Introduction to particle physics Lecture 10: Quark Model

Frank Krauss
IPPP Durham
U Durham, Epiphany term 2010

Outline

(1) Isospin
(2) Adding (iso-)spins
(3) Strange particles

4 The quark model

Isospin

Introduction: Discovery of neutrons

- Rutherford's experiment: Lightest atom $=H$ (p-e-bound state) But: next lightest atom (He) four times as heavy as hydrogen, with only two electrons. Similar for Li (three electrons, seven times as heavy), etc.. Why so heavy?
- Answer: Nuclei are bound states of protons and neutrons.
- Discovery of the Neutron by J.Chadwick (1932)

Bombard Beryllium with α-particles, very penetrating non-ionising radiation emerges. Send through paraffin, in turn protons are emitted. Measure speed of protons: original radiation cannot be γ 's.

Therefore new particle ("neutron") with nearly the same mass as the proton but no charge.

- Heisenberg's proposal (1932):

Neutron and proton are two manifestations of same state, Nucleon.

$$
\mid \text { Nucleon }\rangle=\left|\begin{array}{c}
\text { proton } \\
\text { neutron }
\end{array}\right\rangle \text { or }|N\rangle=\left|\begin{array}{l}
p \\
n
\end{array}\right\rangle
$$

- Symmetry relating them: Isospin (very similar to spin).

Proposing mesons

- H.Yukawa (1934): First prediction of mesons.
- Answer to why neutrons and protons bind together in nucleus.
- Yukawa's underlying assumption: Introduce a new force, short-ranged, thus mediated by massive mesons.
- Estimate: 3-400 times the electron mass.

From uncertainty principle $\Delta E \Delta t \geq 1$ with time given by nucleon radius as $\Delta t \approx 1 / r_{0}$. Assume r_{0} of order $\mathcal{O}(1 \mathrm{fm})$, then $\Delta E \approx m_{\text {meson }} \approx 200 \mathrm{MeV}$ (Note: natural units used in this estimate).

The first "mesons": The muon \& the pion

- Two groups (1937): Anderson \& Neddermeyer, Street \& Stevenson: Finding such particles in cosmic rays using cloud chambers.
- But: wrong lifetime (too long, indicating weaker interaction), and inconsistent mass measurements
- Two decisive experiments to clarify the situation (Rome, 1946 \& Powell et al. in Bristol, 1947) with photo emulsions.
- Result: In fact two new particles:
- One weakly interacting, the muon, μ (a lepton),
- one strongly interacting, the pion, π (a meson).

Three differently charged versions, $\pi^{+}, \pi^{-}, \pi^{0}$; main decays: charged ones into muons plus a neutrino, neutral one into two γ 's.

Mesons and baryons

- Have two kinds of strongly interacting particles:
- Mesons = bound states of a quark and an antiquark
- Baryons $=$ bound states of a three quarks or 3 antiquarks
- Quarks a point-like spin-1/2 particles
- Quarks and gluons always in bound states (strongh interaction!)
- To accommodate for isospin: two quark-types, u and d :
$\left.\begin{array}{c}u \mathrm{p} \\ \text { down }\end{array}\right\rangle$ with isospin and third component $I_{u, d}=\frac{1}{2}, I_{u, d,}^{3}= \pm \frac{1}{2}$.
- Then: $|p\rangle=|u u d\rangle,|n\rangle=|u d d\rangle,|\bar{p}\rangle=|\bar{u} \bar{u} \bar{d}\rangle,|\bar{n}\rangle=|\bar{u} \bar{d} \bar{d}\rangle$, and $\left|\pi^{+}\right\rangle=|u \bar{d}\rangle,\left|\pi^{-}\right\rangle=|d \bar{u}\rangle,\left|\pi^{0}\right\rangle=\left|\bar{\pi}^{0}\right\rangle=\frac{1}{\sqrt{2}}[|u \bar{u}\rangle-|d \bar{d}\rangle]$.
- This also fixes the charges: $Q_{u}=\frac{2}{3}, Q_{d}=-\frac{1}{3}$.
- Obviuos question: Are there more states?
- yes, can have |uuu \rangle and similar
- yes, can supply the quarks with relative angular momentum etc..

Detour: (Iso-)Spins and their addition

Spin- $1 / 2$ systems: General remarks

- Spin- $1 / 2$ systems are often studied in physics.
- Spin-statistics theorem suggests that such systems are fermionic in nature, i.e. respect Pauli exclusion.
- Interesting in the context of this lecture:

Basic building blocks of matter (quarks \& leptons) are spin-1/2.

