1—e 1—e 1
Z /dzzP;?)(z) = /dz {EPég)(z)+anég)(z)] +O(e)

i=q,8 | €

@ net effect: replace symmetry factors by parton marker z

F. Krauss
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Parton showers — the basics
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Improving Parton Showers

validation of 1 — 3 splittings

Jet resolution at parton level (Durham algorithm)

Jet resolution at parton level (kr algorithm)

Dire PS

ete = q]@91.2GeV PP et @8 TeV

do/dlogyg(dyi1/GeV) [pb]

Deviation
Deviation

I
i
HH M ﬂﬂﬁﬂmﬂﬂnﬂnﬂ 3
T
il IV AT NI IV A | el b b b b b b b
4 35 3 25 2 15 1 05 o 02 o4 o6 o8 1 12 14 16 18
logyg Yuni1 logyq(dy+1/GeV)

Deviation
Deviation

|l
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Parton showers — the basics
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Improving Parton Showers

physical results: DY at LHC

(untuned showers vs. 7 TeV ATLAS data, optimistic scale variations)

Z e “dressed”, Incusive 00.< lyz] < 10, "dressed”
T T T T e T oo T T T T
. —+— Data E S TE —+— Data
—— NLO E —— NLO
1< <at 1t gG <at
——10 E ——10
1< gd <at 17401 <4t

—+— Data =
N0 —— nio
st <an Vil eat

10
1 1/41 < g < 4t

—— L
0 1/40 < 4 < 41
oos
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Parton showers — the basics
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Improving Parton Showers

leading colour differential two-loop soft corrections

( Dulat, Hoeche & Prestel, 1805.03757)

@ analyse two-emission soft contribution and compare with iterated
single emissions

@ subtract double-counted terms and endpoint contributions

@ capture residual effect by reweighting original parton shower, with

e accounting for finite recoil
e including first 1/ N, corrections

(another way to solve “problem” in Dasgupta et al., 1805.09327)

e incorporating spin correlations

F. Krauss
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Parton showers — the basics
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Improving Parton Showers

reweighting
q—9g®g — 88 q—qg®g—qq

q—9g®q—qg

q-aeg g k\“\N
ErxoNAL, o CMW .

F. Krauss
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Parton showers — the basics
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Improving Parton Showers

including 1/N, effects

o capturing the difference of C, — C4/2 in assigning the correct
emitter in the admixture of soft and collinear limits

z T £F &
= ol g5 ]
E s 2 &
o T 2

0t —+— excl. 1/N,

— incl. 1/N;
w00 —— only 1/N: %(—1)




Parton showers — the basics
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Improving Parton Showers

scale uncertainties

@ varying & in the soft-enhanced terms, including NLO explicit
corrections

Die PS5
Dixe TS

ol

de/dlog,
de/dlog;

—— LOGNLO soft
K2%

Ratio
Ratio

b
4 35 E) 25 - s - o 02 o4 06 o8 ‘
Togyy (yse} e
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LO improvements
@00

@ remember structure of NLO calculation for N-body production
do = dogByn(Pp) + dOgVn(Pg) + dPrRN(PR)
— ddg (BN Uy + Igf)) +ddr (Ry — Sn)

@ phase space factorisation assumed here (¢ = ¢35 ® dq)
)]
dq)lSN((DB & ¢1) = IN ((DB)

@ process independent subtraction kernels

SN(CDB & ¢1) = BN(‘bB) ® Sl(q)B & ¢1)
I (05 © &) = By(9s) @ I.°(p)

with universal S;($5 ® ®1) and Ifs)(q’B)

F. Krauss
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LO improvements
oeo

matrix element corrections

@ parton shower ignores interferences
typically present in matrix elements

@ pictorially

R
£+

o form many processes Ry < By x Ky

2
2

+

PS

@ typical processes: q§' — V, e" et — qg, t — bW

@ practical implementation: shower with usual algorithm, but reject
first/hardest emissions with probability P = Ry/(By x Ky)

F. Krauss
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LO improvements
ooe

@ analyse first emission, given by

dO’B = dq)/\/ BN((DN)

2
Ky

. g Ry(Py x
AP (i3, 1) + / do, {N(Nl)ASVR/B)(H%V‘ f(q’l))}
Bn(®n)

to

once more: integrates to unity — “unitarity” of parton shower

e radiation given by Ry (correct at O(as)) o
(but modified by logs of higher order in cvg from AE\//R'/B)) @)
@ emission phase space constrained by upy 08
@ also known as “soft ME correction” @0
hard ME correction fills missing phase space @00
@ used for “power shower”: pee
N — Epp and apply ME correction a

F. Krauss
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Matching
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basic idea

NLO matching: Basic idea

@ parton shower resums logarithms
fair description of collinear/soft emissions
jet evolution (where the logs are large) ™

@ matrix elements exact at given order -+
fair description of hard/large-angle emissions 4
jet production (where the logs are small)

@ adjust (“match”) terms:

o cross section at NLO accuracy &
correct hardest emission in PS to exactly
reproduce ME at order as ® O
(R-part of the NLO calculation) Q—Q—Q—Q—»
(this is relatively trivial) !

e maintain (N)LL-accuracy of parton shower

(this is not so simple to see)

F. Krauss
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Matching
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PowHEG

POWHEG

o reminder: K, reproduces process-independent behaviour of
Rn/Bw in soft/collinear regions of phase space

Rn(®Pni1)
Bn(®n)

@ define modified Sudakov form factor (as in ME correction)

IR Qs
d¢1 — d(bl %KU’,{((DI)

2

Hy
ATP (1. 10) = exp —/d¢1

to

Rn(Pny1)
Bn(®n) ’

@ assumes factorisation of phase space: Py = Oy Q@ Py

o typically will adjust scale of as to parton shower scale

F. Krauss
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Matching
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PowHEG

@ define local K-factors

@ start from Born configuration ®p with NLO weight:

(“local K-factor")

Ao = doy B(oy)

= doy {BN(¢N) + Vn(®n) + Bu(Pn) ® S

Vu(dn)

+ / d®; [Ry(Py @ 1) — By(Pn) @ dS(P1)] }

@ by construction: exactly reproduce cross section at NLO accuracy
@ note: second term vanishes if Ry = By ® dS

(relevant for MC@NLO)

F. Krauss
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Matching
00e00
PowHEG

@ analyse accuracy of radiation pattern

o generate emissions with AL%/%) (42, t):

do("0) = doy B(oy)

By
T Ru(dy @
x4 R 1)+ [ a0 KEIERIARID 5 i (o)
Bn(®n)

to

integrating to yield 1 - “unitarity of parton shower”

@ radiation pattern like in ME correction
e pitfall, again: choice of upper scale y3, (this is vanilla PowHecl)

@ apart from logs: which configurations enhanced by local K-factor

( K-factor for inclusive production of X adequate for X+ jet at large p | ?)

