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Quantising the electromagnetic field: Planck’s hypothesis

Problem in 1900: The
electromagnetic spectrum
emitted by a hot black body.

Statistical physics (classical)
failed completely in
explanation, predicting the total
energy emitted to be infinite.

Planck’s ad hoc proposal: electromagnetic radiation is “quantised”.

Relation of energy E and frequency ν is E = hν

From now on: units changed such that ~ = 1 .

Remark: Most “perfect” black-body radiation is observed in cosmic
microwave background.
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Substantiating Planck’s claim: Photoelectric effect

Quantisation is a natural, intrinsic
property of electromagnetic radiation.

Explains the photoelectric effect:
Electromagnetic radiation “kicks”
electrons out of metal. Process
depends on frequency of light only,

not on intensity.

Therefore it is the effect of a single photon.

Energy of leaving electrons: Ee = ω −Wout.
Wout is a material-specific energy neccessary for the electrons to
leave the metal.

Remark: One of four papers in Einstein’s “annus mirabilis”.

(Others: Brownian motion and special and general relativity)
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Substantiating Planck’s claim: Compton effect

Light scattered off a particle with mass
m at rest changes wavelength:

λ→ λ′ = λ+ 1−cos θ
m

Exactly the behaviour of a massless
particle in relativistic physics
(energy-momentum conservation).

Quanta of electromagnetic field are photons, symbolised by γ.

First example of:

Interactions are mediated by exchange particles.
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de Broglie’s matter waves

Hypothesis: Waves (light) has particle character, therefore particles
may have wave character, undergoing interference etc..

Wavelength proportional to inverse momentum, λ = 1/|p|.

This applies to all particles, including us.

Observation of the wave-like character of particles by diffraction of
electrons on a lattice and emerging interference patterns.

de Broglie’s hypothesis motivates (a posteriori) Bohr’s model of the
atom: Only such orbits are allowed that can be filled with an integer
number of wavelengths.
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Essence of quantum mechanics: Schrödinger equation

Using the matter wave idea of de Broglie, Schrödinger formulated a
full theory based on wave mechanics for them.

In his framework the wave of a particle with mass m (denoted by ψ)
develops in space and time as

−
1

2m

∂2ψ

∂x2
+ Vψ = i

∂ψ

∂t
.

Applying this equation to the hydrogen atom, he was able to
reproduce Bohr’s findings of discrete energy levels.

Interpretation of the wave function: Its absolute value squared
|ψ(t, x)|2 gives the probability of finding the particle at x and t.

Note: Such probabilities are invariant under

ψ(t, x) −→ ψ′(t, x) = e iαψ(t, x) .
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Heisenberg’s uncertainty principle

Alternative formulation by Heisenberg, centred around observation.

Wave functions are replaced by (infinite dimensional) state vectors,
observables are operators acting on them.

Measurements are identified with expectation values of operators.

Consequence: statistical/probabilistic treatment inherent.

Uncertainty relations

∆p∆x ≥
1

2
and ∆E∆t ≥ 1 .
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Example: Confine a particle in a small volume ∆x = 1 fm.
Then: Uncertainty of position yields undirected random movement

∆p =
1

2∆x
≈ 100MeV .

(Used ~c ≈ 200 MeV fm.)

Example: Lifetime of unstable particle τ = 10−18 s.
Then: Uncertainty in mass given by limited time for measurement

∆E = Γ = 1/τ ≈ 0.65MeV .

(Used ~ ≈ 6.5 · 10−19 MeV s.)
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Detour: Some notation

Quantum physical states characterised by quantum numbers ψ are
described by wave functions ψ(t, x) in position space and by wave
functions χ(t, p) in momentum space.

Want to introduce a notation, where all quantum numbers, apart
from space/momentum are encoded in one time-dependent state
vector |ψ(t)〉 (Schrödinger picture) such that

ψ(t, x) = 〈x |ψ(t)〉 and χ(t, p) = 〈p|ψ(t)〉 .

This is achieved by introducing position and momentum eigenstates:

x̂ |x〉 = x |x〉 and p̂|p〉 = p|p〉 .

Then Schrödinger equation reads (omitting the 〈x |)

i
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 =

[

−
1

2m

∂2

∂x2
+ V (x)

]

|ψ(t)〉 .
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Detour: Dealing with many particles

For more than one particle: State vector |ψ〉 depends on all
quantum numbers: spins, momenta, etc..

Building a state vector through creation and annihilation operators.
(Like ladder operators in the harmonic oscillator.)

Examples (use only momenta to describe N identical particles):

|p1p2 . . . pN〉 = â†(p1)â
†(p2) . . . â

†(pN)|0〉

â(p1)â(p2) . . . â(pN)|p1p2 . . . pN〉 = |0〉 ,

with vacuum state |0〉, and omitting symmetrisation factors.

The â and â† have (anti-)commutation relations, encoding whether
the particles obey Fermi-Dirac or Bose-Einstein statistics.
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Going relativistic

Starting point (compare Schrödinger equation):

Ĥ|ψ〉 =

(

p̂2

2m
+ V̂

)

|ψ〉 = i
∂

∂t
|ψ〉 ,

with p = −i∂/∂x .

Recognise: First term of Ĥ is non-relativistic kinetic energy,
it is always positive: E > 0.

Therefore: Try to replace with relativistic expression.

Problem: Quadratic relation of E and p (E 2 = p2 +m2)
energy is not positive-definite any more!

Many far-reaching consequences:
Antiparticles, varying number of particles, vacuum-fluctuations, etc..
Seemed like a complete mess, good enough to abandon the idea.
But there was a way out, will discuss this in a later lecture.
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Aside: Spin

Discovery of small splitting of spectral lines in hydrogen spectrum -
not explained by Bohr’s model.

Explanation: electron has “intrinsic magnetic moment” (spin),
interacting with magnetic field produced by orbiting around nucleus.

Distinctively quantum: In classical physics, all spin orientations are
allowed, leading to a range rather than two lines.

Therefore: spin must be quantised as well.

By convention: s = ±1/2 for electrons etc..

Important: Spins always come in integers or half integers, at integer
distance. Two different kinds of particles: bosons (integer spins) and
fermions (half-integers), the latter enjoying the Pauli exclusion
principle.
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Learning outcomes

Reminder of some basic quantum mechanics and phenomena

de Broglie waves and uncertainty relation to estimate characteristic
scales in a process.

Get used to ~ = c = 1

c ≈ 3 · 108 m/s = 3 · 1023 fm/s

~ ≈ 6.6 · 10−22 MeV s

~c ≈ 200 MeV fm = 0.2 GeV fm
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