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Symmetries in classical physics

From classical physics it is known that

invariance of a system under certain transformations

enforces the conservation of corresponding quantities.

(Noether’s theorem)

Examples:

Invariance under Conserved quantity
rotations ⇐⇒ angular momentum
time translations ⇐⇒ energy
space translations ⇐⇒ momentum
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Symmetries in Quantum Physics

In Quantum Physics also internal symmetries (spin, isospin, . . . )

Example: Invariance under phase transformations of the fields

ψ(x , t) → ψ′(x , t) = exp(iθ)ψ(x , t) ⇐⇒ |ψ|2 = |ψ′|2

yields conserved charges like, e.g., the electrical charge.

Note: global changes in phase cannot be observed (because typically
squares are taken), but phase differences are observable.

(Aharonov-Bohm effect.)
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Discrete vs. continuous symmetries

Consider two slabs with quadratic and round cross section.

The quadratic one has a discrete symmetry w.r.t. rotation along its
axis, while the round one enjoys a continuous symmetry.
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only multiples of 90 degrees all angles

More physical examples: parity vs. angular momenutm
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Classical gauge invariance: Fields in electrodynamics
(Details not examinable)

Remember Maxwells equation:

∇ · E = 4πρ ∇ · B = 0

∇× E +
∂B

∂t
= 0 ∇× B −

∂E

∂t
= 4πj .

Implicit: conservation of current, ρ̇+∇ · j = 0.

Can introduce potentials Φ and A such that

E = −∇Φ− ∂A

∂t
and B = ∇× A .

(Can read them off from homogenous equations, i.e. equations of the form l.h.s.=0.)

Gauge invariance: Fields will not change under

Φ =⇒ Φ′ = Φ+
∂Λ

∂t
and A =⇒ A′ = A−∇Λ

(This is the gauge transformation of classical electrodynamics with an arbitrary scalar function Λ.)
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Example: Invariance of Lorentz force

Lorentz-force reads:

F = e

[

E +
dx

dt
× B

]

= e

[

−∇Φ−
∂A

∂t
+

dx

dt
×∇× A

]

= e

[

−∇Φ−
dA

dt
+∇ ·

(

dx

dt
· A

)]

.

To see this, use that
dAx

dt
=

∂Ax

∂t
+

∂x

∂t

∂Ax

∂x
+

∂y

∂t

∂Ax

∂y
+

∂z

∂t

∂Ax

∂z
=

∂Ax

∂t
+ vx

∂Ax

∂x
+ vy

∂Ax

∂y
+ vz

∂Ax

∂z

and that (v × ∇ × A)x = vy

(

∂Ay

∂x
−

∂Ax

∂y

)

+ vz

(

∂Az

∂x
−

∂Ax

∂z

)

+ vx

(

∂Ax

∂x
−

∂Ax

∂x

)

and that, since
∂vx

∂x
=

∂vy

∂x
=

∂vz

∂x
= 0, v · (∇ · A) = ∇(v · A)

This can be used to construct a Lagrange function,
rederive E.o.M. with Euler-Lagrange method & confirm the force,
assess symmetries, construct a Hamilton function to handle the quan-
tum mechanical problem . . . .
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Global gauge invariance: generalised

Copy idea underlying QED to construct dynamical picture of strong
interactions.
Basic idea: local gauge invariance

Start with a Lagrangian/Hamiltonian

∂µΨ
∗(t, x)∂µΨ(t, x)−m

2Ψ∗(t, x)Ψ(t, x)

which is invariant under global phase transformations of the
non-interacting electron/quark fields Ψ

Ψ(t, x) −→ Ψ′(t, x) = e
−iαΨ(t, x) with α ∈ R (a real constant).

This enforces conserved charges of the fields.
Can now n arrange fields Ψi into one “vector of fields”.
Global gauge invariance now through phase factor exp(iαaτa) with
unitary n × n matrices τa
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Local gauge invariance

Demand invariance under local phase transformations:

α −→ α(t, x) .

This makes α identical in spirit to the Λ in classical electrodynamics.

Then: Must introduce vector fields Aµ = (A0, A) to compensate for
terms of the kind ∂α that emerge in Hamiltonian.

Vector fields must transform with α, identical to gauge
transformation in electrodynamics.

Previously non-interacting Ψ coupled to the A =⇒ interacting:

Coupling/invariance achieved by replacing ∂ −→ (∂ − eA),
reproduces the Lorentz force in electrodynamics.

Similar feature in matrix form, but one Aa field per matrix τa.
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Local gauge invariance for strong interactions

(details not examinable)

Start with free, non-interacting quark fields Ψq

For global gauge invariance: need a suitable charge.
Cannot be the electrical charge - already taken for electrodynamics.