F. Krauss
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Matching

[e]e]e] lo]

PowHEG

T T T
] o= J
whl 10 NNLO LHC
— POWHEG+HERWIG my=120 GeV
————— POWHEG (up=pp=my) *
~ ] =
e MC@NLO & - — POWHEG 1
_ _
% g ---POWHEG (B ~ B)
E ::-
o 1072} E €
& LHC serF
N
< my=120 GeV
108 my e
3
P i
. ) R i . § L e
100 200 300 400 0 100 400
p¥ [GeV]

200
p7 [GeV]
@ large enhancement at high p7

@ can be traced back to large NLO correction

o fortunately, NNLO correction is also large — ~ agreement




Matching

0000e
PowHEG
@ improving POWHEG
@ split real-emission ME as N
1072 — POWHEG h-e
\x --- POWHEG h=my=400 GeV
r;o- o ---- POWHEG h=120 GeV
h? p? 2 e
R=R| >+ 7 ¥
PL + h PJ_ + h 3
\ , R ;. 1074 |
R(S) R(F)

@ can “tune” h to mimick NNLO - or other
(resummation) result

o differential event rate up to first emission

(s ' R(S)
do = dq)BB(R(S)) A(RM/B)(& tO) + /dq)l? A(R(S)/B)(Sa ki)

to

+dog R (dg)

F. Krauss
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Matching
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MC@NLO

MCGONLO

@ MCONLO paradigm: divide Ry in soft (“S") and hard (“H") part:
Ry = Rs\‘ls) + ’Rg\IH) = By ®dS; + Hp

e identify subtraction terms and shower kernels dS; = >~ K«
{7k}

(modify /C in 15t emission to account for colour)

1y
_ 5 (K)(, 2 ' ) (K)(, 2 ;2
doy = dq)NBN((DN) AN (/le t0)+/dd)1lc’1-k(¢'1)AN (/le kL)
—_—— .
B4V fo
+d®ni1 Hiy

o effect: only resummed parts modified with local K-factor

F. Krauss
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MC@NLO

@ phase space effects: shower vs. fixed order

g

070

o
3

do/dy;e. [pb]
°
8

0.10

[ad] (#4-**4)p/0p

0.07

0.05

Yiet—YH

@ problem: impact of subtraction terms on local K-factor
(filling of phase space by parton shower)

@ studied in case of gg — H above

@ proper filling of available phase space by parton shower paramount

F. Krauss




Matching
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NNLOPs- the new frontier

NNLOPS in the MINLO approach: merging without @,

(K.Hamilton, P.Nason, C.Oleari & G.Zanderighi, JHEP 1305 (2013) 082)

@ based on POWHEG + shower from PYTHIA or HERWIG
@ up to today only for singlet S production, gives NNLO + PS
@ basic idea:
o use S+jet in POWHEG
o push jet cut to parton shower IR cutoff
o apply analytical NNLL Sudakov rejection weight for intrinsic line in
Born configuration
(kills divergent behaviour at order crg)
e don't forget double-counted terms
o reweight to NNLO fixed order

F. Krauss
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Matching

NNLOPs- the new frontier

NNLOPS for H production

(K.Hamilton, P.Nason, E.Re & G.Zanderighi, JHEP 1310 (2013) 222)

= — 10°

% NnLops [ % eﬁ%& HQT 1
&) HQT —— | O 191 S NnLops ]
~ ~ S

g < =

= | w10} e f
'% e % . .

_3 e N ¢ =
1070 = S0 -
< <
o Ll4F T ——— — o l4F T T — T =
R 2 L0 e — ——
BO06E : ; : ; 1 06 ‘ ) : 3

0 50 100 150 200 250 300 0 50 100 150 200 250 300

p! [GeV] bt [GeV]




Matching

NNLOPs- the new frontier

NNLOPS for Z production: UNNLOPS

S. Hoche, Y. Li, & S. Prestel, Phys.Rev.D90 & D91

Z pr reconstructed from dressed electrons
107 T T

200 T T T T T T
$1801 g) EZJ:x“qzo Gev E
160
140F
120f
100F
80F
60F
40
20
91.041H1}m:}HH}1H:}HH}HH}HH}:H:
21.02f E

e 1
e IR
2098 i

) P S N SN BN P N R
e L N R T

[pb]

Sherpa+BlackHat

do/dy

1/0 do/dpr,z [1/GeV)

— NNLO
NLO"

— FEWZ

= myf2<p <2m, NLO'

my/2< """ <2m, NNLO
o

ATLAS PLB7o05(2011)415
—— UN?LOPS

my/2 < prsp < 2my
OB 1y /2 < pg < 2myy

MC/Data

@ also available for H production
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Matching
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NNLOPs- the new frontier

NNLOPS: shortcomings/limitations

@ MINLO relies on knowledge of B, terms from analytic resummation
— to date only known for colour singlet production

@ MINLO relies on reweighting with full NNLO result
— one parameter for H (yy), more complicated for Z, ...

@ UNNLOPS relies on integrating single- and double emission to low
scales and combination of unresolved with virtual emissions
— potential efficiency issues, need NNLO subtraction

@ UNNLOPS puts unresolved & virtuals in “zero-emission” bin
— no parton showering for virtuals (?)

F. Krauss
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Multijet merging

000
Basic idea
multijet merging: basic idea
@ parton shower resums logarithms
fair description of collinear/soft emissions .

exact ME

jet evolution (where the logs are large) 1

LO 4jet
@ matrix elements exact at given order +
fair description of hard/large-angle emissions 4
jet production (where the logs are small)

gkact ME
LO Sjet, but alsc
NLO 4jet

@ combine (“merge”) both:
result: “towers” of MEs with increasing
number of jets evolved with PS

e multijet cross sections at Born accuracy a
e maintain (N)LL accuracy of parton shower

F. Krauss

Simulations in High-Energy Physics



Multijet merging
o] o]

Basic idea

P A A A A AL
-
@ separate regions of jet production and jet 2 e
. . . ..l — Weziet |
evolution with jet measure Q, s — e
(“truncated showering” if not identical with evolution parameter) WL T oo ]
@ matrix elements populate hard regime
107 |
@ parton showers populate soft domain 1
1071 <
i Ll 1T

i n
0 20 40 60 80 100 120 140 160 180 200
Pl GeV




Multijet merging
ooe

Basic idea

why it works: jet rates with the parton shower

@ consider jet production in eTe~ — hadrons
Durham jet definition: relative transverse momentum k;, > Q@

o fixed order: one factor as and up to log? F m. per jet

@ use Sudakov form factor for resummation &
replace approximate fixed order by exact expression:

MA< RZ(QJ) = [A ( c.m. QJ)]
Eom. 2 2
a2 ok
W@M) — 28q(E2 @) [ T2 [”éﬂdzi@(k%,z)
Q3

XA ( c.m.’ kL)Aq(ki Qi)Ag(kiv Qi)]

F. Krauss
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Multijet merging

Multijet merging at LO 008
multijet merging at LO
@ expression for first emission
do = doyBy | A3, 1)
1y
+/d¢1 KnaS (13, tne1)O(Qs — Qi)
to

+ dOna1 Bua AG (1341, tue1)O(Quat — Q)

@ note: N + 1-contribution includes also N +2, N+ 3, ...