- Simple representation:

$$
|\uparrow\rangle=\left|\frac{1}{2},+\frac{1}{2}\right\rangle \text { and }|\downarrow\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle .
$$

Important: Distinguish total spin s and its projection, $s_{z}=s^{3}$ on a measurement axis (here the z-axis, could also be I and I^{3}).

- Examples: electron and its spin, isospin,
- Note: Spin can also occur as spin-1 etc.. Isopsin assignments for the hadrons above:

$$
|p, n\rangle=\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle \text { and }\left|\pi^{+}, \pi^{0}, \pi^{-}\right\rangle=\left|\frac{1}{2},\{1,0,-1\}\right\rangle
$$

Adding two spin- $1 / 2$ objects

- Often two spin- $1 / 2$ objects form a compound.

Examples: bound states of fermions, spin- orbit coupling, etc..

- If two spin- $1 / 2$ systems are added, the following objects can emerge:

$$
|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle \text {, and }|\downarrow \downarrow\rangle \text {. }
$$

Naively, they have spin 1,0 , or -1 , respectively.
But: Need to distinguish total spin s and its projection onto the measurement axis s_{z} (here, z has been chosen for simplicity)

- Then, truly relevant states are $s=1$ (triplet, symmetric)

$$
|1,1\rangle=|\uparrow \uparrow\rangle, \quad|1,0\rangle=\frac{1}{\sqrt{2}}[|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle], \quad|1,-1\rangle=|\downarrow \downarrow\rangle
$$

and $s=0$ (singlet, anti-symmetric):

$$
|0,0\rangle=\frac{1}{\sqrt{2}}[|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle]
$$

- Catchy way of writing this: $\mathbf{2} \otimes \mathbf{2}=\mathbf{3} \oplus \mathbf{1}$

Clebsch-Gordan coefficients

- The Clebsch-Gordan coefficients in front of the new compound states can be calculated (or looked up).
- Formally speaking, they are defined as follows:

$$
\left\langle s^{(1)}, S_{z}^{(1)}, S^{(2)}, S_{z}^{(2)} \mid S^{(1)}, S^{(2)}, s, S_{z}\right\rangle
$$

indicating that two spin systems $s^{(1)}$ and $s^{(2)}$ are added to form a new spin system with total spin s (or J). Obviously, it is not only the total spin of each system that counts here, but also its orientation. This is typically indicated through "magnetic" quantum numbers, m, replacing the s_{z} in the literature.

Using spin-algebra

- Identify: $|p\rangle=\left|\frac{1}{2},+\frac{1}{2}\right\rangle$ and $|n\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle$. Heisenberg's proposal: Call this isospin (rather than spin).
- Also, the three kinds of pions can be written as: $\left|\pi^{+}\right\rangle=|1,+1\rangle,\left|\pi^{0}\right\rangle=|1,0\rangle$, and $\left|\pi^{-}\right\rangle=|1,-1\rangle$.
- Catch: Isospin conserved in strong interactions!
- Dynamical implications: Bound states (here the deuteron). Add two nucleons: can in principle have iso-singlet and iso-triplet. But: No pp, nn-bound states, therefore $|d\rangle=|0,0\rangle$ (deuteron $=$ iso-singlet).
- Consider processes (+ their isospin amplitudes, below):

$$
\begin{array}{ccc}
p+p \rightarrow d+\pi^{+} & p+n \rightarrow d+\pi^{0} & n+n \rightarrow d+\pi^{-} \\
\mathcal{A}_{\text {iso }} \propto 1 & \mathcal{A}_{\text {iso }} \propto 1 / \sqrt{2} & \mathcal{A}_{\text {iso }} \propto 1
\end{array}
$$

Strangeness. Who ordered that?

Finding strange particles

- Rochester \& Butler (1947): Cloud chamber experiment with cosmic rays. Unusual "fork" of a π^{+}and a π^{-}.
- Interpretation: Cosmic ray particles, mass between π and p, the kaon, \mathbf{K}.
- Like pions, but strangely long lifetime (typically decay to pions or a muon-neutrino pair), again hinting at weak interactions being responsible.
- Ultimately, this lead to extending isospin (SU(2)) to a larger symmetry group, $S U(3)$ to catalogue mesons.

Finding more strangeness

- Anderson (1950): Another "strange" particle, decaying into proton and π^{-}, the hyperon: $\Lambda \rightarrow p \pi^{-}$.

