Introduction to particle physics Lecture 6: Cross sections in Quantum Field Theory

Frank Krauss
IPPP Durham
U Durham, Epiphany term 2009

Outline

(1) Cross Section in Quantum Field Theory

Cross Section in Quantum Field Theory

Reminder: cross section in Quantum Mechanics

- Reminder: cross section in quantum mechanics given by

$$
\sigma_{\mathrm{tot}}=\int \mathrm{d} \Omega \sigma(\Omega)=\int \mathrm{d} \Omega|f(\Omega)|^{2}
$$

with transition amplitude $f(\Omega)=\frac{2 l+1}{k} e^{i \delta_{l}} \sin \delta_{l}$.

- An alternative representation of $f(\Omega)$:
- rewrite with incoming and outgoing momentum, \underline{k} and \underline{k}^{\prime} :

$$
f(\Omega) \equiv f\left(\underline{k}^{\prime}, \underline{k}\right)
$$

- remember: scattering amplitude due to potential, therefore

$$
f\left(\underline{k}^{\prime}, \underline{k}\right) \propto\left\langle\underline{k}^{\prime}\right| V(r)|\underline{k}\rangle,
$$

where the states have been labelled with their momenta.
Note: In elastic scattering (considered so far), $\left|\underline{k}^{\prime}\right|=|\underline{k}|$

- Total cross section obtained by integrating over all final state configurations; can be parametrised by \underline{k}^{\prime} or Ω.

Amplitudes \& states in Quantum Field Theory

(Details not exminable)

- Consider transition amplitude between asymptotic (at large times $T= \pm \infty$) "in"- and "out"-states

$$
\left.A_{\text {in } \rightarrow \text { out }}=\langle\text { out, } T=+\infty| \text { in, } T=-\infty\right\rangle .
$$

- Meaningful states must obey completeness \& orthogonality relations:
(then they're base vectors for the respective Hilbert/Fock space!)

$$
\begin{aligned}
\sum_{\alpha}|\alpha, T= \pm \infty\rangle\langle\alpha, T= \pm \infty| & =1 \\
\langle\alpha, T= \pm \infty \mid \beta, T= \pm \infty\rangle & =\delta_{\alpha \beta} .
\end{aligned}
$$

- However, $|\alpha, T=+\infty\rangle$ not identical to $|\alpha, T=-\infty\rangle$:

$$
\langle\alpha, T= \pm \infty \mid \alpha, T=\mp \infty\rangle=?
$$

they live in two completely different vector spaces.

Constructing states in Quantum Field Theory

- Consider one-particle states $|\underline{p}\rangle$, labelled by momentum \underline{p}.
- Completeness:

$$
\begin{aligned}
1 & =\int \frac{\mathrm{d} E \mathrm{~d}^{3} p}{(2 \pi)^{4}}(2 \pi) \delta\left(E^{2}-p^{2}-m^{2}\right) \Theta(E)|\underline{p}\rangle\langle\underline{p}| \\
& =\int \frac{\mathrm{d}^{3} p}{2 E(2 \pi)^{3}}|\underline{p}\rangle\langle\underline{p}|
\end{aligned}
$$

- Integrate over all possibilities (add summation over spins if needed);
- Guarantee correct relativistic energy-momentum relation;
- Ensure physical states only.
- Normalisation:

$$
\left\langle\underline{p} \mid \underline{p}^{\prime}\right\rangle=2 E(2 \pi)^{3} \delta^{3}\left(\underline{p}-\underline{p}^{\prime}\right)
$$

after using completeness relation.

Constructing states in Quantum Field Theory (cont'd)

(Details not exminable)

- Aim: Construct multi-particle states from one-particle states.
- Idea: use creation/annihilation operators:

$$
|\underline{p}\rangle=\hat{a}^{\dagger}(\underline{p})|0\rangle \text { and } \hat{a}(\underline{p})|\underline{p}\rangle=|0\rangle \text {. }
$$

