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Cross sections in classical physics
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B

χ

Consider a beam of particles, approaching a target at rest with
velocity v∞. Describe the target by a potential centered at the origo.

Due to different impact parameters B , different particles of the
beam are scattered at different angles χ.

Define cross section dσ(χ) = dN(χ)/n with

dN(χ) = number of particles scattered per unit time into the
interval [χ, χ+ dχ] - physical units: s−1.
n = number of particles passing per unit time through a unit area
perpendiculr to the beam - physical units: m−2

s
−1
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Rewriting the differential cross section dσ

Assume unique relation χ = χ(B). (Fulfilled if χ decreases with B increasing - a typical setup!)

Assume homogenous beams: n = constant.

Assume symmetry around beam axis:

dN(χ) = 2πnBdB =⇒ dσ = 2πBdB .

Can rewrite to expose dependence on scattering angle:

dσ = 2πB(χ)

∣

∣

∣

∣

dB

dχ

∣

∣

∣

∣

dχ .

Use solid angle dΩ = sinχdχdφ and azimuthal symmetry
dφ −→ 2π:

dσ =
B(χ)

sinχ
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∣
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∣
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dχ

∣
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dΩ .
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Example: Scattering of a hard sphere with radius a

Read off from sketch:

B = a sinχ0

= a sin
π − χ

2
= a cos

χ

2

a B

0χ

Therefore:

dσ = 2πB

∣

∣

∣

∣

dB

dχ

∣

∣

∣

∣

dχ = 2πa2 cos
χ

2

∣

∣

∣

∣

1

2
sin

χ

2

∣

∣

∣

∣

dχ

=
πa2

2
sinχdχ =

a2

4
dΩ =⇒ σ = a2π .

Particle must “hit” the target.
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Example: Scattering in a central potential V = α/r n

Consider now scattering in a central potential V (r) = α/rn.

Obviously: Need to determine trajectories in dependence on B .

Use energy and angular momentum conservation:

E =
m

2

(

ṙ2 + r2θ̇2
)

+ V (r) =
mṙ2

2
+

J2

2mr2
+ V (r) ,

where 2-dim spherical coordinates r and φ and the angular
momentum J = mr2θ̇ have been used.

Therefore:

ṙ =
dr

dt
=

√

2

m
[E − V (r)]−

J2

m2r2
.
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Rewrite (with dt = dr/ṙ from above):

dθ =
Jdt

mr2
=

J

r2
dr

√

2m [E − V (r)]− J2

r2

.

Use that energy in infinite distance is purely kinetic: E =
mv

2
∞

2 and
angular momentum is given by J = mv∞B .

Assume specific form of potential: V (r) = α/r
(typical for gravity/electromagnetism)

χ0 =

∫

dθ =

∫ B

r2
dr

√

1− B2

r2
−

2V (r)
mv2

∞

= cos−1

α

mv2
∞

B
√

1 +
(

α

mv2
∞

B

)2

(Finite terms absorbed in definition of angle/orientation of coordinate system)
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Solve for B and use that χ0 =
π−χ

2 :

B2 =
α2

m2v4
∞

tan2 χ0 =
α2

m2v4
∞

cot2
χ

2
.

To express cross section dσ = 2πB

∣

∣

∣

∣

dB

dχ

∣

∣

∣

∣

dχ

use that dB/dχ = −
α

2mv2
∞

1

sin2 χ

2

.

Rediscover Rutherford formula

dσ =
πα2

m2v4
∞

cos χ

2

sin3 χ

2

dχ =
α2

4m2v4
∞

dΩ

sin4 χ

2

Observation: for small angles χ → 0 differential cross section infinite
total cross section diverges for Rutherford

scattering

This is a consequence of the infinite range of the potential!
(Will need to “cut” for minimal scattering angle . . . )
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Event rates, luminosity and cross sections

Introduce (instantaneous) luminosity L,
the number of incident particles per unit area per unit time times
the opacity of the target; units [L] = m−2s−1

Then the instantaneous number of events dNev/dt reads

dNev

dt
= σL

Therefore the total number of events during a time T given by the
integral over time of L, the integrated luminosity – cross section σ
depends on the particles and the reaction type only.

Typically a year of beam in an accelerator experiment: 1 yr = 107 s.
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Determining luminosity
Consider a simple case: scattering
off a fixed target.
Beam consisting of particles A,
travelling with velocity v , uniformly
distributed in area S with constant
density nA along beam axis.

nA

nB

l

Sv

Therefore: number of particles in the beam per unit length is given
by dNA = nASdx , and the incident flux (number of particles per unit
time) on target is

ΦA =
dNA

dt
= nAS

dx

dt
= nASv

Assume thin (only one scatter per particle) target with size l :
Area density of particles in target able to participate in reaction

ρB = nB l

Define luminosity

L = ΦAρB = nAnBSvl .
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Luminosity in collider experiments

Consider now two quadratic beams
each with area h2, colliding under
an angle θ, with densities nA and
nB along their beam axes, and
velocities vA ≥ vB .

Look at beam B as “target”, and
beam A remaining the “beam”.

nA

vA

vB

nB

θ
l h

Need only to evaluate NB – can use flux ΦB :

nB =
ΦB

h2vB
Therefore density per area

ρB = nB
h

sin θ
=

ΦB

hvB sin θ
and

L = ΦAρB =
ΦAΦB

sin θhvB
.
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Practicalities

Hard to determine luminosity - geometry dependent and fluctuations
with quality/homogeinity of the beams

Therefore: Measure them with “standard candles”, i.e. well
understood processes with good theoretical accuracy in calculation
of cross section σ.

Recap event rate for events of type AB → X :

ṄAB→X =
dNAB→X

dt
= LABσAB→X

Units: [ṄAB→X ] = Hz = 1/s, =⇒ [L] = 1/([σAB→X ]· s).

[σ] = 1 barn = (10 fm)2 = 10−24 cm2

≈ (2 GeV)−2 = (2000 MeV)−2
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Learning outcomes

Cross sections and their interpretation

Connection to observables: Luminosity, event rates etc..

How to determine luminosities

F. Krauss

Foundations of Physics IIIQuantum and Particle PhysicsLecture 3


	Cross sections
	Connection to observables

