Introduction to particle physics
Lecture 2: Special relativity

Frank Krauss

IPPP Durham

U Durham, Epiphany term 2010
Outline

1. Galilei vs. Einstein
2. Lorentz transformations
3. Mass, momentum and energy
4. Two-body decays
5. Two-body reactions
Frames of inertia: Galilei vs. Einstein

Galilei relativity

- Relativity discusses how changes in the coordinate set influence physical events. Coordinates specify positions in time \(t \) and space \(x \) - meaningful only if system (reference frame) is specified.
- Example (a la Galilei): A man dropping a stone from a ship’s mast. The man’s perspective: trajectory accelerates along a straight line. A bystander at the shore: trajectory is a parabola.
- Since both perspectives describe the same event, the math behind the respective description must be connected: Transformations.
Galilei transformations

- Basic idea: Space and time are decoupled.
- Consequence: A time interval of one hour remains invariant, irrespective of the choice of reference frame. This allows only transformations of the type \(t \rightarrow t' = t + \Delta t \).
- Similarly, at a time \(t_0 \) the origins of the two reference systems may be displaced: \(x(t_0) \rightarrow x'(t_0) = x(t_0) + \Delta x \), and only a constant velocity \(u \) between them is allowed.
- Ignoring \(\Delta t \) and \(\Delta x \), therefore \(x(t) \rightarrow x'(t) = x(t) + ut \).
- Consequence: Velocities are strictly additive. Assume system \(A \) (man on mast) is at rest and \(B \) (man on shore) moves with velocity \(u \) w.r.t. \(A \), then velocities are related by \(\mathbf{v}_B = \mathbf{v}_A + u \).
Lorentz transformations, once more

- **Basic idea:** Space and time are entangled.
- **Consequence:** Relative velocities between reference frames affect both space and time coordinates (remember: $c = 1$).

$$x \rightarrow x' = \frac{x - ut}{\sqrt{1 - u^2}} \quad \text{and} \quad t \rightarrow t' = \frac{t - ux}{\sqrt{1 - u^2}}.$$

- Can write in matrix form – acting on vector (t, x):

$$\hat{M}_{u_z} = \begin{pmatrix} \cosh \eta & 0 & 0 & -\sinh \eta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\sinh \eta & 0 & 0 & \cosh \eta \end{pmatrix},$$

with $\tanh \eta = u_z$ for a “boost” in z-direction.
- **Note the similarity to a rotation in space!**
Adding velocities

- Consequence of this: Velocities below c can never add up to a result larger than c:

$$v_{\text{tot}} = \frac{v_1 + v_2}{1 + v_1 \cdot v_2}.$$

- Remark: This limits the maximal transmission velocity of information to c, therefore a perfectly rigid body cannot exist.

- Remark (2): Space-time is divided into causally connected ("time-like distances") and disconnected ("space-like distances") regions.
Mass, momentum and energy

- Demand conservation of mass, momentum and energy to be invariant under Lorentz transformations:

 \[
 m(v) = \frac{m_0}{\sqrt{1 - v^2}} = m_0 + m_0 \frac{v^2}{2} + \ldots.
 \]

 This is the original reason for the identification \(E = mc^2 \) - the second term in the expansion is just the kinetic energy.

- Using \(p = mv \) therefore \(E^2 = m_0^2 + p^2 \).

- This implies that for particles with no rest mass \(E/|p| = 1 \).
Example: Relativistic two-body decay

- Consider the decay of a massive particle into two lighter ones, such that rest masses satisfy $M > m_1 + m_2$.

- To calculate energies and momenta of decay products use:
 - Rest frame of decaying particle: $E = M$, $\vec{P} = 0$;
 - Energy conservation: $E = E_1 + E_2$;
 - Momentum conservation: $\vec{P} = \vec{p}_1 + \vec{p}_2 \implies \vec{p}_1 = \vec{p}_2$;

- Case 1: $m_1 = m_2 = 0 \implies E_1 = p_1 = p_2 = E_2 = M/2$

- Case 2: Arbitrary masses, $m_1 \neq 0$, $m_2 \neq 0$:

 $E_{1,2} = \frac{M^2 \pm (m_1^2 - m_2^2)}{2M}$ and $p_1 = p_2 = \frac{\sqrt{(M^2 - m_1^2 - m_2^2)^2 - 4m_1^2m_2^2}}{2M}$.
Example: Relativistic two-body reactions

- Central reaction type in particle physics: **2-body scattering**: \(a + b \rightarrow c + d \)
- Convenient frame of inertia for description: centre-of-momentum frame, characterised by \(p_a + p_b = p_c + p_d = 0 \)
- Calculate Lorentz-invariant mass (energy) from:
 \[
 s = M_{\text{inv}}^2 = (E_a + E_b)^2 - (p_a + p_b)^2 \\
 = (E_c + E_d)^2 - (p_c + p_d)^2.
 \]
- This is the energy squared in the c.m.-frame: \(s = E_{\text{c.m.}}^2 \).
Example: Relativistic two-body reactions (cont’d)

- Can also calculate the (Lorentz-invariant) momentum transfer from a to c, called t and from a to d, called u:

\[
t = (E_a - E_c)^2 - (p_a - p_c)^2 = (E_b - E_d)^2 - (p_b - p_d)^2
\]
\[
u = (E_a - E_d)^2 - (p_a - p_d)^2 = (E_b - E_c)^2 - (p_b - p_c)^2.
\]

- Properties:
 - $s > 0$, and $t, u \leq 0$
 - $s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$.

Therefore, for massless particles $s + t + u = 0$.

- In the c.m.-frame, and for massless particles:

\[
t = -\frac{E_{c.m.}^2}{2} \left(1 - \cos \theta_{ac}\right) \quad \text{and} \quad u = -\frac{E_{c.m.}^2}{2} \left(1 + \cos \theta_{ac}\right).
\]

θ_{ac} is called the “scattering angle”.

F. Krauss

Introduction to particle physics Lecture 2: Special relativity
Consider a special case of $2 \rightarrow 2$-scattering:

Production of intermediate particle:

$$a + b \rightarrow M \rightarrow c + d$$

Energy and momentum of M in c.m.-frame:

$$E = E_a + E_b, \quad P = 0$$

We will see that the probability for this process “resonates”, if

$$s = E_{c.m.}^2 = M^2 \text{ (resonance production).}$$

The production cross section will yield a peak.

Note: Cross section is a way to quantify the probability for a process to happen, more on this in Lecture 3.
Example for resonance production: $e^+e^- \rightarrow \text{hadrons}$
Summary

- Reviewed more of special relativity.
- Calculated kinematics of relativistic two-body decays.
- To read: Primer on special relativity.
- To read: Coughlan, Dodd & Gripaios, “The ideas of particle physics”, Sec 1-2.