(no Sudakov suppression below t,, 1, see further slides for iterated expression)
@ potential occurence of different shower start scales: iy ny1,...
@ ‘“unitarity violation” in square bracket: ByKny — Byaii

(cured with UMEPS formalism, L. Lonnblad & S. Prestel, JHEP 1302 (2013) 094 &

S. Platzer, arXiv:1211.5467 [hep-ph] & arXiv:1307.0774 [hep-ph])

F. Krauss




Multijet merging

0000
Multijet merging at LO
(n — N) extra jets no emissions off internal lines
Nmax—1 n—1 n—1
K
do = Y $de,B, [T ©@ii— Q)| | TT 2% t:1)
n=N j=N j=N
t,
< | A0t 1)+ [ 401 oA 1, £012)8(Q ~ Qi)
to
no emission next emission no jet & below last ME emission
Nmax—1 Nmax—1 T
K
+d®,,,, Ba,,. H e(Qj+1 - Q) H AJ(' )(tj’ tj+1)
j=N Jj=N d
t”max 7
X Ag:a)x(tnmaxv tO) + / do, ICnmaxAsrgx(tnmaxa tnmax+1)
to -

F. Krauss
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Multijet merging at LO

Multijet merging

(e]e] o]

di-photons @ ATLAS:

s amasanans |
é ATLAS
8
2 - 7Tev
& \ —— Dz fueasw 1
K B, N\ PYTHAMCHfc x 1.2 (MRST2007)
Po, Y sverpANCIIG <12 OTEGRLY
s
g s E
& 25 E
5 2 + E
: s I SR
]
05 =
0
<
£
£ %
21
5 SEr P
" R
05
700200300 400 500 600 700 800
m, [GeV]
F. Krauss
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My, Pi~vy, and Ag¢,., in showers

(arXiv:1211.1913 [hep-ex])

B T T i ey
3 atLas g ]
& ForTe 4 g ATLAS
= A §owp e
2 N\ PYTHANCHC 13 (MAST200) H —— Dataz0n, [ Lot 491"
3 . Y senrancricx 13 (oTEaRLY) R PYTIANGII 12 T
2, % SHERPAMC11c x 1.2 (CTEQBL1)
10 *u, 1 s
=
107 —— - E
104 J— ]
107 bt . . . . .
£ <
£ 3 ik £ SF
& 25 E £ o5E
5 2 E g 5E
e @
818 = % 15E
T Peepet bt ]
05 = 05E ——
0 0
< =
ER <
£ s £ o | ——
g2 [ ——
5 1sE My, ERH —
g Ed (LU " g —
05 05 ~
T O U ) [T R VR BT
by, [GeV] 2_[rad)



Multijet merging
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Multijet merging at LO

aside: Comparison with higher order calculations

B asasaasnsasacsnsans ey B e A T
38 ATLAS 8 ATLAS £
g g 3
K E-TTav 2 \ P | & ATLAS
£ —— Dsta20n, [ Lt a9 4 —— Dstaz0nt, [Lat= 401" § 10°p Rt
3 R\ DIPHOXAGAMMAZUG (CT10) - A\ DIPHOXAGAMMAZG (CT10) 4 H —o Data20i1, Lok~ 491"
© ANNLO (MSTW2008) SN DIPHOXAGAMMAZNG (CT10)
4 2NLO sTW008)
107 <
e
s e
107k S 1
104 =
E IR oo e
x x «
e} E 3 s E 5 3
z E I 2s5F W H E Z 25
a £ z
< E s 2 ¢ E s 2
g E S 15 +++%;— g 15
8 g 1 5
= 05 5
0 0
9 o o
9 9 3 2 s
S 2 25 Z 25
& & 2 &2
g s s 5 s b,
g g asail8 + 3 A
05 05
700500 500 400 500 660 700 800 5600150200 250300 350 400" 450 500 [T B T R BT R
m, [GeV] b, GeV] a0, tradl
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Multijet merging
@®00000

Multijet merging at NLO

multijet-merging at NLO: MEPS@NLO

@ basic idea like at LO: towers of MEs with increasing jet multi
(but this time at NLO)

@ combine them into one sample, remove overlap/double-counting

maintain NLO and (N)LL accuracy of ME and PS

o this effectively translates into a merging of MC@NLO simulations
and can be further supplemented with LO simulations for even
higher final state multiplicities

F. Krauss
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Multijet merging
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Multijet merging at NLO

first emission(s), once more

i
do = doyBy A%C)(/ﬁv, to) + /d¢1 ’CNAS\/’C)(M?W tn1)O(Qy — QN+1)1

to

+ddyi1 ’HNAS\}/C)(M%\/’ tn+1)O(Qs — Qut1)

1y

~ B
+d®pr1 Byt <1 + / do, ’CN> O(Qni1— Q)

N+1
tnt1

tyy1
'[Asvﬁ)l(flvﬂvfo)Jr/d¢1/CN+1A$V’21(fN+1,fN+2)]

to

FdPyso Hup1 A (113, fN+1)A5\/’?1(fN+1, tn+2)O(Qns1 — Q) + - ..

F. Krauss IPPP

Simulations in High-Energy Physics



Multijet merging
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Multijet merging at NLO

pt in MEPS@NLO

Transverse momentum of the Higgs boson @ first emission by

7\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7
] Mc@NLo
pp — h+jets i
SHERPA S-MC@NLO

do/dp, [pb/GeV]

10

1073 —

o 50 100 150 200 250 300
pi(h) [GeV]

F. Krauss
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Multijet merging
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Multijet merging at NLO

pt in MEPS@NLO

Transverse momentum of the Higgs boson @ first emission by
= L L L L e B L B B B L MC@NLO , restrict to
2 L 4
Q L pp — h+jets i Qn+1 < cht
—‘é* pp — h+0j @ NLO

107 = -
A 3
o |
< £ |
N L ]
° |- -

107 E
107 E
10 4 I -} ‘ I I | I ‘ I I | I ‘ I -}

o 50 100 150 200 250 300
pi(h) [GeV]

F. Krauss
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Multijet merging at NLO

pt in MEPS@NLO

Transverse momentum of the Higgs boson

[pb/GeV]

do/dp

10~

102

104

pp — h+jets
pp — h+0j @ NLO
--=-= pp = h+1j@NLO

50

100

150

200

250 300
pi(h) [GeV]

Multijet merging
[o]e] lelele}

@ first emission by
MC@NLO , restrict to
Qn+1 < cht

@ MCONLO pp — h + jet
for Qn+1 > Qeut



Multijet merging
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Multijet merging at NLO

pt in MEPS@NLO

Transverse momentum of the Higgs boson @ first emission by
= L L L L e B L B B B L MC@NLO , restrict to
v | |
% L pp — h+jets il Qnt1 < Qeut
= pp — h+0j @ NLO ° .
107 c--ppoh+1j@NLO o MC@NLO pp — h + jet
1 E - L 1 for Qny1 > Qeut
o~ | -
S L. : ] . .
© [ - ] @ restrict emission off
e < g pp — h+ jet to
1072 i . ] Qn+2 < cht
107 e, E
10 4 I -} ‘ I I | I ‘ I I | I ‘ L \4 ; ; 1
o 50 100 150 200 250 300

pi(h) [GeV]




