Introduction to particle physics Lecture 2

Frank Krauss

IPPP Durham

U Durham, Epiphany term 2009

Outline

Quantum field theory

Relativistic quantum mechanics

Merging special relativity and quantum mechanics

• The Schrödinger equation is non-relativistic, predicting the correct Newtonian relationship between energy and momentum for a particle described by ψ (identifying $E=i\partial/\partial t$ and $p_x=i\partial/\partial x$):

$$E=\frac{\vec{p}^2}{2m}+V.$$

 But for a Lorentz-invariant description, the relativistic relation of energy and momentum must be fulfilled:

$$E^2 = \vec{p}^2 + m^2$$
 (for a free particle).

• This leads to a **quadratic** equation in E (or $\partial/\partial t$) with positive and negative energies (or advanced and retarded waves) as solutions:

$$E = \pm \sqrt{\vec{p}^2 + m^2}$$
 (for a free particle).

• Negative energy solutions bad: no stable ground state!

Every state would decay further "down", a unique source of energy.

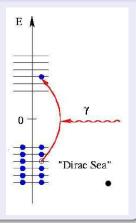
The Dirac equation

- \bullet Dirac realised that this is potentially problematic and that naively spin could not be included with ψ a simple complex number.
- To get rid of the negative energies he linearised the equation in $E\left(\partial/\partial t\right)$ this was possible only with ψ forced to have at least two components.

- Identify the two components with spin up and down: $\psi = (\psi_{\uparrow}, \psi_{\downarrow})$. Seemingly special relativity enforces spin!
- But how about the negative energy solutions?
 Dirac's suggestion: hitherto unseen anti-particles!
- \bullet As a result, he finally wrote down an equation with ψ having four components, two for the two spins of positive and two for negative energies.

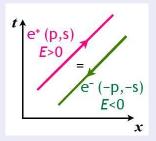
Anti-particles

- Dirac's proposal for solutions with E < 0:
 Fill the (Dirac-) "sea" of negative energy states, (Fermi-character prevents double fillings and therefore guarantees the stability of the vacuum).
- Can excite them with, e.g., photons.
- Then anti-particles are just "holes" in the sea: absence of negative energy looks like net positive energy.
- The related particle must have same mass as ordinary particles, but opposite charge.



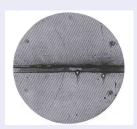
Stueckelberg-Feynman interpretation

 Stueckelberg-Feynman antimatter-interpretation (1947): Negative energy solutions are indeed positive energy solutions of a new particle, moving backwards in time (advanced vs. retarded waves).
 Benefit of this interpretation: treating electrons and positrons on equal footing (no more holes).



Evidence for anti-particles (Andersson, 1932)

- Finding a particle electron's mass but opposite charge: the electron's antiparticle, "positron".
- "On August 2 1932 during the course of photographing cosmicray tracks produced in a vertical Wilson chamber (magnetic field 15,000 gauss) designed in the summer of 1930 by Prof R A Millikan and the writer the track shown in fig 1 was obtained which seemed to be interpretable only on the basis of a particle carrying a positive charge but having the same mass of the same order of magnitude as that normally possessed by a free electron."





Perturbative expansions

Basic idea

• Consider the Schrödinger equation for a state vector $|\psi(t)\rangle$ in the Schrödinger picture:

(time-dependent states, time-independent operators)

$$rac{i\partial}{\partial t}|\psi(t)
angle=\hat{\mathcal{H}}_0|\psi(t)
angle\quad\Longrightarrow\quad |\psi(t)
angle=\exp\left[-i\hat{\mathcal{H}}_0(t-t_0)
ight]|\psi(t_0)
angle$$

• The Hermitian time-evolution operator

$$\hat{\mathcal{U}}(t, t_0) = \exp\left[-i\hat{\mathcal{H}}_0(t - t_0)\right]$$

obviously evolves the state $|\psi(t)\rangle$ in time. It has a number of important properties, among them:

- Identity: $\hat{\mathcal{U}}(t_0, t_0) = \hat{\mathbf{1}}$;
- Composition: $\hat{\mathcal{U}}(t_2, t_0) = \hat{\mathcal{U}}(t_2, t_1)\hat{\mathcal{U}}(t_1, t_0)$.

The latter property can be understood as the state propagating from t_0 to t_1 before evolving further from t_1 to t_2 .

Basic idea (cont'd)

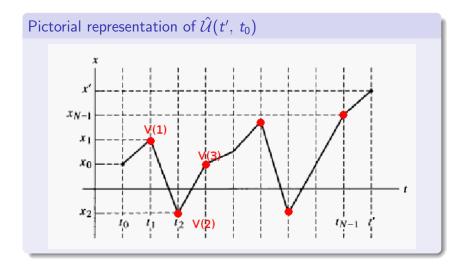
- Assume now that the Hamiltonian can be written as $\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \lambda \hat{\mathcal{V}}$, where the exact solution for \mathcal{H}_0 is known and λ is a small parameter.
- Then the time-evolution operator

$$\hat{\mathcal{U}}(t, t_0) = \exp\left[-i\left(\hat{\mathcal{H}}_0 + \lambda\hat{\mathcal{V}}\right)(t - t_0)\right]$$

can be expanded in the perturbation parameter:

$$\begin{split} \hat{\mathcal{U}}(t, t_0) &= \hat{\mathcal{U}}_0(t, t_0) \\ &+ \hat{\mathcal{U}}_0(t, t_1) \left[-i\lambda \hat{\mathcal{V}}(t_1) \right] \hat{\mathcal{U}}_0(t_1, t_0) \\ &+ \hat{\mathcal{U}}_0(t, t_2) \left[-i\lambda \hat{\mathcal{V}}(t_2) \right] \hat{\mathcal{U}}_0(t_2, t_1) \left[-i\lambda \hat{\mathcal{V}}(t_1) \right] \hat{\mathcal{U}}_0(t_1, t_0) \dots \,, \end{split}$$

where $\hat{\mathcal{U}}_0(t,\,t_0)$ is the time-evolution operator to \mathcal{H}_0 .



