Introduction to particle physics Lecture 10: Quark Model

Frank Krauss

IPPP Durham

U Durham, Epiphany term 2010

1/19

Adding (iso-)spins	

Outline

2 Adding (iso-)spins

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Isospin	Adding (iso-)spins	

Isospin

Introduction: Discovery of neutrons

- Rutherford's experiment: Lightest atom = H (p-e-bound state) But: next lightest atom (He) four times as heavy as hydrogen, with only two electrons. Similar for Li (three electrons, seven times as heavy), etc.. Why so heavy?
- Answer: Nuclei are bound states of protons and neutrons.
- Discovery of the Neutron by J.Chadwick (1932) Bombard Beryllium with α-particles, very penetrating non-ionising radiation emerges. Send through paraffin, in turn protons are emitted. Measure speed of protons: original radiation cannot be γ's.

Therefore new particle ("neutron") with nearly the same mass as the proton but no charge.

• Heisenberg's proposal (1932):

Neutron and proton are two manifestations of same state, Nucleon.

$$|\text{Nucleon}\rangle = \left| \begin{array}{c} \text{proton} \\ \text{neutron} \end{array} \right\rangle$$
 or $|N\rangle = \left| \begin{array}{c} p \\ n \end{array} \right\rangle$

• Symmetry relating them: Isospin (very similar to spin).

(See also R. Myer's course)

Isospin		

Proposing mesons

- H.Yukawa (1934): First prediction of mesons.
- Answer to why neutrons and protons bind together in nucleus.
- Yukawa's underlying assumption: Introduce a new force, short-ranged, thus mediated by massive mesons.
- Estimate: 3-400 times the electron mass. From uncertainty principle $\Delta E \Delta t \geq 1$ with time given by nucleon radius as $\Delta t \approx 1/r_0$. Assume r_0 of order $\mathcal{O}(1\text{fm})$, then $\Delta E \approx m_{\text{meson}} \approx 200 \text{ MeV}$ (Note: natural units used in this estimate).

The first "mesons": The muon & the pion

- Two groups (1937): Anderson & Neddermeyer, Street & Stevenson: Finding such particles in cosmic rays using cloud chambers.
- But: wrong lifetime (too long, indicating weaker interaction), and inconsistent mass measurements
- Two decisive experiments to clarify the situation (Rome, 1946 & Powell et al. in Bristol, 1947) with photo emulsions.
- Result: In fact two new particles:
 - \bullet One weakly interacting, the muon, μ (a lepton),
 - one strongly interacting, the pion, π (a meson). Three differently charged versions, π^+ , π^- , π^0 ; main decays: charged ones into muons plus a neutrino, neutral one into two γ 's.

イロト イヨト イヨト イヨト

Isospin	Adding (iso-)spins	

Mesons and baryons

- Have two kinds of strongly interacting particles:
 - $\ensuremath{\mathsf{Mesons}}\xspace = \ensuremath{\mathsf{bound}}\xspace$ states of a quark and an antiquark
 - Baryons = bound states of a three quarks or 3 antiquarks
- Quarks a point-like spin-1/2 particles
- Quarks and gluons always in bound states (strongh interaction!)
- To accommodate for isospin: two quark-types, u and d: $\begin{vmatrix} u p \\ down \end{vmatrix}$ with isospin and third component $I_{u,d} = \frac{1}{2}$, $I_{u,d,}^3 = \pm \frac{1}{2}$.
- Then: $|p\rangle = |uud\rangle$, $|n\rangle = |udd\rangle$, $|\bar{p}\rangle = |\bar{u}\bar{u}\bar{d}\rangle$, $|\bar{n}\rangle = |\bar{u}\bar{d}\bar{d}\rangle$, and $|\pi^+\rangle = |u\bar{d}\rangle$, $|\pi^-\rangle = |d\bar{u}\rangle$, $|\pi^0\rangle = |\bar{\pi}^0\rangle = \frac{1}{\sqrt{2}} \left[|u\bar{u}\rangle - |d\bar{d}\rangle\right]$.
- This also fixes the charges: $Q_u = \frac{2}{3}$, $Q_d = -\frac{1}{3}$.
- Obviuos question: Are there more states?
 - $\bullet\,$ yes, can have $|\mathit{uuu}\rangle$ and similar
 - yes, can supply the quarks with relative angular momentum etc..

Detour: (Iso-)Spins and their addition

Spin-1/2 systems: General remarks

- Spin-1/2 systems are often studied in physics.
- Spin-statistics theorem suggests that such systems are fermionic in nature, i.e. respect Pauli exclusion.
- Interesting in the context of this lecture: Basic building blocks of matter (quarks & leptons) are spin-1/2.
- Simple representation:

$$|\uparrow\rangle = \left|\frac{1}{2}, +\frac{1}{2}\right\rangle$$
 and $|\downarrow\rangle = \left|\frac{1}{2}, -\frac{1}{2}\right\rangle$.