Multijet merging
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Multijet merging at NLO

pt in MEPS@NLO

Transverse momentum of the Higgs boson @ first emission by
= L L L I I B B | Mc®@NLO , restrict to
v | |
% L pp — h+jets il Qnt1 < Qeut
= pp — h+0j @ NLO .
Cwt Bk, o ohileNio - @ MCONLO pp — h + jet
T Er “' --e= pp = h+2j@NLO E for Qni1 > Qeut
< e - ] @ restrict emission off

Foa . pp — h+ jet to

T — Qn+2 < cht
] E @ McONLO
L ] pp — h + 2jets for
E L ' b Qn+2 > Qeut

10 4 | ‘ | ] I ‘ | | I ‘ L \4 L ; 1
o 50 100 150 200 250 300
pi(h) [GeV]




Multijet merging
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Multijet merging at NLO

pt in MEPS@NLO

Transverse momentum of the Higgs boson @ first emission by
= L L L L e B L B B B L Mc@ONLO , restrict to
v | |
% L pp — h+jets il Qnt1 < Qeut
a pp — h+0j @ NLO ° .
S0 B e ppohtlj@NLO MC®ONLO pp — h + jet
T EoLh —- pph+2j@NLO ] for Qni1 > Qeut
S C; ' ] . ..
© [ - ] @ restrict emission off

104\\\\‘\\\\

o 50

100

200

150

250 300

pi(h) [GeV]

pp — h+ jet to
Qn+2 < cht

@ McONLO

pp — h + 2jets for
Qn+2 > cht

@ iterate



Multijet merging at NLO

pt in MEPS@NLO

Transverse momentum of the Higgs boson

do/dp, [pb/GeV]

103

hJJJH”

i
e e b b b P

pp — h+jets i
pp — h+0j @ NLO
----= pp — h+1j@NLO
---= pp — h+2j@NLO
----- pp = h+3j@LO

50

100 150 200 250 300
pi(h) [GeV]

Multijet merging
[o]e] lelele}

@ first emission by

MC@NLO , restrict to
Qn+1 < cht

@ MCONLO pp — h+ jet

for Qn+1 > Qeut

@ restrict emission off

pp — h+ jet to
Qn+2 < cht

@ McCONLO

pp — h + 2jets for
Qn+2 > cht

@ iterate



Multijet merging at NLO

pt in MEPS@NLO

do/dp, [pb/GeV]

Transverse momentum of the Higgs boson

pp — h+jets

pp — h+0j @ NLO
----= pp = h+1j@NLO
- pp— h+2j@NLO
----- pp — h+3j@LO

10

0 50 100 150 200 250

300

pi(h) [GeV]

Multijet merging
[o]e] lelele}

@ first emission by

MC@NLO , restrict to
Qn+1 < cht

@ MCONLO pp — h + jet

for Qn+1 > Qeut

@ restrict emission off

pp — h+ jet to
Qn+2 < cht

@ McCONLO

pp — h + 2jets for
Qn+2 > cht

@ iterate

@ sum all contributions



Multijet merging at NLO

pt in MEPS@NLO

do/dp, [pb/GeV]

10

10

10

Transverse momentum of the Higgs boson

pp — h+jets i
pp — h+0j @ NLO
----= pp = h+1j@NLO
- = pp— h+2j@NLO
pp — h+3j@LO

.l,.\...\‘_\:\ UW';

‘..‘.HJU.‘

o 50 100 150 200 250 300
pi(h) [GeV]

Multijet merging
[o]e] lelele}

@ first emission by

MC@NLO , restrict to
Qn+1 < cht

@ MCONLO pp — h + jet

for Qn+1 > Qeut

@ restrict emission off

pp — h+ jet to
Qn+2 < cht

@ McCONLO

pp — h + 2jets for
Qn+2 > cht

@ iterate
@ sum all contributions
@ eg. p, (h)>200 GeV

has contributions fr.
multiple topologies



Multijet merging

000e00

Multijet merging at NLO

example: MEPS@NLO for W+jets

(up to two jets @ NLO, from BLACKHAT, see arXiv: 1207.5031 [hep-ex])

Inclusive Jet Multiplicity

z \ \ \ \ ER ‘ _
7 r —e— ATLAS data 1 5 esf

= — MEePs@NLo B [ 1

% . r 5|
= sl MEePs@NLo ;4/2...2;47 N0

N oOE = —— MEntoPS ERR 1
+ E MENLOPS j/2...21 3 oaf
5 r + Mc@NLo b z £

5 8 B L ]

jet =3 E ]

+ Py >2Gev 3 E i

F (x10) 1 — —

— ) 1 2.f E

P> 30GeV 4 I B

102 e - = £ ]

E ARy 3

= s E ]
£ ¥ 2 [

i s ] B osp g

ERES P> 30Gev 4

r 1 E | L

=

fet

Niet

Krauss
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Multijet merging

0000e
Multijet merging at NLO

First Jet p Second Jet p.
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} } } } } } —— ATLASdata
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Multijet merging
0O0000e

Multijet merging at NLO
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Multijet merging

Other merging approaches: FxFx & friends

FxFx: validation in Z+jets

(Data from ATLAS, 1304.7098, aMC@ONLO -MADGRAPH with HERWIG++)

(green: 0, 1, 2 jets + uncertainty band from scale and PDF variations, red: MC@NLO)

FXC'“*“'“ et multiplicity Scalar p. sum of leptons and jets

< E —
EF 3
E 3
= £
x =
! 3
+, N
o 3
I —e— Data
- inc.
N Var N
v Z/y" = ete
Y —
|

] s
8 8
S )

9
b= 3

\ \ ! \ \ e T e PP A P s L
3 4 5 6 7 100 200 300 400 500 600 700 800 900 1000
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Multijet merging

Other merging approaches: FxFx & friends

FxFx: validation in Z+jets

(Data from ATLAS, 1304.7098, aMC@NLO -MADGRAPH with HERWIG++)

(green: 0, 1, 2 jets + uncertainty band from scale and PDF variations, red: MC@NLO)

Transverse momentum of 15t jet Ratio of jet transverse momenta Transverse momentum of 3rd jet

o6 1 In cliy iyl I M*M»‘u P e T e e e TN o6 | 1 1 1

P Gastien [GeV] pu(and jb)/p (15t e . Gordjen [Gev]
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Multijet merging