Quantum Field Theory (QFT)

Basic idea

- Relativistic version of QM, **represents particles as fields** (functions of position *x* quantised in QM and time *t*).
- Wave functions of, say, individual electrons are excitations of the electron field with a given frequency and wave vector. Summing over these excitations in Fourier space yields the field.
- While "first quantisation" recognises the wave nature of particles and the particle nature of waves, this "second quantisation" allows for the presence of anti-particles and, accordingly, the possibility to create and annihilate particles.
- Interpretation: Fields can be thought of as harmonic oscillators filling the entire space, one at each position.

Perturbative expansion

- Replace the potential from above with interactions between particles
- Basic idea: Particles as carriers of force (photon carrier of electromagnetic force)
- ullet Coupling constants in interactions parametrise interaction strengths and act as small perturbation parameter λ .
- Assuming the interaction strength between particles is small transition amplitudes between particle states can be computed perturbatively.
- Each term of the perturbative amplitude can be represented graphically: Feynman diagrams.

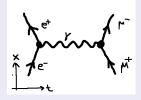
Interference of amplitudes in e^-e^+ -scattering

A QM effect: Light-by-light scattering

Virtual processes

Virtual particles: Example

- Recall Heisenberg's uncertainty relation: $\Delta E \Delta t \geq 1$.
- This allows to "borrow energy from the vacuum", creating a particle with a lifetime $\tau \simeq \Delta t \leq 1/\Delta E$, as long as for times larger than $1/\Delta E$, overall energy conservation is guaranteed.



- Such processes are known as a virtual processes.
 They typically form the intermediate states of scattering amplitudes, i.e. Feynman diagrams.
- ullet In the example above, the **intermediate photon** (γ) is **virtual**.

Virtual particles: Quantifying the example

• Consider the reaction $e^+e^- \to \gamma \to \mu^+\mu^-$.

$$E_{e^+e^-} = E_+ + E_- = \sqrt{m^2 + \vec{p}_+^2} + \sqrt{m^2 + \vec{p}_-^2} \geq 0.$$

Energy-momentum conservation ensures that

$$E_{\gamma} = E_{e^+e^-} \quad \text{and} \quad \vec{p}_{\gamma} = \vec{p}_+ + \vec{p}_-.$$

However, due to the electron's rest mass it is impossible to satisfy

$$E_{\gamma}^2-\vec{p}_{\gamma}^2=m_{\gamma}^2=0$$
,

the photon is off its mass shell!

- This implies that the lifetime of the photon is limited: $\Delta t < 1/\Delta E$ in the centre-of-mass frame of the photon $(\vec{p}_{\gamma} = 0)$ For a photon with $E_{c.m.} = 200 MeV$, $\tau \leq 1 fm/c \approx 10^{-24} s$.
- The photon cannot be observed at all they remain intermediate.

Renormalisation

(Not examinable)

Loops

- Virtual particles also emerge by, e.g., an electron emitting and re-absorbing a photon.
- Then the four-momenta of the intermediate particles is not fixed by energy-momentum conservation: an integration over the four-momentum inside the loop becomes mandatory.

• In the case above, this quantum correction is related to the integral

$$\int\limits_0^\infty \,\mathrm{d}^4k \ \tfrac{k}{k^2((q-k)^2-m^2)}$$

and diverges - naively linearly.

Dealing with infinities

(Not examinable)

- The infinities stemming from diagrams like the one above are cured by redefining the fields and their interaction strengths to include the quantum corrections, renormalisation.
- This is done by adding counter-terms to the theory, which have exactly the same divergence structure.
- In so doing, the quantities in the theory are replaced by "bare" quantities, including all diagrams, including the counter-terms yields finite, physical results.
- The beauty of this concept is that it can be proven to be in principle mathematically well-defined and without ambiguities.
- The catch is, though, that in practical calculations the perturbation series is truncated, leading to residual ambiguities (see later).

Running couplings

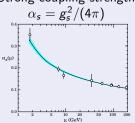
Experimental evidence

 On of the manifestations of the quantum corrections above is that the couplings (interaction strengths) become scale-dependent!

(Dependence would vanish, if all perturbative orders calculated.)

- This comes from calculating an observable to a given perturbative order and comparing the result with experiment to extract the coupling strength.
- In particle physics, scales are given in units of energy (inverse lengths).
- Similarly, also masses vary with scale.

Strong coupling strength



Summary

- Discussed the Dirac equation and antiparticles.
- Reviewed briefly basic idea of perturbation theory.
- Feynman diagrams as terms in the perturbative expansion of the transition amplitude between states.
- To read: Coughlan, Dodd & Gripaios, "The ideas of particle physics", Sec 4.