- Can quantise particle states with them: "2nd quantisation". Use commutators [$\left.\hat{a}^{\dagger}, \hat{a}\right]=\hat{a}^{\dagger} \hat{a}-\hat{a} \hat{a}^{\dagger}=1$ for bosons, use anti-commutators $\left[\left\{\hat{a}^{\dagger}, \hat{a}\right\}=\hat{a}^{\dagger} \hat{a}+\hat{a}^{\dagger}{ }^{\dagger}=1\right.$ for fermions;
- Use them repeatedly for N-particle states:

$$
\left|\underline{p}_{1} \underline{p}_{2} \ldots \underline{p}_{N}\right\rangle=\hat{a}^{\dagger}\left(\underline{p}_{1}\right) \hat{a}^{\dagger}\left(\underline{p}_{2}\right) \ldots \hat{a}^{\dagger}\left(\underline{p}_{N}\right)|0\rangle .
$$

- In principle: would have to add symmetry factors etc..
- This works for asymptotic states at $T= \pm \infty$ only.

The S-matrix and transition amplitudes

- Introduce S-matrix: $\hat{S} \mid$ in, $T=-\infty\rangle=\mid$ out, $T=+\infty\rangle$
- S-matrix is unitary: $\hat{S}^{\dagger} \hat{S}=1$
(from $1=\sum$ lout, $\left.T=+\infty\right\rangle\langle$ out, $T=+\infty|=\sum \hat{S} \mid$ in, $\left.T=-\infty\right\rangle\langle$ in, $T=-\infty| \hat{S}^{\dagger}=\hat{S} 1 \hat{S}^{\dagger}$)
- Rewrite $\hat{S}=1+i \hat{T}$:
(optical theorem from unitarity: $\hat{T}-\hat{T}^{\dagger}=-i \hat{T} \hat{T}^{\dagger}$, relates cross sections with discontinuity in amplitude)
- Write transition amplitude $\mathcal{A}_{\alpha \rightarrow \beta}$ with states in same $T= \pm \infty$-basis

$$
\begin{aligned}
& \mathcal{A}_{\alpha \rightarrow \beta}=\langle\beta,+\infty \mid \alpha,-\infty\rangle=\langle\beta,-\infty| \hat{S}^{\dagger}|\alpha,-\infty\rangle \\
& \quad=\delta_{\alpha \beta}-i\langle\beta,-\infty| \hat{T}^{\dagger}|\alpha,-\infty\rangle \\
& \quad=\delta_{\alpha \beta}-i(2 \pi)^{4} \delta\left(E_{\alpha}-E_{\beta}\right) \delta^{3}\left(\underline{p}_{\alpha}-\underline{p}_{\beta}\right)\langle\beta,-\infty| \hat{T}^{\dagger}|\alpha,-\infty\rangle,
\end{aligned}
$$

with explicit Lorentz-invariance (energy-momentum conservation).

- From now on: $\alpha \neq \beta$ - true scattering processes.

From amplitudes to probabilities

- Obviously $\mathcal{P}_{\alpha \rightarrow \beta}=\left|\mathcal{A}_{\alpha \rightarrow \beta}\right|^{2}$.
- Problem: need to square δ-functions:

$$
\begin{aligned}
& \left|(2 \pi)^{4} \delta\left(E_{\alpha}-E_{\beta}\right) \delta^{3}\left(\underline{p}_{\alpha}-\underline{p}_{\beta}\right)\right|^{2} \\
& \quad=(2 \pi)^{4} \delta\left(E_{\alpha}-E_{\beta}\right) \delta^{3}\left(\underline{p}_{\alpha}-\underline{p}_{\beta}\right) \cdot(2 \pi)^{4} \delta(0) \delta(\underline{0}) \\
& \quad=(2 \pi)^{4} \delta\left(E_{\alpha}-E_{\beta}\right) \delta^{3}\left(\underline{p}_{\alpha}-\underline{p}_{\beta}\right) \cdot V_{\text {space-time }} .
\end{aligned}
$$

- Therefore (unnormalised) transition rate per unit space volume:

$$
\left.\frac{\mathcal{P}_{\alpha \rightarrow \beta}}{V}=(2 \pi)^{4} \delta\left(E_{\alpha}-E_{\beta}\right) \delta^{3}\left(\underline{p}_{\alpha}-\underline{p}_{\beta}\right)\left|\langle\beta,-\infty| \hat{T}^{\dagger}\right| \alpha,-\infty\right\rangle\left.\right|^{2} .
$$