- Copious production of such particles \longrightarrow strong interaction
- But: Slow decays \longrightarrow weak interaction

Cataloguing strangeness

- A new quantum number (like isospin)
- Emerge as another quark type, strange, s :
$I_{s}=0, Q_{s}=Q_{d}=-\frac{1}{3}, S_{s}=-1\left(S_{u, d}=0\right)$
- Conserved in strong interactions (only produced pairwise, $s \bar{s}$), violated in weak interactions (s decays into u)
- Gell-Mann-Nishijima relation:

$$
Q=e\left(I_{3}+\frac{B+S}{2}\right) .
$$

(I_{3} is the third component $(= \pm 1 / 2$ for p, n) of the isospin, $S= \pm 1$ for kaons, Λ 's, and Σ 's, B is the baryon number ($=1$ for baryons like p, n, \wedge, Σ and $=0$ for mesons like π, K).)

- Four mesons: kaons $\left(K^{+}, K^{-}, K^{0}, \bar{K}^{0}\right)$.
- All are pseudo-scalars (i.e. spin-0, negative parity), just like pions.
- All have the same mass, about three times m_{π} ($m_{\pi} \approx 140 \mathrm{MeV}$, $\left.m_{\kappa} \approx 495 \mathrm{MeV}\right) \Longrightarrow$ "relatives"?
(But: "Funny" multiplet structure.)

The quark model

Quarks

- In 1964 Gell-Mann and Zweig proposed three "hypothetical" quarks, up, down and strange, a mnemonic help.
All known hadrons are their "bound states":
- Mesons are made from a $q \bar{q}$-pair, $q \bar{q} \equiv \mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{1} \oplus \mathbf{8}$
- baryons from three quarks, qqq $\equiv \mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}=\mathbf{1} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1 0}$;
i.e. one singlet of mesons and baryons, one octet of mesons, and two octets and one decuplet of baryons.
- By now we know quarks are real (see next lecture).
- Later more quark types were found (charm, bottom and top).
(u, d, and s have masses around or below $\Lambda_{\mathrm{QCD}} \approx 250 \mathrm{MeV}$, the scale at which the strong coupling α_{S} diverges, and bound states emerge, c, b, and t are far above this scale.)

Meson multiplets

Pseudoscalars

Vectors

- Quark content of the mesons:

$$
\begin{gathered}
\left|K^{+}\right\rangle=|u \bar{s}\rangle, \quad\left|K^{0}\right\rangle=|d \bar{s}\rangle, \quad\left|K^{-}\right\rangle=|s \bar{u}\rangle, \quad\left|\bar{K}^{0}\right\rangle=|s \bar{d}\rangle, \\
\left|\pi^{+}\right\rangle=|u \bar{d}\rangle, \quad\left|\pi^{0}\right\rangle=\frac{1}{\sqrt{2}}|u \bar{u}-d \bar{d}\rangle, \quad\left|\pi^{-}\right\rangle=|d \bar{u}\rangle, \\
\left|\eta^{\prime}\right\rangle=\frac{1}{\sqrt{6}}|u \bar{u}+d \bar{d}-2 s \bar{s}\rangle, \quad|\eta\rangle=\frac{1}{\sqrt{3}}|u \bar{u}+d \bar{d}+s \bar{s}\rangle .
\end{gathered}
$$

Baryon multiplets

Octet

Decuplet

The discovery of the Ω^{-}

- In 1961, "tip" of the decuplet not yet found.
M.Gell-Mann's prediction: $m=1672 \mathrm{MeV}$, plus the right production mechanism and a long lifetime.
- Decay chain:

$$
K^{-}+p \rightarrow \Omega^{-}+K^{+}+K^{* 0}
$$

(strangeness conserving)

$$
\begin{aligned}
& \Omega^{-} \rightarrow \Lambda^{0}+K^{-} \\
& \Lambda^{0} \rightarrow \pi^{-}+p_{(\Delta S=1 \text { weak decay })}^{(\Delta S=1 \text { weak decay })} \\
& K^{* 0} \rightarrow \pi^{-}+K^{+}
\end{aligned}
$$

The postulate of colour

- In the decuplet, one problem appears: Some states like for instance the Δ^{++}are composed from three identical quarks (u 's for the Δ^{++}). Since the decuplet baryons are spin- $3 / 2$ objects they are fermions, i.e. their wave function must be antisymmetric. With three identical quarks, in identical spin states (spin- $3 / 2$ implies the spin- $1 / 2$'s point into the same direction), this is possible only by invoking a new quantum number, colour.

We will discuss this when we encounter the strong interaction again.

Summary

- More particles in the zoo.
- First encounter with isospin as a first symmetry.
- Emergence of strangeness - giving rise to the quark model: $S U(3)$ or "the eightfold way".
- Symmetry as the method of choice to gain control.
- Resonances as intermediate states.
- To read: Coughlan, Dodd \& Gripaios, "The ideas of particle physics", Sec 7-10.

