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@ Cross sections

© Connection to observables
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Cross sections

Cross sections in classical physics
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@ Consider a beam of particles, approaching a target at rest with
velocity v.,. Describe the target by a potential centered at the origo.

@ Due to different impact parameters B, different particles of the
beam are scattered at different angles .

o Define cross section ‘da(x) =dN(x)/n ‘with

o dN(x) = number of particles scattered per unit time into the
interval [, x + dx] - physical units: s~*.
@ n = number of particles passing per unit time through a unit area

perpendiculr to the beam - physical units: m—2s~!
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Cross sections

Rewriting the differential cross section do

* ] ASSU me Uniq ue I’e|ati0n X == X(B) (Fulfilled if x decreases with B increasing - a typical setup!)
@ Assume homogenous beams: n = constant.

@ Assume symmetry around beam axis:

dN(x) = 2rnBdB = do =2rBdB.

@ Can rewrite to expose dependence on scattering angle:
do = 27B(x) ‘ dy.
@ Use solid angle dQ = sin xydxd¢ and azimuthal symmetry
d¢ — 2m:
B
s B |dB] o
sin x dx
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Cross sections

Example: Scattering of a hard sphere with radius a

@ Read off from sketch:

Xo
B
B = asinyg a
_ LT X X
= asin =acos=
@ Therefore:
dB 1
do = 27rB‘dX‘dx—27ra2cos>2<’25in>2<‘dx

2 2
= %sinxdx:%dQ = o =a’n.

@ Particle must “hit" the target.
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Cross sections

Example: Scattering in a central potential V = a//r"

@ Consider now scattering in a central potential V(r) = «/r".
@ Obviously: Need to determine trajectories in dependence on B.
@ Use energy and angular momentum conservation:

mi? J?

_ Mmoo o4 _
E—E(r +r9)+V(r)—T+W+V(f),

where 2-dim spherical coordinates r and ¢ and the angular
momentum J = mr?6 have been used.

@ Therefore:

'r:j;:\/;[EV(r)]ﬂ

m2r2’
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Cross sections

F. Krauss

@ Rewrite (with dt = dr/F from above):

Jdt Zdr
— =

mrt L f2mE - V()

do =

2
@ Use that energy in infinite distance is purely kinetic: E = "= and
angular momentum is given by J = mv,B.

@ Assume specific form of potential: V(r) = a/r

(typical for gravity/electromagnetism)

OL

/M—/gm—
= 1_8722_%_
" MVeo 1+ msz

(Finite terms absorbed in definition of angle/orientation of coordinate system)
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Cross sections

@ Solve for B and use that xo = 5*:

2 2
o ! X
B?= —tan’yy = —— cot’ = .
m2v4 m2v4 2
VOO VOO

dB
@ To express cross section do = 27B ‘d dy
X
1

2mvZ; sin %

use that dB/dx = —

@ Rediscover Rutherford formula
ma? cos ¥ o dQ

2 4 3 X= 73 52 4
m2vg, sin® X 4mevg, sin® X

do =

@ Observation: for small angles y — 0 differential cross section infinite
total cross section diverges for Rutherford
scattering
@ This is a consequence of the infinite range of the potential!

(Will need to “cut” for minimal scattering angle . . . )
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Event rates, luminosity and cross sections

o Introduce (instantaneous) luminosity L,
the number of incident particles per unit area per unit time times
the opacity of the target; units [£] = m2s7!

@ Then the instantaneous number of events d/N,, /dt reads

dNgy

i =ol

@ Therefore the total number of events during a time T given by the
integral over time of L, the integrated luminosity — cross section o
depends on the particles and the reaction type only.

@ Typically a year of beam in an accelerator experiment: 1yr = 107 s.
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Determining luminosity

@ Consider a simple case: scattering [N
off a fixed target.
Beam consisting of particles A, (\ v -{j
travelling with velocity v, uniformly /
distributed in area S with constant .
density na along beam axis.

@ Therefore: number of particles in the beam per unit length is given
by dNa = naSdx, and the incident flux (number of particles per unit
time) on target is

dNa dx

—— =naS— = naSv

e~ a7
@ Assume thin (only one scatter per particle) target with size / :

Area density of particles in target able to participate in reaction
ps = ngl

Py =

@ Define luminosity
L= ¢APB = nAnBSv/.
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Luminosity in collider experiments

@ Consider now two quadratic beams
each with area h?, colliding under
an angle 6, with densities ng and

ng along their beam axes, and
velocities vq > vg.

@ Look at beam B as "target”, and
beam A remaining the “beam”.

@ Need only to evaluate Ng — can use flux ¢g:

g — 2B
B~ h2VB
@ Therefore density per area
. h &g
PE=NB ST~ hvg sin 0
and P
— ¢ - _AVB
£=%are = Glhvg
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Practicalities

@ Hard to determine luminosity - geometry dependent and fluctuations
with quality/homogeinity of the beams

@ Therefore: Measure them with “standard candles”, i.e. well
understood processes with good theoretical accuracy in calculation
of cross section o.

@ Recap event rate for events of type AB — X:
dNag—x

Nagx = o~ LABoAB—x
o Units: [Nag_x] = Hz = 1/s, = [£] = 1/([oa—x]" 3).
[c] = 1barn = (10 fm)? = 1072* cm?

~ (2 GeV)~2 = (2000 MeV)~2
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Learning outcomes & control questions

Learning outcomes

@ Cross sections and their interpretation
@ Connection to observables: Luminosity, event rates etc..

@ How to determine luminosities
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