Answer: It is “colour”.
(proposed 1973 by Fritzsch, Leutwyler and Gell-Mann)

Quarks come in three colours, “red”, “green”, and “blue”

To see why: Consider the ∆++ particle.

As a fermion, it must have an antisymmetric wavefunction.
It is constituted by three up-quarks, uuu in an s-wave, symmetric.
Its spin-3/2 state |3/2,±3/2〉 has all quark spins aligned, symmetric.
Therefore: Need a new quantum number (or charge), in which the
quarks are completely antisymmetric, i.e. ∝ ǫijk .

Demand: quarks form a triplet in the “strong charge” a.k.a. color:
Ψq = (ψr

q, ψ
g
q , ψ

b
q).
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Feynman rules and colour factors

Example: Gluon transform a
“red” quark into “blue”.

Charge conservation =⇒
gluons carry a colour and

an anti-colour.

Because of gluon charges:
self-interactions
(ggg and gggg vertex).

QED: γ’s uncharged
no 3γ or 4γ vertices.

In calculations, colours are encoded in Gell-Mann matrices,
representing the algebraic structure of the symmetry group.

(Like Pauli matrices in spin/isospin group SU(2).)

There are 8 such matrices, therefore 8 gluons.
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Proton’s inner structure: Deep inelastic scattering

(Details not examinable)

Probe proton, allow its disintegration.

Use uncertainty relation momentum q ≈ 1/λ:
Momentum transfer q > 1 GeV (≈ 1/0.2fm) =⇒ reveal inner
structure.

Kinematics:

k′
µ

pµ

xpµ

kµ

qµ = (k − k′)µ

θ

inv.mass W

ν = 2pq
mp

−→ E − E ′

(energy transfer)

x = Q2

2pq −→ Q2

E−E ′

(momentum fraction of parton)

Q2 = −q2 = −2EE ′(1− cos θ)
(momentum transfer squared)

Typically: Exchange of γ’s, but sometimes also νp-scattering with
W exchange considered.
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The parton model

(Details not examinable)

In DIS: Measure σDIS in dependence on x (or ν) and Q2.

Scaling hypothesis (by J.D.Bjorken):
For E → ∞ and Q2 → ∞, σDIS depends on one variable only.
Reason: no more coherent scatter off the nucleon, photon starts
seeing individual, point-like partons.

Parton model (by R.Feynman):
The nucleon is made of smaller bits (partons).

Later knowledge: Partons identified with quarks and gluons.

Naively: Expect three valence quarks (|p〉 = |uud〉),
but: many more partons, the sea quarks and gluons.
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Parton distributions and sum rules

Define probabilities fa(x) to find a parton of type a with energy
fraction between x and x + dx :

F1(x) =
∑

a

q2a fa(x) , qa = parton’s charge.

Parton momenta must add to the proton momentum:

∫ 1

0

dx x [fu(x) + fū(x) + fd (x) + fd̄ (x) + fs(x) + fs̄(x) + . . . ] = 1 .

Parton types must yield a “net proton”, |p〉 = |uud〉:

1
∫

0

dx [fu(x)− fū(x)] = 2
1
∫

0

dx [fd(x)− fd̄ (x)] = 1

1
∫

0

dx [fs(x)− fs̄(x)] = 0
1
∫

0

dx [fc(x)− fc̄(x)] = 0 .
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Partons and QCD: A bit of history

Experimental evidences in the late 60’s and beginning 70’s:

Scaling behaviour of structure functions supports the assumption of
point-like particles with relatively weak interactions between them at
short distance/large momentum transfers - the partons in DIS
behave nearly like free particles.

Callan-Gross relation supports spin-1/2 fermions.

Comparing ep and νp scattering supports assignment of fractional
charges for the partons, like the quarks.

Checking the momentum sum rule suggests that only about 50% of
the momentum of the proton is carried by the quarks - the other half
must be carried by charge neutral objects. These are identified with
the gluons, the force carriers of the strong force, binding the quarks
together.

Conclusion: Quarks are real objects, need to find an interacting theory.
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Effect on structure functions: Scaling violations

In QCD: possible to
quantify the picture of
“proton = quarks + stuff”

Leads to evolution
equations: “Russian dolls”

This implies dependence of F1,2

on the momentum transfer.

Therefore: F1,2 depend on both
x and Q2

Scaling violations
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Learning outcomes

Symmetries and conservation laws

Continuous and discrete symmetries

Internal symmetries in Quantum Mechanics: phase invariance

Gauge symmetries as construction principle

QCD as (non-Abelian) gauge symmetry: gluons have
self-interactions

Feynman rules of QCD
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