Important: Distinguish total spin *s* and its projection, $s_z = s^3$ on a measurement axis (here the *z*-axis, could also be *I* and I^3).

- Examples: electron and its spin, isospin,
- Note: Spin can also occur as spin-1 etc.. Isopsin assignments for the hadrons above:

$$|p,n\rangle = \left|\frac{1}{2},\pm\frac{1}{2}\right\rangle$$
 and $|\pi^+,\pi^0,\pi^-\rangle = \left|\frac{1}{2},\{1,0,-1\}\right\rangle$

Adding (iso-)spins	

Adding two spin-1/2 objects

- Often two spin-1/2 objects form a compound.
 Examples: bound states of fermions, spin- orbit coupling, etc..
- If two spin-1/2 systems are added, the following objects can emerge: $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$, and $|\downarrow\downarrow\rangle$.

Naively, they have spin 1, 0, or -1, respectively. But: Need to distinguish total spin s and its projection onto the measurement axis s_z (here, z has been chosen for simplicity)

• Then, truly relevant states are s = 1 (triplet, symmetric)

$$|1,1\rangle = |\uparrow\uparrow\rangle, \quad |1,0\rangle = \frac{1}{\sqrt{2}} [|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle], \quad |1,-1\rangle = |\downarrow\downarrow\rangle$$

and s = 0 (singlet, anti-symmetric):

$$|0,0\rangle = rac{1}{\sqrt{2}}\left[|\uparrow\downarrow\rangle - |\downarrow\uparrow
angle
ight]$$

 $\bullet\,$ Catchy way of writing this: $\mathbf{2}\otimes\mathbf{2}=\mathbf{3}\oplus\mathbf{1}$

Adding (iso-)spins	

Clebsch-Gordan coefficients

- The **Clebsch-Gordan coefficients** in front of the new compound states can be calculated (or looked up).
- Formally speaking, they are defined as follows:

 $\left\langle s^{(1)}, \, s^{(1)}_{z}; \, s^{(2)}, \, s^{(2)}_{z} | s^{(1)}, \, s^{(2)}; \, s, \, s_{z} \right\rangle$

indicating that two spin systems $s^{(1)}$ and $s^{(2)}$ are added to form a new spin system with total spin s (or J). Obviously, it is not only the total spin of each system that counts here, but also its orientation. This is typically indicated through "magnetic" quantum numbers, m, replacing the s_z in the literature.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
--

Note: Square-roots around the coefficients are understood in the table above

	Adding (iso-)spins		ticles	
	a a su ta su ta su ta su			
US	ng spin-algebra			
٩	ldentify: $ p angle = \left \frac{1}{2}, +\frac{1}{2} ight angle$ a Heisenberg's proposal: Ca		er than spin).	
e	Also, the three kinds of p $ \pi^+ angle= 1,+1 angle$, $ \pi^0 angle= 1$			
q	• Catch: Isospin conserved in strong interactions!			
G	Dynamical implications: E Add two nucleons: can in But: No <i>pp</i> , <i>nn</i> -bound sta iso-singlet).	principle have iso-s	singlet and iso-tripl	
Q	• Consider processes (+ their isospin amplitudes, below):			
	$egin{aligned} m{ ho} + m{ ho} & ightarrow m{d} + \pi^+ \ \mathcal{A}_{ ext{iso}} \propto 1 \end{aligned}$		$egin{array}{l} {n+n} ightarrow {d+\pi^-} \ {\mathcal A}_{ m iso} \propto 1 \end{array}$	

Strangeness. Who ordered that?

Finding strange particles

- Rochester & Butler (1947): Cloud chamber experiment with cosmic rays. Unusual "fork" of a π^+ and a π^- .
- Interpretation: Cosmic ray particles, mass between π and p, the kaon, K.
- Like pions, but strangely long lifetime (typically decay to pions or a muon-neutrino pair), again hinting at weak interactions being responsible.
- Ultimately, this lead to extending isospin (*SU*(2)) to a larger symmetry group, *SU*(3) to catalogue mesons.