Other merging approaches: FxFx & friends

differences between MEPS@NLO, UNLOPS & FxFx

FxFx MEPS@NLO UNLOPs
ME all internal V external all external
aMC@NLO -MADGRAPH COMIX or AMEGIC
V from OPENLOOPS, BLACKHAT, MJET,
shower external intrinsic intrinsic
HERWIG or PYTHIA PYTHIA
Ay analytical from PS from PS
o(Q)) a-posteriori per emission per emission
Q@,-range || relatively high > Sudakov regime ~ Sudakov regime
(but changed)
~ 10% ~ 10%

F. Krauss
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Multijet merging

Other merging approaches: FxFx & friends

Higgs-p, : exclusive over inclusive rate

Ratio of exclusive over inclusive Higgs production Ratio of exclusive over inclusive Higgs production
g L e e

Qo £

< = 1%

) =9

= Powheg NNLOPS g k]

N - ~—— Suerra NNLOPs i §

T o —— MGS5_aMC FxFx —= ]

R F e SHERPA MEPS@NLO hd

gy e = 2 HERWIG 7.1 ]

.
LH15 pp — h

inclusive

excl/incl

excl/incl

L
80 100 o 20 40 60 80 100
po(h) [Gev po (k) [GeV

@ ~ 20% of Higgs with p; = 60 GeV are not accompanied by a jet
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EW corrections
[ ]
Motivation: the size of EW corrections

motivation: the size of EW corrections

o EW corrections sizeable O(10%) at large scales: must include them!
@ but: more painful to calculate

@ need EW showering & possibly corresponding PDFs

(somewhat in its infancy: chiral couplings)

@ example: Zv vs. pr (right plot)

(handle on pf in Z — v D)

(Kallweit, Lindert, Pozzorini, Schoenherr for LH'15)
o difference due to EW charge of Z N I R R R R
@ no real correction (real V emission) L 3
@ improved description of Z — ¢ A H» ]
1 1 1 1 1

F. Krauss
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Practicalities

inclusion of electroweak corrections in simulation

@ incorporate approximate electroweak corrections in MEPS@NLO
@ using electroweak Sudakov factors

B,,(d>,,) ~ Bn(¢n) Apw(Pn)
@ using virtual corrections and approx. integrated real corrections
Bn(q)n) ~ Bn(d)n) + Vn,EW(¢n) + In,EW(q)n) + Bn,mix((bn)

o real QED radiation can be recovered through standard tools
(parton shower, YFS resummation)

@ simple stand-in for proper QCD®EW matching and merging
— validated at fixed order, found to be reliable,
difference < 5% for observables not driven by real radiation

F. Krauss

EW corrections
[ Jele]e]
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Practicalities

EW corrections
0e00

results: pp — U + jets

do/dpry [pb/GeV]

do/dodS

1234

> LT+

0,1,
T

(K

2j @13 TeV

MEPS@LO
E== MEPS@NLO QCD
=== MEPS@NLO QCD+EW,
—— MEPS@NLO QCD+EW, iy wo. LO mix

Qeut = 20GeV.

2000
prv [GeV]

allweit, Lindert, Maierhofer, Pozzorini, Schoenherr JHEP04(2016)021)

do/dpr;, [pb/GeV]

do/dodiS

PP

> 740,12 @13 TeV

MEPS@LO

Qeut = 20GeV

=== MEPS@NLO QCD

=== MEPS@NLO QCD+EW,

—— MEPS@NLO QCD+EWjr weo.

200 500

= particle level events including dominant EW corrections

1000

2000
pj, 1GeV]
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EW corrections
(e]e] o]
Practicalities

NLO EW predictions for AR(u, j1)

measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

e LO pp — Wj with A¢(p,j) =7

F. Krauss
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EW corrections
(e]e] o]
Practicalities

NLO EW predictions for AR(u, j1)

f measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

e LO pp — Wj with A¢(p,j) =7

@ NLO corrections neg. in peak
. large pp — Wjj component opening PS

F. Krauss
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EW corrections
(e]e] o]
Practicalities

NLO EW predictions for AR(u, j1)

measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

e LO pp — Wj with A¢(p,j) =7

@ NLO corrections neg. in peak
large pp — Wjj component opening PS

F. Krauss
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EW corrections
(e]e] o]
Practicalities

NLO EW predictions for AR(u, j1)

measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

o LO pp — Wj with A¢(u,j) =

@ NLO corrections neg. in peak
large pp — Wjj component opening PS

@ sub-leading Born (yPDF) at large AR

F. Krauss
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EW corrections
(e]e] o]
Practicalities

NLO EW predictions for AR(u, j1)

measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

e LO pp — Wj with A¢(p,j) =7

@ NLO corrections neg. in peak
] large pp — Wjj component opening PS

@ sub-leading Born (yPDF) at large AR
@ restrict to exactly 1/, no p’j > 100 GeV

F. Krauss
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EW corrections
(e]e] o]

Practicalities

NLO EW predictions for AR(u, j1)

measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

LO pp — Wj with A¢(p,j) =7
NLO corrections neg. in peak
large pp — Wjj component opening PS

1 @ sub-leading Born (yPDF) at large AR
@ restrict to exactly 1/, no p’j > 100 GeV
describe pp — W/jj @ NLO, p? > 100 GeV

F. Krauss
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EW corrections
(e]e] o]

Practicalities

NLO EW predictions for AR(u, j1)
. measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet
e LO pp — Wj with A¢(p,j) =7

@ NLO corrections neg. in peak
. large pp — Wjj component opening PS

@ sub-leading Born (yPDF) at large AR
@ restrict to exactly 1/, no p’j > 100 GeV
o describe pp — Wjj @ NLO, p? > 100 GeV
@ pos. NLO QCD, ~ flat

F. Krauss
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Practicalities

F. Krauss

EW corrections
(e]e] o]

NLO EW predictions for AR(u, j1)

measure collinear W emission?

LHC®@8TeV, p’i > 500 GeV, central u and jet

LO pp — Wj with A¢(p,j) =7
NLO corrections neg. in peak
large pp — Wjj component opening PS

sub-leading Born (yPDF) at large AR
restrict to exactly 1j, no p’j > 100 GeV
describe pp — W/jj @ NLO, p? > 100 GeV
pos. NLO QCD, neg. NLO EW, ~ flat
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EW corrections
(e]e] o]

Practicalities

NLO EW predictions for AR(u, j1)

measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

e LO pp — Wj with A¢(p,j) =7
@ NLO corrections neg. in peak
large pp — Wjj component opening PS

@ sub-leading Born (yPDF) at large AR
@ restrict to exactly 1/, no p’j > 100 GeV
o describe pp — Wjj @ NLO, p? > 100 GeV
@ pos. NLO QCD, neg. NLO EW, ~ flat