From probabilities to cross sections

- Consider now processes $a+b \rightarrow 1+2+3+\cdots+N$
- Must:
- normalise states, (divide by $4 E_{a} E_{b}$),
- divide by incident flux, $\left|\underline{v}_{a b}\right|=\frac{\sqrt{\left(E_{a} E_{b}-\underline{p}_{a} \underline{p}_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}}}{E_{a} E_{b}}$,
- sum/integrate over all d.o.f. in final state, $\prod_{i=1}^{N} \frac{\mathrm{~d}^{3} p_{i}}{2 E_{i}(2 \pi)^{3}}$

Putting it all together

- Master formula:

$$
\begin{aligned}
\mathrm{d} \sigma_{a b} \rightarrow & 123 \ldots N \\
= & \frac{\left.\left|\langle 123 \ldots N,-\infty| \hat{T}^{\dagger}\right| a b,-\infty\right\rangle\left.\right|^{2}}{4 \sqrt{\left(E_{a} E_{b}-\underline{p}_{a} \underline{p}_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}}} \\
& \prod_{i=1}^{N} \frac{\mathrm{~d}^{3} p_{i}}{2 E_{i}(2 \pi)^{3}}(2 \pi)^{4} \delta\left(E_{a}+E_{b}-\sum_{i=1}^{N} E_{i}\right) \delta^{3}\left(\underline{p}_{a}+\underline{p}_{b}-\sum_{i=1}^{N} \underline{p}_{i}\right)
\end{aligned}
$$

- Individual parts:
- QM transition amplitude,
- incoming flux \& normalisation of states,
- summation/integration over all final state configurations,
- energy-momentum conservation.

Final formulae: Scattering cross sections

- Consider $2 \rightarrow 2$-scattering in c.m.-frame
- Ignore incoming masses, $m_{a}=m_{b}=0$
- Kinematics almost completely fixed (up to angles):

$$
\begin{aligned}
& \text { - } \sqrt{s}=E_{c . m .}=E_{a}+E_{b}, \underline{p}_{a}=-\underline{p}_{b} \\
& \text { - } \underline{p}_{1}=-\underline{p}_{2}=p \cdot \underline{\hat{p}}(\theta, \phi) \text { with } p=\frac{\sqrt{\left(s-m_{1}^{2}-m_{2}^{2}\right)^{2}-4 m_{1}^{2} m_{2}^{2}}}{2 E_{\mathrm{c} . \mathrm{m} .}} \\
& \text { - } E_{1,2}=\frac{s \pm\left(m_{1}^{2}-m_{2}^{2}\right)}{2 E_{\mathrm{c} . \mathrm{m} .}}
\end{aligned}
$$

- Use $E \mathrm{~d} E=p \mathrm{~d} p$ (from $\left.E^{2}=p^{2}+m^{2} \Longrightarrow \mathrm{~d} E^{2}=\mathrm{d} p^{2}\right)$
- Then:

$$
\mathrm{d} \sigma_{a b \rightarrow 12}=\frac{\left|\mathcal{M}_{a b \rightarrow 12}\right|^{2}}{32 \pi^{2} E_{\mathrm{c} . \mathrm{m} .}^{3}}|\underline{p}| \mathrm{d} \Omega
$$

Final formulae: Decay widths and lifetimes

- In a similar way can express a particles partial width related to a decay $M \rightarrow 12$:

$$
\mathrm{d} \Gamma_{M \rightarrow 12}=\frac{\left|\mathcal{M}_{M \rightarrow 12}\right|^{2}}{32 \pi^{2} M^{2}}|\underline{p}| \mathrm{d} \Omega
$$

with decay matrix element $\mathcal{M}_{M \rightarrow 12}$ and identical kinematics: to construct momenta just go to c.m.-frame of M and replace $E_{\text {c.m. }}$. with M in equations on previous slide.
(yields nearly identical final result)

- Total width Γ of a particle is given by all partial widths Γ_{i}

$$
\Gamma=\sum_{i} \Gamma_{i} \text { and lifetime } \tau=1 / \Gamma
$$

Summary

- Discussed scattering processes in relativistic quantum mechanics: This is the basis of most of our understanding of particle physics.
- Introduced S-matrix and related to scattering amplitude.
- Derived master formula for cross sections and specialised for 2-body scattering and decay processes.