	Strange particles	
Finding more strongeneous		
Finding more strangeness		
• Anderson (1950): Another "s decaying into proton and π^- ,		
	T P	
 Copious production of such p 	articles \longrightarrow strong interac	tion

 $\bullet~$ But: Slow decays \longrightarrow weak interaction

Adding (iso-)spins Stran	nge particles	
Cataloguing strangeness		
 A new quantum number (like isospin) 		
	(proposed in 1953 by Gell-Mann and	Nishijima)
• Emerge as another quark type, strange, s $I_s = 0$, $Q_s = Q_d = -\frac{1}{3}$, $S_s = -1$ ($S_{u,d} =$		
• Conserved in strong interactions (only provide violated in weak interactions (s decays in	- /	
 Gell-Mann-Nishijima relation: 		
$Q = e\left(I_3 + \frac{B+S}{2}\right)$	<u>s</u>).	
(I ₃ is the third component (= $\pm 1/2$ for p , n) of the isospin, $S = \pm 1$ for ka	aons, Λ 's, and Σ 's, B is the baryon numbe	r (= 1 for
baryons like p, n, Λ , Σ and = 0 for mesons like π , K).)		
• Four mesons: kaons (K^+ , K^- , K^0 , \overline{K}^0).		
• All are pseudo-scalars (i.e. spin-0, negations) • All have the same mass, about three times $m_K \approx 495 \text{ MeV}) \implies$ "relatives"?	-	/,

The quark model

Quarks

- In 1964 Gell-Mann and Zweig proposed three "hypothetical" quarks, *up*, *d*own and *s*trange, a mnemonic help. All known hadrons are their "bound states":
 - Mesons are made from a q ar q-pair, $q ar q \equiv {f 3} \otimes ar {f 3} = {f 1} \oplus {f 8}$

• baryons from three quarks, $qqq \equiv 3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$;

i.e. one singlet of mesons and baryons, one octet of mesons, and two octets and one decuplet of baryons.

- By now we know quarks are real (see next lecture).
- Later more quark types were found (*c*harm, *b*ottom and *t*op).

```
(u, d, and s have masses around or below \Lambda_{QCD} \approx 250 MeV, the scale at which the strong coupling \alpha_s diverges, and bound states emerge, c, b, and t are far above this scale.)
```

Meson multiplets

Pseudoscalars

・ロン ・回 と ・ ヨン ・ ヨン

• Quark content of the mesons:

$$\begin{split} |K^{+}\rangle &= |u\bar{s}\rangle, \quad |K^{0}\rangle = |d\bar{s}\rangle, \quad |K^{-}\rangle = |s\bar{u}\rangle, \quad |\bar{K}^{0}\rangle = |s\bar{d}\rangle, \\ |\pi^{+}\rangle &= |u\bar{d}\rangle, \quad |\pi^{0}\rangle = \frac{1}{\sqrt{2}}|u\bar{u} - d\bar{d}\rangle, \quad |\pi^{-}\rangle = |d\bar{u}\rangle, \\ |\eta'\rangle &= \frac{1}{\sqrt{6}}|u\bar{u} + d\bar{d} - 2s\bar{s}\rangle, \quad |\eta\rangle = \frac{1}{\sqrt{3}}|u\bar{u} + d\bar{d} + s\bar{s}\rangle. \end{split}$$

3

	The quark model

Baryon multiplets

Isospin Addi		The quark model

The discovery of the Ω^-

- In 1961, "tip" of the decuplet not yet found.
 M.Gell-Mann's prediction: m = 1672 MeV, plus the right production mechanism and a long lifetime.
 - Decay chain:

$$K^- + p \rightarrow \Omega^- + K^+ + K^{*0}$$

(strangeness conserving)

$$\Omega^-
ightarrow \Lambda^0 + K^-$$

$$(\Delta S = 1 \text{ weak decay})$$

$$\Lambda^0 o \pi^- + p$$

 $(\Delta S = 1 \text{ weak decay})$

$$K^{*0} \to \pi^- + K^+$$

 $(\Delta S = 0 \text{ strong decay})$

AT 10 GeWd

Adding (iso-)spins	The quark model

The postulate of colour

• In the decuplet, one problem appears: Some states like for instance the Δ^{++} are composed from three identical quarks (*u*'s for the Δ^{++}). Since the decuplet baryons are spin-3/2 objects they are fermions, i.e. their wave function must be antisymmetric. With three identical quarks, in identical spin states (spin-3/2 implies the spin-1/2's point into the same direction), this is possible only by invoking a new quantum number, **colour**.

We will discuss this when we encounter the strong interaction again.

	The quark model

Summary

- More particles in the zoo.
- First encounter with isospin as a first symmetry.
- Emergence of strangeness giving rise to the quark model: *SU*(3) or "the eightfold way".
- Symmetry as **the** method of choice to gain control.
- Resonances as intermediate states.
- To read: Coughlan, Dodd & Gripaios, "The ideas of particle physics", Sec 7-10.