@ sub-leading Born contribs positive

F. Krauss
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EW corrections
(e]e] o]

Practicalities

NLO EW predictions for AR(u, j1)

measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

] @ NLO corrections neg. in peak
large pp — Wjj component opening PS

@ sub-leading Born (yPDF) at large AR
restrict to exactly 1j, no p’j > 100 GeV
describe pp — W/jj @ NLO, p? > 100 GeV
pos. NLO QCD, neg. NLO EW, ~ flat

sub-leading Born contribs positive

sub?leading Born (diboson etc) conts. pos.
— possible double counting with BG

F. Krauss
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EW corrections
(e]e] o]
Practicalities

NLO EW predictions for AR(u, j1)

measure collinear W emission?
LHC®@8TeV, p} > 500GeV, central p and jet

e LO pp — Wj with A¢(p,j) =7

@ NLO corrections neg. in peak
large pp — Wjj component opening PS

@ sub-leading Born (yPDF) at large AR
restrict to exactly 1j, no p’j > 100 GeV
describe pp — W/jj @ NLO, p? > 100 GeV
pos. NLO QCD, neg. NLO EW, ~ flat
sub-leading Born contribs positive

sub?leading Born (diboson etc) conts. pos.
— possible double counting with BG

@ merge using exclusive sums

F. Krauss
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EW corrections
[e]e]e] ]

Practicalities

NLO EW predictions for AR(u, j1)

oy Sy T T T T IRARSS! i
= O o ™™ i Swee]  data comparison
_% 122? :2';:,?,i';‘xf::'iffwf;‘f:mwer - E (M. Wu ICHEP'16, ATLAS arXiv:1609.07045)
B = SHERPA+OpenLoops W+j & W+jj |
B b WertmNgmo E @ ALPGEN+PYTHIA
100k i3 pp — W + jets MLM merged
so; + + + é (Mangano et.al., JHEP07(2003)001)
wb 1 *ﬁ RS @ PYTHIA 8
40 — .
o T% T pp — Wj + QCD shower
e + B 3 ..
bbb b ] pp — jj + QCD-+EW shower
s = (Christiansen, Prestel, EPJC76(2016)39)
© E i
a 1.5
3 @ SHERPA+OPENLOOPS
. NLO QCD+EW-+subLO
0.5 2|
s = pp — Wj/Wjj excl. sum
g 1.5;7 7; (Kallweit, Lindert, Maierhofer,)
8 1 = (Pozzorini, Schoenherr, JHEP04(2016)021)
o E =
05E - ;
L I I B V- Y- S B e NNLO QCD pp — VV-/

(Boughezal, Liu, Petriello, arXiv:1602.06965)

AR(y, closest jet)




EW corrections
[e]e]e] ]

Practicalities

NLO EW predictions for AR(u, j1)

5 1201 il T T T T T T ] i
= FTon ™™ ey s ] data comparison
_% 100; :Sl;:ﬁ,i';*xf;-:'ifwf:f;We," 7: (M. Wu ICHEP'16, ATLAS arXiv:1609.07045)
-8 80} SHERPA+OpenLoops W+j & W+jj Q { o ALPGEN+PYTHIA
a B pp — W + jets MLM merged
L + ] (Mangano et.al., JHEP07(2003)001)
F - AN ; N n g @ PYTHIA 8
2o+ mﬁr* . pp — Wj + QCD shower
L ==] - ..
g ‘ e pp — jj + QCD+EW shower
s p (Christiansen, Prestel, EPJC76(2016)39)
© E
a 15—
= @ SHERPA+OPENLOOPS
T NLO QCD+EW+subLO
« 2= A pp — Wj/Wjj excl. sum
5 1.5;7 7; (Kallweit, Lindert, Maierhofer,)
'8 1 = (Pozzorini, Schoenherr, JHEP04(2016)021)
o E =
0.5 = H
005 s 225 3 a5 e NNLO QCD pp — Wj

(Boughezal, Liu, Petriello, arXiv:1602.06965)

AR(y, closest jet)




EW corrections

[e]e]e] ]

Practicalities

NLO EW predictions for AR(u, j1)

5 50 il T T T T T T .
= s o Leadig e+ 85058 data comparison
_% 40 :2',;:;?;’;::?&?:&":ower (M. Wu ICHEP'16, ATLAS arXiv:1609.07045)
E 35§ SHERPA+OpenLoops W+j & W+jj ° ALPGEN+PYTH|A
30 .
) pp = W + jets MLM merged
20; (Mangano et.al., JHEP07(2003)001)
155 @ PYTHIA 8
oF pp — Wj + QCD shower
56 ..
: pp — jj + QCD+EW shower
s (Christiansen, Prestel, EPJC76(2016)39)
© E
a 1.5
= @ SHERPA+OPENLOOPS
T NLO QCD+EW+subLO
P pp — Wj/Wjj excl. sum
5 1.5% (Kallweit, Lindert, Maierhfer,)
'g 1= (Pozzorini, Schoenherr, JHEP04(2016)021)
o E i
OSET o NNLO QCD pp — Wj

o
o
o
o
N

25 3 35 4

: (Bougheza detriello, 2 2
AR(, closest jet) (Boughezal, Liu, Petriello, arXiv:1602.06965)
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Hadronisation
@00
Connection to QCD

QCD radiation, once more

e remember QCD emission pattern

e = R a S T e ()

@ spectrum cut-off at small transverse momenta and energies by onset
of hadronization, at scales R ~ 1fm/Aqcp

@ two (extreme) classes of emissions: gluons and gluers
determined by relation of formation and hadronization times

F. Krauss
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Hadronisation
o] lo}
Connection to QCD

o gluers formed at times R, with momenta k| ~ ki ~ w ke 1/R
@ assuming that hadrons follow partons,

Q
dk? Cras(k?) w\1 dw
dn ~ 2oL =R SR {1 (1 — f)] had
(hadrons) / kJ2_ o + E
ki>1/R

Cras(1/R?) dw
Vs

log(Q*R?

0g(Q"R") —

or - relating their energyn with that of the gluers -
dN(hadrons)/d |0g € = const.,

a plateau in log of energy (or in rapidity)

F. Krauss
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Hadronisation
ooe
Connection to QCD

impact of additional radiation

o
@ new partons must separate before they can hadronize independently
@ therefore, one more time

tform ~ ﬂ

K2
tsep ~ RO ~ tform (RkJ_)
thad ~ kH R2 ~ tform (RkJ_)z .
o for gluers Rk, ~ 1: all times the same

naively; new & more hadrons following new partons

but: colour coherence
primary and secondary partons not separated enough in

1/R SJ OJ(hadron) "S 1/(R9)

and therefore no independent radiation

F. Krauss
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Hadronisation
00000

General ideas

hadronisation: General thoughts

@ confinement the striking feature of low—scale sotrng interactions
@ transition from partons to their bound states, the hadrons
@ the Meissner effect in QCD

QED:

o = —D

F. Krauss
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Hadronisation
0@000

General ideas

@ linear QCD potential in Quarkonia — like a string

1(65)

data (solid Tines
) B PR
L theory (dashed tines) CC | " 1(55) kb o
15 s =
] as E M})
L . T s 164S) 1
L y(2D/45) J 4S) == 2y
105 0.8 -
¥(39) r s 1
7(38) &.’3
5 L (2P) | o -
3 (1) ” 1(0)
2 ) > -
= 10 2 .
R(1P) (1) ha(1P) X(P)
95
3 a ViR =Y+ KR — /R + /R
g3 b L e
. + E 12 & ER) 24
=0 1 17 (012) =0 1 17 (012) . . . R
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Hadronisation
(o]e] Jele]
General ideas

@ combine some experimental facts into a naive parameterisation

@ in ete™ — hadrons: exponentially decreasing p, , flat plateau in y
for hadrons

Nhod Ny [~

e try “smearing”: p(p?) ~ exp(—p? /o?)

