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● Explain the ‘Core predictor’ problem
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○ Article reference features

● Constructing a solution (SVM classifier based on references)
● Confidence in solution
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● INSPIRE is the High-Energy Physics Literature Database
● Content is taken from many sources, including arXiv
● Database is updated daily, with articles classified as “Core” or “Non-Core”, or 

are rejected for inclusion.
● Is there a way to automate this?

Problem/Task

Non-Core example Core example



Gathering Data

● Gathered all arXiv listings (including 
updated articles)    1/1/16 - 31/5/16.

● 52,000 articles, strongly skewed.
● Shuffle, and divide the data for 

Training:Validation:Testing.
● DO NOT LOOK AT THE TESTING 

DATA!



Machine Learning

● We used sklearn[1] and keras[2]
● Many different algorithms to choose from eg. svm, knn, naive bayes
● You train the algorithm on different “features” of the data
● Features can be stuff like the words in the text, the authors of the 

paper, the references of the paper.

[1] - https://arxiv.org/pdf/1201.0490.pdf
[2] - https://github.com/keras-team/keras



INSPIRE’s initial algorithm

● This shows the performance of 
the initial algorithm Inspire have 
developed

● This gives an idea of the baseline 
which we want to improve upon



Dictionary of keywords
● Used dictionary of HEP words and terms 

○ Unigrams: higgs

○ Bigrams: charged current

○ Trigrams: muon tracking detector

○ Quadgrams: inclusive reaction central region

● Counted frequency of these words in title 
and abstract 

● Trained SVM on these features 

Accuracy: 0.70



Bag of words
1. Turn string of text into list of ‘tokens’ 
2. Count frequency of each ‘token’ 
3. Normalise with text length and overall 

frequency in the corpus - TFIDF
4. Token frequency is treated as a feature
5. Each text corresponds to a vector of word 

frequencies
6. Classifier is then trained on a matrix of 

n_tokens x n_texts

Accuracy: 0.92



Word embeddings
● Here, words are represented as vectors
● Words with similar context will have 

vectors ‘close’ to each other
● How did we get the mapping?

○ Embeddings layer in a NN using keras

○ Using pre-learned GloVe embeddings

● However, both these techniques gave 
similar results

Accuracy: 0.93



Performance trends so far

● Each method has improved upon the last:
○ Dictionary < bag of words

○ Bag of words < word embeddings

● However, the common limiting issue is the classification of Non-Core
● Time to try a new feature!



Reference fractions

● If there are N references in a paper, 
and A are Core papers, B are 
Non-Core,

● Core vs. rest well separated.
● Problems for references not yet in 

INSPIRE.



References of references

● Look at the references of each 
reference

● Calculate the fraction of Core, 
Non-Core for a “second-order” 
estimate of reference fractions.

● Scatter each of these.



Support Vector Machine (SVM)
How does an SVM classify points?

● w -vector perpendicular to optimal 
hyperplane

● u -unknown vector
● Condition:  w ⋅ u +b ≥ 0 
● If true
● If false 

https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

w

u



Our problem

● 4 features - hyperplane 
● Multi classification- One Vs Rest

Support Vector Machine (SVM)



Optimising hyperparameters

● Kernel: Linear vs. RBF (radial basis 
function)

● Penalty Parameter, C.
○ High C: tries to classify all training points 

correctly - overfitting

○ Low C: allows misclassifications- better 

generalisation

● Reach of single training example, ᶕ
○ High ᶕ: only uses points close to decision 

boundary as support vectors

○ Low ᶕ: support vectors have greater sphere 

of influence

Support Vector Machine (SVM)



● Linear SVM with four features 
(reference fractions), with C = 1.0.

● Lower overall accuracy than ‘Bag of 
Words’ or ‘Word embeddings’

● ...but significantly fewer false 
negatives

SVM Performance

Accuracy: 0.88



● Use NN output class weights as input 
features into SVM

● SVM features:
○ Core weight

○ Non-core weight

○ Rejected weight

○ Core refs

○ Non-core refs

● Not worth it?

Combining methods



Automating the decision 

● If the SVM tells us if a paper is Rejected, Non-Core or Core can we then 
determine if we should trust it?

● If the SVM is sure it is correct we won’t need a person to check the 
decision. 

● The distance each entry is from the decision boundary can be used to find 
this out.

● Looking at what unites the misclassified entries may give insight into 
what else could be used features to help tell them apart



Two Classifiers

● Can you use a second classifier to see if you need to check results from a 
first SVM?

● The first SVM would use the 4 fractions of references as input to 
determine if a paper was Rejected, Non-Core or Core.

● The second would use the result from the first SVM (ie, the distance 
each point is from the decision boundary) and a selection of other 
features (Number or references, Dictionary of Keywords, Category, etc) 
to deduce if you need to check the result of the first. 



● features: decision distance, number 
of keywords, the predicted decision 
and category 

Two Classifier Results 
● features: decision distance, number 

of keywords, the predicted decision 
and category, number of refs



Problems with this approach

● Has become quite complicated
● It requires you to extract many features, rather than just references 
● You train the 2nd classifier on the validation data from the first. This 

means training set is significantly smaller than the 1st classifiers. 



Distance from decision boundary 

● Main requirement is to reduce false negatives (ie, rejecting a 
Core/Non-Core paper is very bad).

● One vs the rest (OVR) gives 3 distances per point:
○ Distance from REJECTED vs rest boundary

○ Distance from NON-CORE vs rest boundary

○ Distance from CORE vs rest boundary

● Normalise by feature weights for each OVR classification.



● If we select all papers greater than a certain distance from the boundary, what 
is the probability of a prediction, given the true label?

P(Prediction|Truth)



P(Prediction|Truth)
● Can also determine what fraction of papers will remain, if given an 

accuracy demand.



P(Truth|Prediction)



● Confusion matrix using data 
points with:

○ Rejected: >0.16

○ Non-core: >0.05

○ Core: >0.05 

● 69% of data would be 
automatically classified

Performance after distance cut



● arXiv categories automatically 
classified as CORE:

○ hep-ex

○ hep-lat

○ hep-ph

○ hep-th

● How do we do after we take away 
these categories?

● 67% data set would be automatically 
classified excluding HEP

Applying cut off/excluding HEP



● What if we are even more restrictive 
with false Rejected classifications?

● 26% data set classified 
automatically with no false 
rejections

● 17% excluding hep

After requiring no false rejections



Did we improve?
Initial INSPIRE algorithm Our algorithm

Accuracy = 0.88



Further work

● Two binary classifiers, Rejected vs. Accepted, then try to classify 
accepted into Core/Non-Core.

● Multiple classifiers based on category.
● Use an unbalanced loss function to penalise false rejections more
● Try to estimate P(Prediction|Truth) for an unseen paper using Bayes’ 

rule.

P(P|T) = P(T|P)*P(P)/P(T).



Conclusions

● A simple SVM performs as well for our requirements as more complex 
models

● Non-Core proves hard to classify. 
● It is possible to automate classifying papers without falsely rejecting 

them for around a quarter of the dataset.



Thanks!



Back up slides



How do we find the optimal hyperplane?

● w ⋅ x
+

 + b  ≥ 1
● w ⋅ x

-
 + b  ≤ -1

● Maximize the margin subject to these 
constraints to find optimal w and b.

Support Vector Machine (SVM)

w

x-
x+


