
Andrew Blance,
Aidan Sedgewick &

Parisa Gregg

Machine Learning for
INSPIRE’s Core Predictor

Outline

● Explain the ‘Core predictor’ problem
● Describe the data
● Methods used

○ Machine learning schemes

○ Text-based features

○ Article reference features

● Constructing a solution (SVM classifier based on references)
● Confidence in solution
● Conclusions

● INSPIRE is the High-Energy Physics Literature Database
● Content is taken from many sources, including arXiv
● Database is updated daily, with articles classified as “Core” or “Non-Core”, or

are rejected for inclusion.
● Is there a way to automate this?

Problem/Task

Non-Core example Core example

Gathering Data

● Gathered all arXiv listings (including
updated articles) 1/1/16 - 31/5/16.

● 52,000 articles, strongly skewed.
● Shuffle, and divide the data for

Training:Validation:Testing.
● DO NOT LOOK AT THE TESTING

DATA!

Machine Learning

● We used sklearn[1] and keras[2]
● Many different algorithms to choose from eg. svm, knn, naive bayes
● You train the algorithm on different “features” of the data
● Features can be stuff like the words in the text, the authors of the

paper, the references of the paper.

[1] - https://arxiv.org/pdf/1201.0490.pdf
[2] - https://github.com/keras-team/keras

INSPIRE’s initial algorithm

● This shows the performance of
the initial algorithm Inspire have
developed

● This gives an idea of the baseline
which we want to improve upon

Dictionary of keywords
● Used dictionary of HEP words and terms

○ Unigrams: higgs

○ Bigrams: charged current

○ Trigrams: muon tracking detector

○ Quadgrams: inclusive reaction central region

● Counted frequency of these words in title
and abstract

● Trained SVM on these features

Accuracy: 0.70

Bag of words
1. Turn string of text into list of ‘tokens’
2. Count frequency of each ‘token’
3. Normalise with text length and overall

frequency in the corpus - TFIDF
4. Token frequency is treated as a feature
5. Each text corresponds to a vector of word

frequencies
6. Classifier is then trained on a matrix of

n_tokens x n_texts

Accuracy: 0.92

Word embeddings
● Here, words are represented as vectors
● Words with similar context will have

vectors ‘close’ to each other
● How did we get the mapping?

○ Embeddings layer in a NN using keras

○ Using pre-learned GloVe embeddings

● However, both these techniques gave
similar results

Accuracy: 0.93

Performance trends so far

● Each method has improved upon the last:
○ Dictionary < bag of words

○ Bag of words < word embeddings

● However, the common limiting issue is the classification of Non-Core
● Time to try a new feature!

Reference fractions

● If there are N references in a paper,
and A are Core papers, B are
Non-Core,

● Core vs. rest well separated.
● Problems for references not yet in

INSPIRE.

References of references

● Look at the references of each
reference

● Calculate the fraction of Core,
Non-Core for a “second-order”
estimate of reference fractions.

● Scatter each of these.

Support Vector Machine (SVM)
How does an SVM classify points?

● w -vector perpendicular to optimal
hyperplane

● u -unknown vector
● Condition: w ⋅ u +b ≥ 0
● If true
● If false

https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

w

u

Our problem

● 4 features - hyperplane
● Multi classification- One Vs Rest

Support Vector Machine (SVM)

Optimising hyperparameters

● Kernel: Linear vs. RBF (radial basis
function)

● Penalty Parameter, C.
○ High C: tries to classify all training points

correctly - overfitting

○ Low C: allows misclassifications- better

generalisation

● Reach of single training example, ᶕ
○ High ᶕ: only uses points close to decision

boundary as support vectors

○ Low ᶕ: support vectors have greater sphere

of influence

Support Vector Machine (SVM)

● Linear SVM with four features
(reference fractions), with C = 1.0.

● Lower overall accuracy than ‘Bag of
Words’ or ‘Word embeddings’

● ...but significantly fewer false
negatives

SVM Performance

Accuracy: 0.88

● Use NN output class weights as input
features into SVM

● SVM features:
○ Core weight

○ Non-core weight

○ Rejected weight

○ Core refs

○ Non-core refs

● Not worth it?

Combining methods

Automating the decision

● If the SVM tells us if a paper is Rejected, Non-Core or Core can we then
determine if we should trust it?

● If the SVM is sure it is correct we won’t need a person to check the
decision.

● The distance each entry is from the decision boundary can be used to find
this out.

● Looking at what unites the misclassified entries may give insight into
what else could be used features to help tell them apart

Two Classifiers

● Can you use a second classifier to see if you need to check results from a
first SVM?

● The first SVM would use the 4 fractions of references as input to
determine if a paper was Rejected, Non-Core or Core.

● The second would use the result from the first SVM (ie, the distance
each point is from the decision boundary) and a selection of other
features (Number or references, Dictionary of Keywords, Category, etc)
to deduce if you need to check the result of the first.

● features: decision distance, number
of keywords, the predicted decision
and category

Two Classifier Results
● features: decision distance, number

of keywords, the predicted decision
and category, number of refs

Problems with this approach

● Has become quite complicated
● It requires you to extract many features, rather than just references
● You train the 2nd classifier on the validation data from the first. This

means training set is significantly smaller than the 1st classifiers.

Distance from decision boundary

● Main requirement is to reduce false negatives (ie, rejecting a
Core/Non-Core paper is very bad).

● One vs the rest (OVR) gives 3 distances per point:
○ Distance from REJECTED vs rest boundary

○ Distance from NON-CORE vs rest boundary

○ Distance from CORE vs rest boundary

● Normalise by feature weights for each OVR classification.

● If we select all papers greater than a certain distance from the boundary, what
is the probability of a prediction, given the true label?

P(Prediction|Truth)

P(Prediction|Truth)
● Can also determine what fraction of papers will remain, if given an

accuracy demand.

P(Truth|Prediction)

● Confusion matrix using data
points with:

○ Rejected: >0.16

○ Non-core: >0.05

○ Core: >0.05

● 69% of data would be
automatically classified

Performance after distance cut

● arXiv categories automatically
classified as CORE:

○ hep-ex

○ hep-lat

○ hep-ph

○ hep-th

● How do we do after we take away
these categories?

● 67% data set would be automatically
classified excluding HEP

Applying cut off/excluding HEP

● What if we are even more restrictive
with false Rejected classifications?

● 26% data set classified
automatically with no false
rejections

● 17% excluding hep

After requiring no false rejections

Did we improve?
Initial INSPIRE algorithm Our algorithm

Accuracy = 0.88

Further work

● Two binary classifiers, Rejected vs. Accepted, then try to classify
accepted into Core/Non-Core.

● Multiple classifiers based on category.
● Use an unbalanced loss function to penalise false rejections more
● Try to estimate P(Prediction|Truth) for an unseen paper using Bayes’

rule.

P(P|T) = P(T|P)*P(P)/P(T).

Conclusions

● A simple SVM performs as well for our requirements as more complex
models

● Non-Core proves hard to classify.
● It is possible to automate classifying papers without falsely rejecting

them for around a quarter of the dataset.

Thanks!

Back up slides

How do we find the optimal hyperplane?

● w ⋅ x
+

 + b ≥ 1
● w ⋅ x

-
 + b ≤ -1

● Maximize the margin subject to these
constraints to find optimal w and b.

Support Vector Machine (SVM)

w

x-
x+