F. Krauss
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Hadronisation
000e0

General ideas

@ use parameterisation to “guesstimate” hadronisation effects:
%
E = / dydp? p(p? )pL coshy = Asinh Y
0
Y
P = / dydp? p(p? )pL sinhy = M(cosh Y — 1) =~ E — \
0

A= /dpip(pi)m = (p1)-

@ estimate A ~ 1/Ryad & Mpad, With mpaq 0.1-1 GeV.

o effect: jet acquire non-perturbative mass ~ 2\E
(O(10GeV) for jets with energy O(100GeV)).

F. Krauss
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Hadronisation
(o]e]e]e] ]
General ideas

@ similar parametrization underlying Feynman-Field model for
independent fragmentation
@ recursively fragment g — g'+ had, where

o transverse momentum from (fitted) Gaussian;
o longitudinal momentum arbitrary (hence from measurements);
o flavour from symmetry arguments + measurements.

@ problems: frame dependent, “last quark”, infrared safety, no direct
link to perturbation theory, ....

F. Krauss
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Hadronisation
@00

String model

string model

@ a simple model of mesons: yoyo strings

o light quarks (mq = 0) connected by string, form a meson
e area law: m?,4 o area of string motion
o L=0 mesons only have 'yo-yo' modes:

88

F. Krauss
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Hadronisation
oeo

String model

@ turn this into hadronisation model ete™ — qg as test case

@ ignore gluon radiation: gg move away from each other, act as
point-like source of string

@ intense chromomagnetic field within string:
more g pairs created by tunnelling and string break-up

@ analogy with QED (Schwinger mechanism):
dP ~ dxdtexp (—ﬂmi/m), Kk = "string tension" .

F. Krauss
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Hadronisation
ooe

String model

@ string model = well motivated model, constraints on fragmentation
(Lorentz-invariance, left-right symmetry, ...)

@ how to deal with gluons?
@ interpret them as kinks on the string = the string effect

VS.

@ infrared-safe, advantage: smooth matching with PS.

F. Krauss
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Hadronisation
@000

Cluster model

cluster model

o underlying idea: preconfinement/LPHD

o typically, neighbouring colours will end in same hadron

o hadron flows follow parton flows — don't produce any hadrons at
places where you don’t have partons

o works well in large—N. limit with planar graphs

o follow evolution of colour in parton showers

F. Krauss
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Hadronisation
0e00
Cluster model

@ paradigm of cluster model: clusters as continuum of hadron
resonances

@ trace colour through shower in N. — oo limit

e force decay of gluons into gg or dd pairs, form colour singlets from
neighbouring colours, usually close in phase space

@ mass of singlets: peaked at low scales ~ Q2

@ decay heavy clusters into lighter ones or into hadrons
(here, many improvements to ensure leading hadron spectrum hard
enough, overall effect: cluster model becomes more string-like)

o if light enough, clusters will decay into hadrons

@ naively: spin information washed out, decay determined through
phase space only — heavy hadrons suppressed (baryon/strangeness
suppression)

F. Krauss
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Hadronisation

Cluster model

F. Krauss

[e]e] le)

o self-similarity of parton shower
will end with roughly the same
local distribution of partons, with
roughly the same invairant mass for
colour singlets

@ adjacent pairs colour connected,
form colourless (white) clusters.

“

o clusters (“~ excited hadrons)
decay into hadrons
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Hadronisation
oooe

Cluster model

practicalities

@ practicalities of hadronisation models: parameters
e kinematics of string or cluster decay: 2-5 parameters
e must “pop” quark or diquark flavours in string or cluster decay —
cannot be completely democratic or driven by masses alone
—> suppression factors for strangeness, diquarks 2-10 parameters
o transition to hadrons, cannot be democratic over multiplets
— adjustment factors for vectors/tensors etc. 2-6 parameters

@ tuned to LEP data, overall agreement satisfying

@ validity for hadron data not quite clear

(beam remnant fragmentation not in LEP.)

@ there are some issues with inclusive strangeness/baryon production

F. Krauss




Hadronisation

Open questions

colour reconnections and friends

(Fischer, Sjostrand, 1610:09818)

Collective flow observed in pp at LHC. Partly unexpected.
New mechanisms required; could also (partly) replace CR.
Active field, e.g. N. Fischer & TS, arXiv:1610:09818 [hep-ph]:
o Thermal exp(—p, /T) — exp(—m_ / T) hadronic spectrum.
o Close-packed strings = increased string x or T.
@ Dense hadronic gas = hadronic rescattering.

25 Ch (p1) vs. My 3t 7TeV, . gock > 100MeV, g, > 2, ] < 25

Ch (pL) v ey 3t 7TV, . ac > 100MeV, g > 2,

al p. off
—— Thermal p. ColRec
02 —— Thermal p. HadScat

Thermal p, NrString

MC/Data
[

MC/Data
I

S0 100 10 140 160 180 200

0 40 6o S 100 120 140 160 180 00 0 40 60

en

(slide stolen from Torbjorn Sjostrand)
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Hadronisation
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Open questions

strange strangeness

(ALICE collaboration)

’E T T T
r ST N I
B e o
g s
s [ 00 gy
2 ~ 4
@ universality of hadronisation assumed 2 e
@ parameters tuned to LEP data § g p o
in particular: strangeness suppression t Ee
@ for strangeness: flat ratios S i } EHJEH]
but data do not reproduce this ?% e o
@ looks like SU(3) restoration ”“ e

® pp (s=7Tev 1
O pPb, |5y, =502Tev |
O Pb-Pb, Sy, = 2.76 TeV

not observed for protons

@ needs to be investigated

—— PYTHIA8
------ DIPSY
““““ EPOS LHC
102 T e
10 10? 10°
@N chldanK 0.5
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Underlying Event
@0000

Multiple parton scattering

multiple parton scattering

@ hadrons = extended objects! Q-

@ no guarantee for one scattering r"’i.)'“::> p
only. ;\:\.-:; ? /??T_\\

@ running of as @"'(:i!:;
= preference for soft scattering. T

F. Krauss
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Underlying Event
(o] Jelele]

Multiple parton scattering

o first experimental evidence

for double—parton scattering: Lf e B
events with vy + 3 jets: 5 1-Veriex Events
oy 7ee
uy
e cone jets, R = 0.7, S " Data
~eer [ bP companent, from backgraund
Er > 5 GeV; |nj| <1.3; 2 subtraction method (52,6%)
o ‘“clean sample”: two S0 mone cano cemicure:
softest jets with Er < 7 B0 PR A7 PR
GeV; Eae
=
@ cross section for DPS 20
_ 9% g’ *f
JDPS - |: 1 L L L L L
Oeff R I T T I B T S

AS, g—angle between pairs (radians)

Oef ~ 14 =4 mb.




Underlying Event
[e]e] Tele]

Multiple parton scattering

T T T T T T T T
ATLAS e« WIiv unfolded data,\s=7 TeV
[ Fit distribution

A+H+J particle-level template A
—— PYTHIA particle-level template B

o
s

@ more measurements, also at
LHC

@ ATLAS results from W + 2 002

Events / 0.03
°
8

I Ldi=36 pb™

JEtS % 01 02 03 04 05 06 07 08 09 1
n
Ajets
. v
w ®  AFS (4 ets - no errors given)
q v UA2 (4 jets - lower limit)
N m  CDF (4jets)
W a , v CDF (y + 3 jets)
® * DO (y + 3 jets)
7 + ATLAS (W + 2 jets)
g
4
9
.
ATLAS
L L L
10? 10° 10°
\5 [GeV]
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Underlying Event
[e]e]e] o]

Multiple parton scattering

Multiple Parton Interactions /outgoing Parton

Proton AntiProton

Underlying Evept Ugpderlying Event

Outgoing Parton

but: how to define the underlying event?

@ everything apart from the hard interaction, but including IS showers,
FS showers, remnant hadronisation.

@ remnant-remnant interactions, soft and/or hard.

@ lesson: hard to define

F. Krauss




Underlying Event
[e]e]e]e] ]

Multiple parton scattering

@ origin of MPS: parton—parton scattering cross section exceeds
hadron—hadron total cross section

s/4 5

do(p
Jhard(pl,min) = / dp2Ld(p2J_) > Opp,total

L

pi,min
for low p min
@ remember
1
do(p?) / (e, ) 0222
_ =7 = dX]_dXQf X1, q f X2, 4 )7
i (1. P i

0

o <Uhard(pJ_,min)/Upp,total> 2 1
@ depends strongly on cut-off p; min (energy-dependent)!

F. Krauss
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Modelling the underlying event

Underlying Event
[ Je]

modelling the underlying event

o take the old PYTHIA model as example:

o start with hard interaction, at scale Q2,.4.
o select a new scale p2 from

2
Qhard d ( 5 )

2do\pP1

exp | — / dp. 5

Onorm dPJ_
P2
4

. . 2 2
with constraint p7 > p% in
e rescale proton momentum (“proton-parton = proton with reduced energy”).

o repeat until no more allowed 2 — 2 scatter
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Underlying Event
oe

Modelling the underlying event

modelling the underlying event

@ possible refinements:

e may add impact-parameter dependence — more fluctuations

o add parton showers to UE

o ‘“regularisation” to dampen sharp dependence on p, min: replace 1/t
in MEs by 1/(t + to), also in as.

e treat intrinsic k; of partons (— parameter)

e model proton remnants (— parameter)

F. Krauss
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Underlying Event
[ eJele]

Some results in Z production

some results for MPS in Z production

@ observables sensitive to MPS

@ classical analysis: transverse regions in
QCD/jet events
@ idea: find the hardest system, orient
event into regions:
o toward region along system
e away region back-to-back
e transverse regions

@ typically each in 120°

F. Krauss
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Underlying Event
[e] lele]

Some results in Z production
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Some results in Z production
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Underlying Event
[efe]e] ]

Some results in Z production
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Practicalities

F. Krauss

Underlying Event
[ ]

@ see some data comparison in Minimum Bias
@ practicalities of underlying event models: parameters
o profile in impact parameter space 2-3 parameters
o IR cut-off at reference energy, its energy evolution, dampening
paramter and normalisation cross section
4 parameters
e treating colour connections to rest of event 2-5 parameters
o tuned to LHC data, overall agreement satisfying

@ energy extrapolation not exactly perfect, plus other process
categories such as diffraction etc..
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Summary & Vision
[ Jelele]e]

Summary of fixed order
e NLO (QCD) “revolution” consolidated:

e lots of routinely used tools for large FS multis (4 and more)

e incorporation in MC tools done, need comparisons, critical appraisals
and a learning curve in their phenomenological use

e to improve: description of loop—induced processes

@ amazing success in NNLO (QCD) calculations:

o emergence of first round of 2 — 2 calculations

o next revolution imminent (with question marks)

e first MC tools for simple processes (gg — H, DY), more to be learnt
by comparison etc. (see above)

e first N3LO calculation in gg — H, more to come (?)

@ attention turning to NLO (EW)

o first benchmarks with new methods (V+3j)
o calculational setup tricky
o need maybe faster approximation for high-scales (EW Sudakovs)

F. Krauss
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Summary & Vision
0@000

Limitations of fixed order

@ practical limitations/questions to be overcome:
o dealing with IR divergences at NNLO: slicing vs. subtracting
(I'm not sure we have THE solution yet)
o how far can we push NNLO? are NLO automated results stable
enough for NNLO at higher multiplicity?
o users of codes: higher orders tricky — training needed
(MC = black box attitude problematic - a new brand of pheno/experimenters needed?)
@ limitations of perturbative expansion:
o breakdown of factorisation at HO (Seymour et al.)
o higher-twist: compare (as/m)" with Aqcp/Mz
@ limitations in analytic resummation: process- and
observable-dependent
o first attempts at automation (CAESAR and some others) —
checks/cross-comparison necessary

@ showering needs to be improved (for NNLO the “natural” accuracy is NNLL)

F. Krauss
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Summary & Vision
[e]e] le]e]

Summary for event generation

@ Systematic improvement of event generators
by including higher orders has been at the core
of QCD theory and developments in the past
decade:

multijet merging (“"CKKW”, “MLM")
NLO matching (“MC@NLO”, “POWHEG")
MENLOPS NLO matching & merging
MEPSONLO (“SHERPA”, “UNLOPS”,
“MINLO", “FxFx")

@ multijet merging an important tool for many relevant signals and
backgrounds - pioneering phase at LO & NLO over

@ complete automation of NLO calculations done
— must benefit from it!

(it's the precision and trustworthy & systematic uncertainty estimates!)

F. Krauss
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Summary & Vision
[e]e]e] Jo]

Vision

@ we have constructed lots of tools for precision physics at LHC
but we did not cross-validate them careful enough (yet)
but we did not compare their theoretical foundations (yet)

@ we also need unglamorous improvements:

systematically check advanced scale-setting schemes (MINLO)
automatic (re-)weighting for PDFs & scales (ME: v/, PS: -)
scale compensation in PS is simple (implement and check)
PDFs: to date based on FO vs. data — will we have to move to
resummed /parton showered?

(reminder: LO™ was not a big hit, though)

@ ... and maybe we will have to go to the “dirty” corners:
higher-twist, underlying event, hadronization, ...

(many of those driven by experiment)

F. Krauss

Simulations in High-Energy Physics



Summary & Vision
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